JP3736026B2 - Current-voltage conversion circuit in pyroelectric infrared detector - Google Patents

Current-voltage conversion circuit in pyroelectric infrared detector Download PDF

Info

Publication number
JP3736026B2
JP3736026B2 JP10650597A JP10650597A JP3736026B2 JP 3736026 B2 JP3736026 B2 JP 3736026B2 JP 10650597 A JP10650597 A JP 10650597A JP 10650597 A JP10650597 A JP 10650597A JP 3736026 B2 JP3736026 B2 JP 3736026B2
Authority
JP
Japan
Prior art keywords
circuit
operational amplifier
feedback
current
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10650597A
Other languages
Japanese (ja)
Other versions
JPH10300571A (en
Inventor
光輝 畑谷
裕司 高田
慎司 坂本
俊夫 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10650597A priority Critical patent/JP3736026B2/en
Publication of JPH10300571A publication Critical patent/JPH10300571A/en
Application granted granted Critical
Publication of JP3736026B2 publication Critical patent/JP3736026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焦電素子を用いて、人体から輻射される赤外線エネルギーを検出し、人体の存在や移動の検知を行ったり、輻射エネルギー、室温を検出することで放射温度計として働く、焦電型赤外線検出装置、及びこれに使用される電流電圧変換回路の改良に関する。
【0002】
【従来の技術】
この種の焦電型赤外線検出装置には、従来よりFETを用いた電流電圧変換回路が使用されている。
この電流電圧変換回路は、図4に示したように、FETのゲートに焦電素子Csと高抵抗Rgを並列に接続し、FETのソースとグランドに接続した出力抵抗Rsより電圧信号を取り出すようになっており、熱線を感知したとき焦電素子Csから出力される焦電流は高抵抗Rgで電圧に変換され、それをFETのゲートで受けてFETと抵抗Rsに電流を流すことによってFETのソース電圧を変化させ、そのとき抵抗Rsに加わる電圧を信号増幅回路に出力する構成となっている。
【0003】
しかしながら、このようなFETバッファを用いた電流電圧変換回路では、熱雑音の影響を抑制し、S/N比を改善するため、インピーダンス変換のために抵抗値の極めて高い高抵抗が使用されているが、焦電素子の最大のアプリケーションである人体検知に於ける1Hz近傍に注目すれば、焦電センサに於ける動作の安定性、つまり外来ノイズ、FETのバイアス電流変動、高抵抗自身の抵抗値変化などを考慮すると、これ以上S/N比の改善を望むことはほとんど限界に近い状況になっている。
【0004】
そこで、本発明者らは、このような現状を考慮して、コンデンサのインピーダンスの周波数特性を電流電圧変換に用いることを種々の観点から試験的に考察した結果、S/N比の向上に更に有益でかつ実現可能な電流電圧変換回路を知得し、特願平9−91047号〜特願平9−91049号などにおいて提案している。
【0005】
【発明が解決しようとる課題】
ところで、本発明者らが既に提案したコンデンサのインピーダンスの周波数特性を電流電圧変換に用いた電流電圧変換回路を実際に使用する場合には、帰還容量を付加した基本となる演算増幅器に、更に直流帰還回路を入力抵抗を介して付加接続して使用され、この場合の入力抵抗はインピーダンス変換には使用されないため従来のFETを用いた電流電圧変換回路のようにS/N比には直接影響しないが、やはり熱雑音を抑制するために高い抵抗値のものが使用される。
したがって、このような高抵抗を回路基板などに一旦実装してしまうと、通常の抵抗測定器では測定できず、簡易に測定できる方法が望まれていた。
【0006】
【課題を解決するための手段】
本発明は、上記の要請に応えるもので、請求項1において提案する電流電圧変換回路は、焦電素子が接続される帰還容量を付加した演算増幅器と、この演算増幅器に入力抵抗を介して付加接続された直流帰還回路と、上記帰還容量と並列に接続付加され、この帰還容量の両端を短絡させる短絡用スイッチ回路とを備え、かつ上記短絡用スイッチ回路には、この短絡用スイッチ回路をオン、オフさせる制御電圧を印加させる第1の試験パッドを接続し、かつ上記直流帰還回路と上記入力抵抗との接続点には、第2の試験パッドを接続し、かつ上記演算増幅器の出力端子には、出力ノードを設けた構成としている。
この電流電圧変換回路は、焦電素子を除いた構成となっており、焦電素子は演算増幅器に接続され、実装される前段階において、入力抵抗の高い抵抗値が測定できるようになっている。
【0007】
また、請求項2において提案する電流電圧変換回路は、帰還容量を付加した演算増幅器には焦電素子が接続されるとともに、この演算増幅器には更に入力抵抗を介して直流帰還回路が付加接続されており、上記帰還容量には、この帰還容量の両端を短絡させる短絡用スイッチ回路が並列に設けられ、かつ上記短絡用スイッチ回路には、この短絡用スイッチ回路をオン、オフさせる制御電圧を印加させる第1の試験パッドを接続し、かつ上記直流帰還回路と上記入力抵抗との接続点には、第2の試験パッドを接続し、かつ上記演算増幅器の出力端子には、出力ノードを設けた構成としている。
この電流電圧変換回路では、焦電素子と入力抵抗を実装した状態で高い抵抗値が測定できるようになっている。
【0008】
請求項3において提案する電流電圧回路では、上記演算増幅器は、上記第1、第2の試験パッドがグランドに接続されたときには、上記入力抵抗の両端に、この演算増幅器の基準電圧と等しい電位差を生じさせる構成としている。
これによって、第2の試験パッドに短絡用スイッチ回路をオフにする制御電圧を加えたときに、帰還容量から電荷が放出されたときに入力抵抗を通じて流れる電流を一定にしている。
【0009】
請求項4では、直流帰還回路は、帰還容量を付加接続した演算増幅器とは異なる別の演算増幅器にコンデンサと抵抗を接続付加して構成された積分回路で構成したものを提案している。
【0010】
【発明の実施の形態】
[回路の実施例]
図1に本発明の要部をなす電流電圧変換回路の基本構成を示す。
図に見るように、演算増幅器1は焦電素子2に接続される入力ノードを有した入力端子と、基準電圧Vrを接続する基準端子とを有している。
図例では、演算増幅器1の入力端子は反転入力端子、出力端子は非反転入力端子となっており、演算増幅器1の入力端子と出力端子との間には帰還容量Cfが接続され、この帰還容量Cfは第1の試験パッド41に与えた制御電圧で制御される短絡用スイッチ回路3によってその両端が短絡できるようになっている。
【0011】
演算増幅器1の出力端子には、出力ノードが設けられており、この出力ノードには、直流帰還回路5を構成する別の演算増幅器51の非反転入力端子が接続され、演算増幅器51の反転入力端子には、抵抗R1と他端をグランドに接続した基準電圧Vrが接続され、抵抗R1は更に別の帰還容量C1を介して、演算増幅器51の出力端と入力抵抗の接続点に接続され、その接続点には第2の試験パッド42を設けている。
【0012】
ここに、直流帰還回路5は、演算増幅器51にコンデンサC1と抵抗R1とを付加させた積分回路として構成されているが、このような電流電圧変換回路は、その殆どをIC化して半導体基板上に実装することができ、焦電型赤外線検出装置を小型、薄型化できる。
このような構成の電流電圧変換回路によれば、帰還容量Cfのインピーダンス特性を用いて、焦電素子が熱量の変化を感知したときに生じる焦電流を電圧信号に変換する際、従来のFETバッファのように高抵抗でインピーダンス変換していないため、高抵抗による熱雑音の影響が著しく排除される。
そのため、ノイズ源を根本的になくすことが出来き、トータルノイズの低減化が図れ、結果としてS/Nを向上させることができ、この点は、前述した出願において開示した通りである。
【0013】
ついで、本発明の電流電圧変換回路に実装された入力抵抗の測定原理を説明する。
図1を参照して入力抵抗Riを測定する場合は、まず、第1の試験パッド41と第2の試験パッド42をグランドに接続し、その状態で演算増幅器1に電源を投入する。
これによって、短絡用スイッチ回路3は帰還容量Cfを短絡するので、負帰還の掛かった演算増幅器1はバッファとして作用する。
その結果、演算増幅器1の入力端子、出力端子の電圧はいずれも基準電圧Vrに等しくなり、更に演算増幅器51の出力端子と入力抵抗との接続点もグランドに接続され、入力抵抗Riには入力端子に生じる基準電圧Vrが加わり、その状態で回路は安定する。
【0014】
ついで、第1の試験パッド41の制御電圧を電源電圧VDDに上げると、図3のシミュレーション結果に示す(後述)ように、入力抵抗RiにはI=Vr/Riで求められる電流が流れ、帰還容量Cfの両端には電位差ΔV=(I・t)/Cfが生じ、演算増幅器1の出力ノードの電位は最後にはVDDに達する。
従って、出力ノードの電圧がVrからVDDに到達するまでにかかった時間tと、そのときの電位差を測定すれば、Ri=(Vr・t)/(Cf・ΔV)の式より、入力抵抗Riの値を測定することが出来る。
【0015】
なお、図2は、焦電素子2を接続した電流電圧変換回路の一例を示すものである。この例では、入力抵抗Riには焦電素子の等価抵抗R2が並列に接続されているため、それらの合成抵抗が測定出来きるので、以上と同様な方法によって合成抵抗を測定した後、並列に接続された焦電素子の等価抵抗R2を除けば、入力抵抗Riのみを算出することが出来ることはいうまでもない。
[シュミレーション例]
図3は、本発明の電流電圧変換回路において、VDD=2V,Vr=1V,Cf=10pFとした時のシミュレーション結果を示している。
図2のVgは、第1の試験パッド41に与えた制御電圧を示しており、Voutは出力ノードの電位を示している。
第1,第2の試験パッド41,42をグランドに接続して、t=10秒間の間、回路を安定化させてから、第1の試験パッド41の制御電圧Vgを0Vから2Vに立ち上あげて、短絡用スイッチ回路3をオフさせる。
このスイッチ回路3をオフさせた時点では、出力ノードの電圧は、演算増幅器1の基準電圧Vrに等しく1Vとなっているが、t=10秒後には出力ノードの電圧Voutが基準電圧Vr=1Vから電源電圧であるVDD=2Vに達し、飽和している。
つまり、この図3では△V=1V、t=10秒となっている。

Figure 0003736026
として入力抵抗Riは測定出来ることがわかる。
【0016】
なお、以上の例では、演算増幅器1の出力ノード電圧Voutが、第1、第2の試験パッド41,42をグランドに接続した時点から第1の試験パッド41に制御電圧Vgを加えて、電源電圧に飽和するまでの時間tと、その場合の電位差ΔVを求めて、入力抵抗の抵抗値を測定しているが、演算増幅器1の出力ノードの電圧が飽和するまでの途中における電位差(電圧変化)と、その電位差に至るまでの時間を求めることによって、入力抵抗の抵抗値を求めてもよく、この場合、抵抗値が極めて大きい場合でも迅速な測定が可能となる。
【0017】
【発明の効果】
本発明によれば、第1、第2の試験パッドに電圧変化を加えるだけで、演算増幅器と、直流増幅回路との間に接続された抵抗値の高い、通常の抵抗測定器では測定できないような入力抵抗であっても、回路基板に実装した状態で容易に測定できる。
【図面の簡単な説明】
【図1】本発明の一実施例(請求項1)の回路図である。
【図2】本発明の一実施例(請求項2)の回路図である。
【図3】本発明の動作のシミュレーション結果を示すグラフである。
【図4】FETバッファを用いた従来の電流電圧変換回路を示す図である。
【符号の説明】
1・・・演増幅器
2・・・焦電素子
3・・・短絡用スイッチ回路
41・・・第1の試験パッド
42・・・第2の試験パッド
5・・・直流帰還回路
51・・・演算増幅器
Cf・・・帰還容量
Ri・・・入力抵抗(高抵抗)
R1・・・抵抗
C1・・・コンデンサ[0001]
BACKGROUND OF THE INVENTION
The present invention uses a pyroelectric element to detect infrared energy radiated from the human body, to detect the presence and movement of the human body, or to detect radiation energy and room temperature, thereby acting as a radiation thermometer. The present invention relates to an improvement of a type infrared detection device and a current-voltage conversion circuit used therein.
[0002]
[Prior art]
Conventionally, a current-voltage conversion circuit using an FET is used in this type of pyroelectric infrared detector.
As shown in FIG. 4, this current-voltage conversion circuit connects the pyroelectric element Cs and the high resistance Rg in parallel to the gate of the FET, and takes out a voltage signal from the output resistance Rs connected to the source and ground of the FET. The pyroelectric current output from the pyroelectric element Cs when a heat ray is sensed is converted into a voltage by the high resistance Rg, and is received by the gate of the FET, and a current is passed through the FET and the resistance Rs to allow the FET to flow. The source voltage is changed, and the voltage applied to the resistor Rs at that time is output to the signal amplifier circuit.
[0003]
However, in such a current-voltage conversion circuit using an FET buffer, a high resistance having a very high resistance value is used for impedance conversion in order to suppress the influence of thermal noise and improve the S / N ratio. However, if attention is paid to the vicinity of 1 Hz in human body detection, which is the largest application of pyroelectric elements, the stability of the operation in the pyroelectric sensor, that is, external noise, FET bias current fluctuation, high resistance itself resistance value Considering changes and the like, desiring further improvement of the S / N ratio is almost at the limit.
[0004]
Therefore, the present inventors have considered the current situation in consideration of the fact that the frequency characteristic of the impedance of the capacitor is used for current-voltage conversion from various viewpoints, and as a result, further improved the S / N ratio. A useful and feasible current / voltage conversion circuit is known and proposed in Japanese Patent Application No. 9-91047 to Japanese Patent Application No. 9-91049.
[0005]
[Problems to be solved by the invention]
By the way, when the current-voltage conversion circuit using the frequency characteristics of the capacitor impedance already proposed by the present inventors for current-voltage conversion is actually used, the basic operational amplifier to which the feedback capacitance is added is further connected to the DC. A feedback circuit is additionally connected via an input resistor. In this case, the input resistor is not used for impedance conversion, and therefore does not directly affect the S / N ratio as in a current-voltage conversion circuit using a conventional FET. However, a high resistance value is also used to suppress thermal noise.
Therefore, once such a high resistance is mounted on a circuit board or the like, a method that can not be measured by a normal resistance measuring instrument but can be easily measured has been desired.
[0006]
[Means for Solving the Problems]
The present invention responds to the above-mentioned demand, and a current-voltage conversion circuit proposed in claim 1 is provided with an operational amplifier to which a feedback capacitor to which a pyroelectric element is connected is added, and to the operational amplifier via an input resistor. And a short-circuit switch circuit which is connected in parallel with the feedback capacitor and short-circuits both ends of the feedback capacitor, and the short-circuit switch circuit is turned on. A first test pad for applying a control voltage to be turned off, and a second test pad is connected to a connection point between the DC feedback circuit and the input resistor, and is connected to an output terminal of the operational amplifier. Is provided with an output node.
This current-voltage conversion circuit has a configuration excluding a pyroelectric element, and the pyroelectric element is connected to an operational amplifier so that a resistance value having a high input resistance can be measured before mounting. .
[0007]
In the current-voltage conversion circuit proposed in claim 2, a pyroelectric element is connected to the operational amplifier to which a feedback capacitor is added, and a DC feedback circuit is additionally connected to the operational amplifier via an input resistor. The feedback capacitor is provided with a short-circuit switch circuit for short-circuiting both ends of the feedback capacitor, and a control voltage for turning on and off the short-circuit switch circuit is applied to the short-circuit switch circuit. A second test pad is connected to a connection point between the DC feedback circuit and the input resistor, and an output node is provided at the output terminal of the operational amplifier. It is configured.
In this current-voltage conversion circuit, a high resistance value can be measured with the pyroelectric element and the input resistance mounted.
[0008]
In the current-voltage circuit proposed in claim 3, when the first and second test pads are connected to the ground, the operational amplifier has a potential difference equal to the reference voltage of the operational amplifier at both ends of the input resistor. The configuration is to be generated.
As a result, when a control voltage for turning off the short-circuit switch circuit is applied to the second test pad, the current flowing through the input resistor is made constant when charge is released from the feedback capacitor.
[0009]
According to the fourth aspect of the present invention, there is proposed a DC feedback circuit configured by an integration circuit configured by connecting and adding a capacitor and a resistor to another operational amplifier different from the operational amplifier to which a feedback capacitor is additionally connected.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
[Circuit embodiment]
FIG. 1 shows a basic configuration of a current-voltage conversion circuit which forms a main part of the present invention.
As shown in the figure, the operational amplifier 1 has an input terminal having an input node connected to the pyroelectric element 2 and a reference terminal for connecting a reference voltage Vr.
In the illustrated example, the input terminal of the operational amplifier 1 is an inverting input terminal, and the output terminal is a non-inverting input terminal. A feedback capacitor Cf is connected between the input terminal and the output terminal of the operational amplifier 1, and this feedback. The capacitance Cf can be short-circuited at both ends by a short-circuit switch circuit 3 controlled by a control voltage applied to the first test pad 41.
[0011]
An output node is provided at the output terminal of the operational amplifier 1, and a non-inverting input terminal of another operational amplifier 51 constituting the DC feedback circuit 5 is connected to the output node, and the inverting input of the operational amplifier 51 is connected. The terminal is connected to a resistor R1 and a reference voltage Vr having the other end connected to the ground. The resistor R1 is further connected to a connection point between the output end of the operational amplifier 51 and the input resistor via another feedback capacitor C1. A second test pad 42 is provided at the connection point.
[0012]
Here, the DC feedback circuit 5 is configured as an integrating circuit in which a capacitor C1 and a resistor R1 are added to the operational amplifier 51. Most of such a current-voltage conversion circuit is integrated into an IC on a semiconductor substrate. The pyroelectric infrared detector can be made small and thin.
According to the current-voltage conversion circuit having such a configuration, when converting the pyroelectric current generated when the pyroelectric element senses a change in heat amount into the voltage signal using the impedance characteristic of the feedback capacitor Cf, the conventional FET buffer is used. Since the impedance conversion is not performed with a high resistance as described above, the influence of thermal noise due to the high resistance is remarkably eliminated.
Therefore, the noise source can be fundamentally eliminated, the total noise can be reduced, and as a result, the S / N can be improved. This point is as disclosed in the aforementioned application.
[0013]
Next, the measurement principle of the input resistance mounted on the current-voltage conversion circuit of the present invention will be described.
When measuring the input resistance Ri with reference to FIG. 1, first, the first test pad 41 and the second test pad 42 are connected to the ground, and the operational amplifier 1 is powered on in this state.
As a result, the short-circuit switch circuit 3 short-circuits the feedback capacitor Cf, so that the operational amplifier 1 with negative feedback acts as a buffer.
As a result, the voltages at the input terminal and the output terminal of the operational amplifier 1 are both equal to the reference voltage Vr, and the connection point between the output terminal of the operational amplifier 51 and the input resistance is also connected to the ground . A reference voltage Vr generated at the input terminal is applied, and the circuit is stabilized in that state.
[0014]
Next, when the control voltage of the first test pad 41 is increased to the power supply voltage VDD, as shown in the simulation result of FIG. 3 (described later), a current required by I = Vr / Ri flows through the input resistance Ri, and feedback is performed. A potential difference ΔV = (I · t) / Cf occurs between both ends of the capacitor Cf, and the potential of the output node of the operational amplifier 1 finally reaches VDD.
Accordingly, if the time t required for the voltage of the output node to reach VDD from Vr and the potential difference at that time are measured, the input resistance Ri is obtained from the equation Ri = (Vr · t) / (Cf · ΔV). Can be measured.
[0015]
FIG. 2 shows an example of a current-voltage conversion circuit to which the pyroelectric element 2 is connected. In this example, since the equivalent resistance R2 of the pyroelectric element is connected in parallel to the input resistance Ri, the combined resistance can be measured. Therefore, after measuring the combined resistance in the same manner as described above, Needless to say, only the input resistance Ri can be calculated except for the equivalent resistance R2 of the connected pyroelectric element.
[Example of simulation]
FIG. 3 shows a simulation result when VDD = 2V, Vr = 1V, and Cf = 10 pF in the current-voltage conversion circuit of the present invention.
Vg in FIG. 2 indicates the control voltage applied to the first test pad 41, and Vout indicates the potential of the output node.
The first and second test pads 41 and 42 are connected to the ground, the circuit is stabilized for t = 10 seconds, and then the control voltage Vg of the first test pad 41 is raised from 0V to 2V. As a result, the short-circuit switch circuit 3 is turned off.
At the time when the switch circuit 3 is turned off, the voltage at the output node is equal to the reference voltage Vr of the operational amplifier 1 and becomes 1V. However, after t = 10 seconds, the voltage Vout at the output node becomes the reference voltage Vr = 1V. The power supply voltage reaches VDD = 2V, and is saturated.
That is, in FIG. 3, ΔV = 1V and t = 10 seconds.
Figure 0003736026
It can be seen that the input resistance Ri can be measured.
[0016]
In the above example, the output node voltage Vout of the operational amplifier 1 applies the control voltage Vg to the first test pad 41 from the time when the first and second test pads 41 and 42 are connected to the ground, and the power supply The time t until the voltage is saturated and the potential difference ΔV in that case are obtained and the resistance value of the input resistance is measured, but the potential difference (voltage change) in the middle until the voltage at the output node of the operational amplifier 1 is saturated. ) And the time until the potential difference is obtained, the resistance value of the input resistance may be obtained. In this case, even when the resistance value is extremely large, quick measurement is possible.
[0017]
【The invention's effect】
According to the present invention, it is not possible to measure with a normal resistance measuring instrument having a high resistance value connected between the operational amplifier and the DC amplifier circuit, simply by applying a voltage change to the first and second test pads. Even a simple input resistance can be easily measured while mounted on a circuit board.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an embodiment (claim 1) of the present invention.
FIG. 2 is a circuit diagram of one embodiment (claim 2) of the present invention.
FIG. 3 is a graph showing a simulation result of the operation of the present invention.
FIG. 4 is a diagram showing a conventional current-voltage conversion circuit using an FET buffer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Amplifier 2 ... Pyroelectric element 3 ... Short circuit switch circuit 41 ... 1st test pad 42 ... 2nd test pad 5 ... DC feedback circuit 51 ... Operational amplifier Cf ... feedback capacitance Ri ... input resistance (high resistance)
R1 ... resistor C1 ... capacitor

Claims (4)

焦電素子が接続される帰還容量を付加した演算増幅器と、
この演算増幅器に入力抵抗を介して付加接続された直流帰還回路と、
上記帰還容量と並列に接続付加され、この帰還容量の両端を短絡させる短絡用スイッチ回路とを備え、かつ
上記短絡用スイッチ回路には、この短絡用スイッチ回路をオン、オフさせる制御電圧を印加させる第1の試験パッドを接続し、かつ上記直流帰還回路と上記入力抵抗との接続点には、第2の試験パッドを接続し、かつ上記演算増幅器の出力端子には、出力ノードを設けた構成としている、焦電型赤外線検出装置における電流電圧変換回路。
An operational amplifier with an added feedback capacitance to which the pyroelectric element is connected;
A DC feedback circuit additionally connected to the operational amplifier via an input resistor;
A short-circuit switch circuit connected in parallel with the feedback capacitor and short-circuiting both ends of the feedback capacitor; and a control voltage for turning on and off the short-circuit switch circuit is applied to the short-circuit switch circuit. A configuration in which a first test pad is connected, a second test pad is connected to a connection point between the DC feedback circuit and the input resistor , and an output node is provided at an output terminal of the operational amplifier A current-voltage conversion circuit in a pyroelectric infrared detector.
帰還容量を付加した演算増幅器には焦電素子が接続されるとともに、
この演算増幅器には更に入力抵抗を介して直流帰還回路付加接続されており、
上記帰還容量には、この帰還容量の両端を短絡させる短絡用スイッチ回路が並列に設けられ、かつ
上記短絡用スイッチ回路には、この短絡用スイッチ回路をオン、オフさせる制御電圧を印加させる第1の試験パッドを接続し、かつ上記直流帰還回路と上記入力抵抗との接続点には、第2の試験パッドを接続し、かつ上記演算増幅器の出力端子には、出力ノードを設けた構成としている、焦電型赤外線検出装置における電流電圧変換回路。
A pyroelectric element is connected to the operational amplifier to which the feedback capacitance is added,
A DC feedback circuit is additionally connected to this operational amplifier via an input resistor.
The feedback capacitor is provided in parallel with a short-circuit switch circuit for short-circuiting both ends of the feedback capacitor, and the short-circuit switch circuit is applied with a control voltage for turning on and off the short-circuit switch circuit. The test pad is connected, the second test pad is connected to the connection point between the DC feedback circuit and the input resistor, and the output node is provided at the output terminal of the operational amplifier . A current-voltage conversion circuit in a pyroelectric infrared detector.
請求項1、2のいずれかにおいて、
上記演算増幅器は、上記第1、第2の試験パッドがグランドに接続されたときには、上記入力抵抗の両端に、この演算増幅器の基準電圧と等しい電位差を生じさせる構成としている電流電圧変換回路。
In any one of Claims 1, 2.
The operational amplifier is a current-voltage conversion circuit configured to generate a potential difference equal to a reference voltage of the operational amplifier at both ends of the input resistance when the first and second test pads are connected to the ground.
請求項1、2のいずれかにおいて、
上記直流帰還回路は、上記帰還容量を付加接続した演算増幅器とは異なる別の演算増幅器に、コンデンサと抵抗を接続付加して構成された積分回路で構成されている電流電圧変換回路。
In any one of Claims 1, 2.
The DC feedback circuit is a current-voltage conversion circuit configured by an integration circuit configured by adding a capacitor and a resistor to another operational amplifier different from the operational amplifier to which the feedback capacitor is additionally connected.
JP10650597A 1997-04-23 1997-04-23 Current-voltage conversion circuit in pyroelectric infrared detector Expired - Fee Related JP3736026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10650597A JP3736026B2 (en) 1997-04-23 1997-04-23 Current-voltage conversion circuit in pyroelectric infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10650597A JP3736026B2 (en) 1997-04-23 1997-04-23 Current-voltage conversion circuit in pyroelectric infrared detector

Publications (2)

Publication Number Publication Date
JPH10300571A JPH10300571A (en) 1998-11-13
JP3736026B2 true JP3736026B2 (en) 2006-01-18

Family

ID=14435294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10650597A Expired - Fee Related JP3736026B2 (en) 1997-04-23 1997-04-23 Current-voltage conversion circuit in pyroelectric infrared detector

Country Status (1)

Country Link
JP (1) JP3736026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528678A (en) * 2013-10-30 2014-01-22 成都市宏山科技有限公司 Light intensity detection circuit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3557838B2 (en) * 1997-03-26 2004-08-25 松下電工株式会社 Pyroelectric infrared detector
JP3807168B2 (en) * 1999-10-28 2006-08-09 松下電工株式会社 Infrared detector
US7088175B2 (en) * 2001-02-13 2006-08-08 Quantum Applied Science & Research, Inc. Low noise, electric field sensor
CN102818639A (en) * 2012-08-03 2012-12-12 中国科学院上海技术物理研究所 Weak signal reading-out analog signal link structure for short wave infrared detector
CN102818637B (en) * 2012-08-03 2014-06-04 中国科学院上海技术物理研究所 CTIA (Capacitive Transimpedance Amplifier) structure input stage applicable to readout circuit of IRFPA (Infrared Focus Plane Arrray)
CN106052859B (en) * 2016-05-18 2017-11-17 中国电子科技集团公司第四十一研究所 A kind of method that multrirange thermoelectric pile laser power meter realizes same zero point power

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528678A (en) * 2013-10-30 2014-01-22 成都市宏山科技有限公司 Light intensity detection circuit

Also Published As

Publication number Publication date
JPH10300571A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US6736540B1 (en) Method for synchronized delta-VBE measurement for calculating die temperature
US6332710B1 (en) Multi-channel remote diode temperature sensor
JP3901698B2 (en) Semiconductor integrated circuit with current detection function and power supply device using the same
JP3736026B2 (en) Current-voltage conversion circuit in pyroelectric infrared detector
US6340816B1 (en) Pyroelectric detector with feedback amplifier for enhanced low frequency response
JPH09105681A (en) Temperature measuring circuit
US7013725B1 (en) System and method for regulating bridge voltage in a discontinuous-time hot-wire anemometer
JPWO2006057054A1 (en) Humidity measuring device
JP2953950B2 (en) Output signal generator
US6188226B1 (en) Electric potential sensor
JP3557838B2 (en) Pyroelectric infrared detector
JP3237822B2 (en) Infrared imaging device
JP3282389B2 (en) Pyroelectric infrared sensor circuit
JP2003014547A (en) Temperature difference detection apparatus
JPS5844330Y2 (en) drive circuit
EP0983491B1 (en) Pyroelectric detector feedback amplifier with low frequency response
JP2001281183A (en) Humidity sensor unit
JP4205669B2 (en) Thermal air flow sensor device
JP4797366B2 (en) Pyroelectric infrared detector
JPH065635Y2 (en) Flow velocity sensor
JP3040048B2 (en) Radiant heat sensor
JP2769911B2 (en) Pressure sensing circuit
JP3093415B2 (en) Distance detection device and distance detection method
JPH0562374B2 (en)
JPS62250312A (en) Flow speed sensor driving circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees