JPH0843201A - Pyroelectric infrared sensor circuit - Google Patents

Pyroelectric infrared sensor circuit

Info

Publication number
JPH0843201A
JPH0843201A JP6175631A JP17563194A JPH0843201A JP H0843201 A JPH0843201 A JP H0843201A JP 6175631 A JP6175631 A JP 6175631A JP 17563194 A JP17563194 A JP 17563194A JP H0843201 A JPH0843201 A JP H0843201A
Authority
JP
Japan
Prior art keywords
reference potential
infrared sensor
pyroelectric infrared
sensor circuit
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6175631A
Other languages
Japanese (ja)
Other versions
JP3282389B2 (en
Inventor
Shigeo Yamazaki
茂雄 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP17563194A priority Critical patent/JP3282389B2/en
Publication of JPH0843201A publication Critical patent/JPH0843201A/en
Application granted granted Critical
Publication of JP3282389B2 publication Critical patent/JP3282389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve both the detection sensitivity and speed of response of an infrared sensor circuit. CONSTITUTION:One end of the pyroelectric infrared sensor S1 is connected to a DC power source E1 which supplies a first reference potential VREF1 and the noninverting input terminal of an operational amplifier OP1. The other end of the sensor S1 is connected to the inverting input terminal of the amplifier OP1 and one end of a series circuit composed of a series resistance R2 and the phototransistor Tr1 of a photocoupler 11. The other end of the series circuit is connected to a variable DC power source E2 which supplies a second reference potential VREF2. The phototransistor Tr1 is connected with a parallel resistance R1. Between the output terminal of the amplifier OP1 and a variable DC power source E3 which supplies a third reference potential, a resistor R3 for deciding amplification factor and the light-emitting diode LED of the photocoupler 11 are connected. Therefore, the detection sensitivity of the sensor S1 can be improved by adjusting the resistor 3. In addition, the speed of response of the sensor S1 can be also improved by reducing the value of the series resistance R2 to a relatively small value. This sensor S1 is suitable for the human body detecting sensor fixed to automobiles, robot arms, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焦電型赤外線センサ回
路に関し、さらに詳しくは、検出感度と高速応答性を両
立できる焦電型赤外線センサ回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric infrared sensor circuit, and more particularly to a pyroelectric infrared sensor circuit capable of achieving both detection sensitivity and high-speed response.

【0002】[0002]

【従来の技術】図3は、従来の焦電型赤外線センサ回路
の一例を示す回路図である。この焦電型赤外線センサ回
路500において、焦電型赤外線センサS1の一端は基
準電位VREFおよびオペアンプOP1の非反転入力端
子に接続され、前記焦電型赤外線センサS1の他端は前
記オペアンプOP1の反転入力端子に接続されている。
前記基準電位VREFは、電源電圧VCCを分圧抵抗R
4,R5で分圧して得ている。前記オペアンプOP1の
反転入力端子と出力端子の間には、帰還抵抗R22が接
続されている。なお、C1は、前記オペアンプOP1の
反転入力端子と出力端子の間に存在する浮遊容量C1で
ある。
2. Description of the Related Art FIG. 3 is a circuit diagram showing an example of a conventional pyroelectric infrared sensor circuit. In this pyroelectric infrared sensor circuit 500, one end of the pyroelectric infrared sensor S1 is connected to the reference potential VREF and the non-inverting input terminal of the operational amplifier OP1, and the other end of the pyroelectric infrared sensor S1 is the inverse of the operational amplifier OP1. It is connected to the input terminal.
The reference potential VREF is a voltage dividing resistor R for dividing the power supply voltage VCC.
4, obtained by partial pressure with R5. A feedback resistor R22 is connected between the inverting input terminal and the output terminal of the operational amplifier OP1. Incidentally, C1 is a stray capacitance C1 existing between the inverting input terminal and the output terminal of the operational amplifier OP1.

【0003】次に、上記焦電型赤外線センサ回路500
の動作を説明する。焦電型赤外線センサS1は、赤外線
の変化があると、それによる温度変化に応じて、略10
-8 C/K・cm2の電荷を放出する。例えば、焦電型赤
外線センサS1の検出素子の大きさが0.1cm×0.
1cmで,検出素子の温度変化が0.001Kとすると
き、略10-8C/K・cm2×0.01cm2×0.00
1K=10-13Cの電荷を放出する。すると、帰還抵抗
R22および浮遊容量C1を通して、オペアンプOP1
の出力端子から反転入力端子に、前記電荷に応じた電流
が帰還される。この結果、赤外線の強度に応じた検出信
号Soが、オペアンプOP1から出力されることにな
る。
Next, the pyroelectric infrared sensor circuit 500 described above.
Will be described. When there is a change in infrared rays, the pyroelectric infrared sensor S1 is approximately 10
-Emits an electric charge of 8 C / K · cm 2 . For example, the size of the detection element of the pyroelectric infrared sensor S1 is 0.1 cm × 0.
When the temperature change of the detection element is 0.001K at 1 cm, it is approximately 10 -8 C / K · cm 2 × 0.01 cm 2 × 0.00
It releases a charge of 1K = 10 −13 C. Then, through the feedback resistor R22 and the stray capacitance C1, the operational amplifier OP1
The current corresponding to the electric charge is fed back from the output terminal of the above to the inverting input terminal. As a result, the detection signal So according to the intensity of infrared rays is output from the operational amplifier OP1.

【0004】上記焦電型赤外線センサ回路500は、浮
遊容量C1のため、高域遮断型のフィルタ特性を有して
いる。高域遮断周波数fpは、 fp=1/(2π・C1・R22) で規定される。
The pyroelectric infrared sensor circuit 500 has a high-frequency cutoff type filter characteristic because of the stray capacitance C1. The high cutoff frequency fp is defined by fp = 1 / (2π · C1 · R22).

【0005】[0005]

【発明が解決しようとする課題】上記従来の焦電型赤外
線センサ回路500において、検出感度を高くするため
には、帰還抵抗R22の値を大きくし、増幅率を上げれ
ばよい。しかし、帰還抵抗R22の値を大きくすると、
高域遮断周波数fpが低くなり、高速応答性を失ってし
まう。例えば、浮遊容量C1が数pF程度とするとき、
帰還抵抗R22を1011Ω程度とすると、高域遮断周波
数fpは数10Hz程度となり、高速応答性を失ってし
まう。すなわち、上記従来の焦電型赤外線センサ回路5
00では、検出感度と高速応答性とがトレードオフの関
係にあり、両立が困難な問題点がある。そこで、本発明
の目的は、検出感度と高速応答性を両立できる焦電型赤
外線センサ回路を提供することにある。
In the conventional pyroelectric infrared sensor circuit 500, in order to increase the detection sensitivity, the value of the feedback resistor R22 may be increased and the amplification factor may be increased. However, if the value of the feedback resistor R22 is increased,
The high cutoff frequency fp becomes low and the high speed response is lost. For example, when the stray capacitance C1 is about several pF,
When the feedback resistor R22 is set to about 10 11 Ω, the high cutoff frequency fp becomes about several tens Hz, and the high speed response is lost. That is, the above conventional pyroelectric infrared sensor circuit 5
In No. 00, there is a trade-off between detection sensitivity and high-speed response, and there is a problem that it is difficult to achieve compatibility. Therefore, an object of the present invention is to provide a pyroelectric infrared sensor circuit that can achieve both detection sensitivity and high-speed response.

【0006】[0006]

【課題を解決するための手段】第1の観点では、本発明
は、焦電型赤外線センサの一端を第1の基準電位点およ
び差動増幅器の非反転入力端子に接続し、前記焦電型赤
外線センサの他端を前記差動増幅器の反転入力端子に接
続し、前記差動増幅器の反転入力端子と第2の基準電位
点の間にフォトカプラの受光素子と直列抵抗の直列回路
を接続し、前記受光素子と並列に並列抵抗を接続し、前
記差動増幅器の出力端子と第3の基準電位点の間に前記
フォトカプラの発光素子と増幅率決定用抵抗とを接続し
たことを特徴とする焦電型赤外線センサ回路を提供す
る。
According to a first aspect of the present invention, one end of a pyroelectric infrared sensor is connected to a first reference potential point and a non-inverting input terminal of a differential amplifier. The other end of the infrared sensor is connected to the inverting input terminal of the differential amplifier, and the light receiving element of the photocoupler and the series circuit of the series resistor are connected between the inverting input terminal of the differential amplifier and the second reference potential point. A parallel resistor is connected in parallel with the light receiving element, and a light emitting element of the photocoupler and a gain determining resistor are connected between the output terminal of the differential amplifier and a third reference potential point. Provided is a pyroelectric infrared sensor circuit.

【0007】第2の観点では、本発明は、上記第1の観
点の焦電型赤外線センサ回路において、第2の基準電位
を与えるための第2基準電位用直流電源または第3の基
準電位を与えるための第3基準電位用直流電源の少なく
とも一方を設けたことを特徴とする焦電型赤外線センサ
回路を提供する。
According to a second aspect of the present invention, in the pyroelectric infrared sensor circuit according to the first aspect, the second reference potential DC power supply or the third reference potential for applying the second reference potential is used. There is provided a pyroelectric infrared sensor circuit characterized in that at least one of a third DC power supply for reference potential is provided.

【0008】第3の観点では、本発明は、上記第2の観
点の焦電型赤外線センサ回路において、第2基準電位用
直流電源と第3基準電位用直流電源の少なくとも一方は
ゼロボルト出力になりうる可変直流電源であることを特
徴とする焦電型赤外線センサ回路を提供する。
According to a third aspect of the present invention, in the pyroelectric infrared sensor circuit according to the second aspect, at least one of the second reference potential DC power supply and the third reference potential DC power supply has a zero volt output. A pyroelectric infrared sensor circuit is provided which is a variable DC power supply.

【0009】[0009]

【作用】上記第1の観点の焦電型赤外線センサ回路で
は、増幅率決定用抵抗を調整してフォトカプラによる帰
還量を小さくすることにより、増幅率が上がり、検出感
度を高くすることが出来る。このため、直列抵抗の値を
それほど大きくする必要はない(1010Ω以下でもよ
い)。一方、高域遮断周波数fpは、直列抵抗の値をR
2とし,浮遊容量をC0とするとき、 fp=1/(2π・C0・R2) となる。上記のように直列抵抗の値R2をそれほど大き
くする必要がないから、高域遮断周波数fpは高くな
る。例えば、R2=108 Ω,C0=数pFとすると、
fpは約1kHzとなる。従って、検出感度と高速応答
性とを両立できることとなる。なお、並列抵抗は、フォ
トカプラの受光素子がオフの状態でも、差動増幅器の反
転入力端子に第2の基準電位を印加するためのものであ
る。
In the pyroelectric infrared sensor circuit according to the first aspect, the amplification factor is increased and the detection sensitivity can be increased by adjusting the amplification factor determining resistor to reduce the feedback amount by the photocoupler. . Therefore, it is not necessary to increase the value of the series resistance so much (10 10 Ω or less). On the other hand, for the high cutoff frequency fp, the value of the series resistance is R
2, and stray capacitance is C0, then fp = 1 / (2π · C0 · R2). Since it is not necessary to increase the value R2 of the series resistance so much as described above, the high cutoff frequency fp becomes high. For example, if R2 = 10 8 Ω and C0 = several pF,
fp becomes about 1 kHz. Therefore, both detection sensitivity and high-speed response can be achieved. The parallel resistance is for applying the second reference potential to the inverting input terminal of the differential amplifier even when the light receiving element of the photocoupler is off.

【0010】上記第2の観点の焦電型赤外線センサ回路
では、第2基準電位用直流電源により第2の基準電位を
与えることで、差動増幅器に与えるオフセット量の自由
度を向上できる。また、第3基準電位用直流電源により
第3の基準電位を与えることでフォトカプラの発光素子
に流れる電流が変化するので、フォトカプラによる帰還
量が好適になるように設定できる。
In the pyroelectric infrared sensor circuit of the second aspect, the degree of freedom of the offset amount given to the differential amplifier can be improved by giving the second reference potential by the second reference potential DC power supply. Further, since the current flowing through the light emitting element of the photocoupler is changed by applying the third reference potential from the third DC power supply for the reference potential, the feedback amount by the photocoupler can be set to be suitable.

【0011】上記第3の観点の焦電型赤外線センサ回路
では、第2基準電位用直流電源と第3基準電位用直流電
源の少なくとも一方はゼロボルト出力になりうる可変直
流電源なので、オフセット量や帰還量の調整自由度を一
層向上でき、しかも、第2基準電位や第3基準電位をア
ース電位にとることも可能となる。
In the pyroelectric infrared sensor circuit according to the third aspect, since at least one of the second reference potential DC power supply and the third reference potential DC power supply is a variable DC power supply capable of producing a zero volt output, an offset amount and a feedback are provided. The degree of freedom in adjusting the amount can be further improved, and the second reference potential and the third reference potential can be set to the ground potential.

【0012】[0012]

【実施例】以下、図に示す実施例により本発明をさらに
詳細に説明する。なお、これにより本発明が限定される
ものではない。
EXAMPLES The present invention will be described in more detail with reference to the examples shown in the drawings. The present invention is not limited to this.

【0013】−第1実施例− 図1は、本発明の第1実施例の焦電型赤外線センサ回路
の回路図である。この焦電型赤外線センサ回路100に
おいて、焦電型赤外線センサS1の一端は、第1の基準
電位VREF1を与える直流電源E1およびオペアンプ
OP1の非反転入力端子に接続されている。前記第1の
基準電位VREF1は、前記オペアンプOP1の動作範
囲(電源電圧VCC,VSSにより決まる)を逸脱せず
に、前記焦電型赤外線センサS1からのセンサ信号(正
方向または負方向)を増幅できるようなオフセット量を
与える。
First Embodiment FIG. 1 is a circuit diagram of a pyroelectric infrared sensor circuit according to the first embodiment of the present invention. In the pyroelectric infrared sensor circuit 100, one end of the pyroelectric infrared sensor S1 is connected to a DC power source E1 that supplies a first reference potential VREF1 and a non-inverting input terminal of an operational amplifier OP1. The first reference potential VREF1 amplifies the sensor signal (positive direction or negative direction) from the pyroelectric infrared sensor S1 without departing from the operating range of the operational amplifier OP1 (determined by the power supply voltages VCC and VSS). Give the amount of offset that can be done.

【0014】前記焦電型赤外線センサS1の他端は前記
オペアンプOP1の反転入力端子に接続されている。ま
た、直列抵抗R2(好ましくは、略106 Ω以上で略1
10Ω以下)とフォトカプラ11のフォトトランジスタ
Tr1との直列回路の一端に接続されている。また、前
記直列回路の他端は、第2の基準電位VREF2を与え
る可変直流電源E2に接続されている。前記可変直流電
源E2の電圧設定により、オフセット量を調整すること
が出来る。なお、前記可変直流電源E2は基本的に正の
基準電位VREF2を与えるが、ゼロボルト出力に設定
することで基準電位VREF2を実質的にアース電位に
することも出来る。
The other end of the pyroelectric infrared sensor S1 is connected to the inverting input terminal of the operational amplifier OP1. Further, the series resistance R2 (preferably about 10 6 Ω or more and about 1
0 10 Ω or less) and the phototransistor Tr1 of the photocoupler 11 are connected to one end of a series circuit. Further, the other end of the series circuit is connected to a variable DC power source E2 that gives a second reference potential VREF2. The offset amount can be adjusted by setting the voltage of the variable DC power source E2. The variable DC power source E2 basically supplies a positive reference potential VREF2, but the reference potential VREF2 can be set to be substantially the ground potential by setting a zero volt output.

【0015】また、前記フォトトランジスタTr1に
は、並列抵抗R1が並列に接続されている。フォトトラ
ンジスタTr1がオンのときに並列抵抗R1を流れる電
流が、フォトトランジスタTr1のエミッタ電流の1%
程度以下になるようにすれば、オペアンプOP1で十分
な帰還量を得ることが出来る。並列抵抗R1は、オペア
ンプOP1の立上がり時の動作を安定にするもので、そ
の値は、略1010Ω以上が好ましい。
A parallel resistor R1 is connected in parallel to the phototransistor Tr1. The current flowing through the parallel resistance R1 when the phototransistor Tr1 is on is 1% of the emitter current of the phototransistor Tr1.
If it is set to be equal to or less than that, a sufficient amount of feedback can be obtained by the operational amplifier OP1. The parallel resistor R1 stabilizes the operation of the operational amplifier OP1 when it rises, and its value is preferably about 10 10 Ω or more.

【0016】C0は、前記フォトトランジスタTr1の
コレクタ−エミッタ間の浮遊容量である。
C0 is a stray capacitance between the collector and emitter of the phototransistor Tr1.

【0017】前記オペアンプOP1の出力端子には、増
幅率決定用抵抗R3の一端が接続され、その増幅率決定
用抵抗R3の他端にはフォトカプラ11の発光ダイオー
ドLEDのアノードが接続され、前記発光ダイオードL
EDのカソードは第3の基準電位VREF3を与える可
変直流電源E3に接続されている。前記可変直流電源E
3は基本的に正の基準電位VREF3を与えるが、ゼロ
ボルト出力に設定することで基準電位VREF3を実質
的にアース電位にすることも出来る。
The output terminal of the operational amplifier OP1 is connected to one end of the amplification factor determining resistor R3, and the other end of the amplification factor determining resistor R3 is connected to the anode of the light emitting diode LED of the photocoupler 11. Light emitting diode L
The cathode of ED is connected to a variable DC power supply E3 that provides a third reference potential VREF3. Variable DC power source E
3 basically gives a positive reference potential VREF3, but the reference potential VREF3 can be set to be substantially the ground potential by setting a zero volt output.

【0018】次に、この焦電型赤外線センサ回路100
の動作を説明する。焦電型赤外線センサS1に入射され
る赤外線に変化がない状態では、可変直流電源E2から
オペアンプOP1にオフセット電圧が与えられ、オペア
ンプOP1の立上がり動作を安定にする。焦電型赤外線
センサS1は、赤外線の変化があると、それによる温度
変化に応じて、略10-8 C/K・cm2の電荷を放出す
る。例えば、焦電型赤外線センサS1の検出素子の大き
さが0.1cm×0.1cmで,検出素子の温度変化が
0.001Kとするとき、略10-8C/K・cm2×
0.01cm2×0.001K=10-13 Cの電荷を放
出する。この電荷により、オペアンプOP1の反転入力
端子の電圧が変化する。すなわち、焦電型赤外線センサ
S1からのセンサ信号の電圧をVsとすると、(Vs+
VREF2)なる電位がオペアンプOP1の反転入力端
子に与えられる。すると、そのオペアンプOP1の反転
入力端子の電圧の変化に応じて、オペアンプOP1の出
力電圧が変化する。この出力電圧の変化は、増幅率決定
用抵抗R3およびフォトカプラ11の発光ダイオードL
EDを流れる電流を変化させ、さらにはフォトカプラ1
1のフォトトランジスタTr1のコレクタ−エミッタ間
の抵抗値を変化させる。このフォトトランジスタTr1
のコレクタ−エミッタ間の抵抗値の変化は、直列抵抗R
2を通して、オペアンプOP1の反転入力端子に伝わ
る。かくして、オペアンプOP1の出力電圧が反転入力
端子に帰還される結果、赤外線の強度に応じた検出信号
Soが、オペアンプOP1から出力されることになる。
Next, the pyroelectric infrared sensor circuit 100
Will be described. When there is no change in the infrared rays incident on the pyroelectric infrared sensor S1, an offset voltage is applied from the variable DC power source E2 to the operational amplifier OP1 to stabilize the rising operation of the operational amplifier OP1. When the infrared ray changes, the pyroelectric infrared sensor S1 emits a charge of about 10 −8 C / K · cm 2 in accordance with the temperature change caused by the change. For example, when the size of the detection element of the pyroelectric infrared sensor S1 is 0.1 cm × 0.1 cm and the temperature change of the detection element is 0.001 K, it is approximately 10 −8 C / K · cm 2 ×
A charge of 0.01 cm 2 × 0.001K = 10 −13 C is released. This charge changes the voltage at the inverting input terminal of the operational amplifier OP1. That is, when the voltage of the sensor signal from the pyroelectric infrared sensor S1 is Vs, (Vs +
The potential VREF2) is applied to the inverting input terminal of the operational amplifier OP1. Then, the output voltage of the operational amplifier OP1 changes according to the change of the voltage of the inverting input terminal of the operational amplifier OP1. This change in the output voltage is caused by the amplification factor determining resistor R3 and the light emitting diode L of the photocoupler 11.
The current flowing through the ED is changed, and further the photocoupler 1
The resistance value between the collector and the emitter of the first phototransistor Tr1 is changed. This phototransistor Tr1
The change in the resistance value between the collector and the emitter of the series resistor R
2 is transmitted to the inverting input terminal of the operational amplifier OP1. Thus, as a result of the output voltage of the operational amplifier OP1 being fed back to the inverting input terminal, the detection signal So according to the intensity of infrared rays is output from the operational amplifier OP1.

【0019】上記焦電型赤外線センサ回路100では、
増幅率決定用抵抗R3を調整してフォトカプラ11によ
る帰還量を小さくすることにより、増幅率が上がり、検
出感度を高くすることが出来る。一方、高域遮断周波数
fpは、直列抵抗の値をR2とし,浮遊容量をC0とす
るとき、 fp=1/(2π・C0・R2) となる。例えば、R2=108 Ω,C0=数pFとする
と、fpは約1kHzとなる。なお、前記帰還量は、可
変直流電源E3の電圧設定により調整することが出来
る。例えば、可変直流電源E3の電圧を大きくして第3
の基準電位VREF3を高くすれば、発光ダイオードL
EDを流れる電流が小さくなり、帰還量は少なくなる。
従って、検出感度と高速応答性とを両立できることとな
る。
In the pyroelectric infrared sensor circuit 100,
By adjusting the amplification factor determining resistor R3 to reduce the feedback amount by the photocoupler 11, the amplification factor can be increased and the detection sensitivity can be increased. On the other hand, the high cutoff frequency fp is fp = 1 / (2π · C0 · R2) when the value of the series resistance is R2 and the stray capacitance is C0. For example, if R2 = 10 8 Ω and C0 = several pF, then fp is about 1 kHz. The feedback amount can be adjusted by setting the voltage of the variable DC power source E3. For example, by increasing the voltage of the variable DC power source E3,
If the reference potential VREF3 of the
The current flowing through the ED is reduced, and the feedback amount is reduced.
Therefore, both detection sensitivity and high-speed response can be achieved.

【0020】−第2実施例− 図2は、本発明の第2実施例の焦電型赤外線センサ回路
の回路図である。この焦電型赤外線センサ回路200
は、直列抵抗R2とフォトトランジスタTr1の接続が
第1実施例とは逆になっている。また、増幅率決定用抵
抗R3と発光ダイオードLEDの接続が第1実施例とは
逆になっている。また、可変直流電源E2’,E3’の
向きは、第1実施例とは逆になっている。このような接
続としても、上記第1実施例の焦電型赤外線センサ回路
100と同様の効果が得られる。
-Second Embodiment- FIG. 2 is a circuit diagram of a pyroelectric infrared sensor circuit according to a second embodiment of the present invention. This pyroelectric infrared sensor circuit 200
Shows that the connection between the series resistor R2 and the phototransistor Tr1 is opposite to that in the first embodiment. Further, the connection between the amplification factor determining resistor R3 and the light emitting diode LED is opposite to that in the first embodiment. The directions of the variable DC power supplies E2 'and E3' are opposite to those of the first embodiment. Even with such a connection, the same effect as the pyroelectric infrared sensor circuit 100 of the first embodiment can be obtained.

【0021】[0021]

【発明の効果】本発明の焦電型赤外線センサ回路によれ
ば、増幅率決定用抵抗を調整してフォトカプラによる帰
還量を小さくすることにより、増幅率が上がり、検出感
度を高くすることが出来る。このため、直列抵抗の値を
比較的小さくしてもよいが、そうすると、直列抵抗の値
と浮遊容量により決まる高域遮断周波数が高くなるの
で、高速応答性を得られるようになる。すなわち、検出
感度と高速応答性を両立できることとなる。従って、高
速移動物体(自動車やロボットアーム等)に取り付けら
れて人体検知を行なうような用途に好適となる。
According to the pyroelectric infrared sensor circuit of the present invention, the amplification factor is increased and the detection sensitivity is increased by adjusting the amplification factor determining resistor to reduce the feedback amount by the photocoupler. I can. For this reason, the value of the series resistance may be made relatively small. However, if this is done, the high cutoff frequency determined by the value of the series resistance and the stray capacitance becomes high, so that high-speed response can be obtained. That is, both detection sensitivity and high-speed response can be achieved. Therefore, it is suitable for use in detecting a human body by being attached to a high-speed moving object (automobile, robot arm, etc.).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の焦電型赤外線センサ回路
を示す回路図である。
FIG. 1 is a circuit diagram showing a pyroelectric infrared sensor circuit according to a first embodiment of the present invention.

【図2】本発明の第2実施例の焦電型赤外線センサ回路
を示す回路図である。
FIG. 2 is a circuit diagram showing a pyroelectric infrared sensor circuit according to a second embodiment of the present invention.

【図3】従来の焦電型赤外線センサ回路の一例を示す回
路図である。
FIG. 3 is a circuit diagram showing an example of a conventional pyroelectric infrared sensor circuit.

【符号の説明】[Explanation of symbols]

100 焦電型赤外線センサ回路 11 フォトカプラ S1 焦電型赤外線センサ R1 並列抵抗 R2 直列抵抗 R3 増幅率決定用抵抗 Tr1 フォトトランジスタ LED 発光ダイオード C0,C1 浮遊容量 VREF1 第1の基準電位 VREF2 第2の基準電位 VREF3 第3の基準電位 OP1 オペアンプ VCC,VSS 電源電圧 So 検出信号 E1,E1’ 直流電源 E2,E2’ 可変直流電源 E3,E3’ 可変直流電源 100 Pyroelectric infrared sensor circuit 11 Photocoupler S1 Pyroelectric infrared sensor R1 Parallel resistance R2 Series resistance R3 Amplification factor determining resistance Tr1 Phototransistor LED Light emitting diode C0, C1 Floating capacitance VREF1 First reference potential VREF2 Second reference Potential VREF3 Third reference potential OP1 Operational amplifier VCC, VSS Power supply voltage So Detection signal E1, E1 'DC power supply E2, E2' Variable DC power supply E3, E3 'Variable DC power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 焦電型赤外線センサの一端を第1の基準
電位点および差動増幅器の非反転入力端子に接続し、前
記焦電型赤外線センサの他端を前記差動増幅器の反転入
力端子に接続し、前記差動増幅器の反転入力端子と第2
の基準電位点の間にフォトカプラの受光素子と直列抵抗
の直列回路を接続し、前記受光素子と並列に並列抵抗を
接続し、前記差動増幅器の出力端子と第3の基準電位点
の間に前記フォトカプラの発光素子と増幅率決定用抵抗
とを接続したことを特徴とする焦電型赤外線センサ回
路。
1. A pyroelectric infrared sensor has one end connected to a first reference potential point and a non-inverting input terminal of a differential amplifier, and the other end of the pyroelectric infrared sensor has an inverting input terminal of the differential amplifier. And an inverting input terminal of the differential amplifier and a second
Between the light receiving element of the photocoupler and the series circuit of the series resistor between the reference potential points, and the parallel resistor connected in parallel with the light receiving element, and between the output terminal of the differential amplifier and the third reference potential point. A pyroelectric infrared sensor circuit characterized in that a light emitting element of the photocoupler and a gain determining resistor are connected to the.
【請求項2】 請求項1に記載の焦電型赤外線センサ回
路において、第2の基準電位を与えるための第2基準電
位用直流電源または第3の基準電位を与えるための第3
基準電位用直流電源の少なくとも一方を設けたことを特
徴とする焦電型赤外線センサ回路。
2. The pyroelectric infrared sensor circuit according to claim 1, wherein a second reference potential DC power supply for providing a second reference potential or a third reference potential for supplying a third reference potential.
A pyroelectric infrared sensor circuit comprising at least one of a DC power supply for reference potential.
【請求項3】 請求項2に記載の焦電型赤外線センサ回
路において、第2基準電位用直流電源と第3基準電位用
直流電源の少なくとも一方はゼロボルト出力になりうる
可変直流電源であることを特徴とする焦電型赤外線セン
サ回路。
3. The pyroelectric infrared sensor circuit according to claim 2, wherein at least one of the second reference potential DC power supply and the third reference potential DC power supply is a variable DC power supply capable of providing a zero volt output. Characteristic pyroelectric infrared sensor circuit.
JP17563194A 1994-07-27 1994-07-27 Pyroelectric infrared sensor circuit Expired - Fee Related JP3282389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17563194A JP3282389B2 (en) 1994-07-27 1994-07-27 Pyroelectric infrared sensor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17563194A JP3282389B2 (en) 1994-07-27 1994-07-27 Pyroelectric infrared sensor circuit

Publications (2)

Publication Number Publication Date
JPH0843201A true JPH0843201A (en) 1996-02-16
JP3282389B2 JP3282389B2 (en) 2002-05-13

Family

ID=15999465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17563194A Expired - Fee Related JP3282389B2 (en) 1994-07-27 1994-07-27 Pyroelectric infrared sensor circuit

Country Status (1)

Country Link
JP (1) JP3282389B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117752A (en) * 2007-11-09 2009-05-28 National Institute Of Information & Communication Technology Weak light detector
JP2018078415A (en) * 2016-11-08 2018-05-17 Nttエレクトロニクス株式会社 Optical receiving circuit
CN110132429A (en) * 2019-06-10 2019-08-16 深圳市华三探感科技有限公司 A kind of sensor and its circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4733342Y1 (en) * 1968-05-31 1972-10-07
JPS5649584A (en) * 1979-09-28 1981-05-06 Ricoh Co Ltd Composite photocoupler
JPS56105559A (en) * 1980-01-28 1981-08-22 Ricoh Co Ltd Analog operator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4733342Y1 (en) * 1968-05-31 1972-10-07
JPS5649584A (en) * 1979-09-28 1981-05-06 Ricoh Co Ltd Composite photocoupler
JPS56105559A (en) * 1980-01-28 1981-08-22 Ricoh Co Ltd Analog operator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117752A (en) * 2007-11-09 2009-05-28 National Institute Of Information & Communication Technology Weak light detector
JP2018078415A (en) * 2016-11-08 2018-05-17 Nttエレクトロニクス株式会社 Optical receiving circuit
CN110132429A (en) * 2019-06-10 2019-08-16 深圳市华三探感科技有限公司 A kind of sensor and its circuit

Also Published As

Publication number Publication date
JP3282389B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
JPH0675247B2 (en) Air flow detector
JP3282389B2 (en) Pyroelectric infrared sensor circuit
JP3736026B2 (en) Current-voltage conversion circuit in pyroelectric infrared detector
US7067788B2 (en) Control loop apparatus or current measuring circuit including a current sensor or method of current calculation
JPH0317384B2 (en)
JPH09329628A (en) Hall element type current detector
JP3111878B2 (en) LED current control circuit for smoke detector
JPS5844330Y2 (en) drive circuit
CN214754673U (en) Laser driving circuit
CN220794436U (en) Visible light detection circuit
JPS6020641A (en) Signal compression circuit device
JPH0593658A (en) Disconnection locator position detector of resistance-type sensor
JP2769911B2 (en) Pressure sensing circuit
JPS5947356B2 (en) Logarithmic conversion circuit for resistance change sensor
JPH0352028Y2 (en)
JPH089618Y2 (en) Thermistor temperature conversion circuit
JPH05209788A (en) Photocurrent detecting circuit
JP3101192B2 (en) Smoke sensor circuit
JPS59108413A (en) Automatic level adjusting circuit
JPS58205312A (en) Optical receiving circuit
JPS5899009A (en) Amplitude detector
JP2000353924A (en) Light receiving circuit
JPH03120115U (en)
JPS605660Y2 (en) Beam focus circuit
JPH0514096A (en) Light receiving amplifier circuit for photoelectric sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees