JPS62250312A - Flow speed sensor driving circuit - Google Patents

Flow speed sensor driving circuit

Info

Publication number
JPS62250312A
JPS62250312A JP61096077A JP9607786A JPS62250312A JP S62250312 A JPS62250312 A JP S62250312A JP 61096077 A JP61096077 A JP 61096077A JP 9607786 A JP9607786 A JP 9607786A JP S62250312 A JPS62250312 A JP S62250312A
Authority
JP
Japan
Prior art keywords
voltage
differential amplifier
power source
resistor
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61096077A
Other languages
Japanese (ja)
Inventor
Tsutomu Hikita
疋田 勉
Katsutoshi Takao
克俊 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61096077A priority Critical patent/JPS62250312A/en
Publication of JPS62250312A publication Critical patent/JPS62250312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure a flow speed by a single power source, by a method wherein one terminal of a bridge constituted of first and second resistors having the same temp. coefficient is held to constant voltage higher than earth potential and the output of the bridge is differentially amplified to heat the second resistor, and differentially amplified output and constant voltage are differentially amplified. CONSTITUTION:When a power source is turned OFF, resistances are R1=R2 and Rf=RS, and, when said power source is turned ON, voltage Va-Vb is applied to both terminals of a bridge and, because RS is not heated by Rf, a value of voltage V1-V2 is determined by (r). The voltage V1-V2 is differentially amplified by a differential amplifier 9 to heat RS by RH. Therefore, voltage v2 increases and voltage v1-v2 is reduced to become v1-v2 0 at last by a feedback system. The voltage Va of a power source 1 is applied to differential amplifiers 9, 10 and, in order to adjust amplified output V by a volume, voltage Va is converted to Vb<Va by a constant voltage circuit 2 to set voltage Vb to apparent earth potential and inherent earth potential is regarded as a negative power source to be applied to the -VEE terminal of the differential amplifiers 9, 10 and input offset is subjected to zero adjustment to make voltage V equal to voltage Vb. Voltage V0 showing a true flow speed is obtained from the output V0=V-Vb of the second differential amplifier 10.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は加熱された測温抵抗体を利用することにより流
体の流速を極めて少ない消費電力でしかも単一電源で測
定することのできる流速センサーの駆動回路に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a flow velocity sensor that uses a heated resistance temperature sensor to measure the flow velocity of a fluid with extremely low power consumption and with a single power source. The present invention relates to a drive circuit.

〈従来技術〉 発熱抵抗体を加熱して該発熱抵抗体から流体に伝達され
る熱量の変化を利用し、流体の流速を求める方法として
は、流体の温度お発熱抵抗体の温度差が一定となるよう
な測温抵抗体をブリッジ回路内に接続してブリッジ回路
からの出力電圧を増幅し、上記発熱抵抗体へフィードバ
ックすることにより流体温度の影響を補償すると共に流
体の流速を測定する方法が採られていた。しかしながら
、この方法ではブリッジ回路から差動増幅回路へ入る差
動電圧はそのレベル差か少ないこと及び差動増幅器とし
て用いる素子(例えば演算増幅器)の入力オフセット電
圧のバラツキ等に起因して該差動増幅器を単一電源で使
用した場合に能動領域外で動作する場合が多く、これを
解決するために正負側電源を用いる必要があった。
<Prior art> A method of determining the flow velocity of a fluid by heating a heat generating resistor and utilizing changes in the amount of heat transferred from the heat generating resistor to the fluid is based on a method in which the temperature of the fluid and the temperature difference between the heat generating resistor are constant. There is a method of amplifying the output voltage from the bridge circuit by connecting a temperature-measuring resistor in the bridge circuit, and feeding it back to the heating resistor, thereby compensating for the influence of fluid temperature and measuring the flow velocity of the fluid. It had been taken. However, in this method, the differential voltage entering the differential amplifier circuit from the bridge circuit has a small level difference, and due to variations in the input offset voltage of the elements used as the differential amplifier (for example, an operational amplifier), When an amplifier is used with a single power supply, it often operates outside the active region, and to solve this problem, it has been necessary to use positive and negative side power supplies.

従って、携帯性を要求される流速計としては、電源とし
て用いる乾電池の個数が多くなってしまうという不便さ
がある。
Therefore, as a current meter that requires portability, there is an inconvenience in that the number of dry cells used as a power source increases.

〈発明の目的〉 本発明は、2つの両極性直流電源を必要とせず、低消費
電力で熱線抵抗を用いて流体の流速を測定することので
きる流速センサー駆動回路を提供することを目的とする
<Objective of the Invention> An object of the present invention is to provide a flow rate sensor drive circuit that can measure the flow rate of a fluid using a hot wire resistance with low power consumption without requiring two bipolar DC power supplies. .

〈実施例〉 第1図は本発明の1実施例を示す流速測定のための流速
センサー駆動回路図である。図中1はこの回路の電源に
相当する乾電池である。2は上記電源1から安定した電
圧を得るための定電圧回路であって具体的にはツェナー
ダイオードやIC化された定電圧素子等を用いる。以下
便宜上、電源の電圧をVa  、定電圧回路の出力電圧
をvb とする。3〜7で示されるものはそれぞれブリ
ッジを構成している抵抗体である。このうち抵抗3のR
1及び抵抗6のR2はその抵抗値が等しい固定抵抗であ
る。抵抗5のRf及び抵抗7のRsはそれぞれその温度
係数と抵抗値が等しい固定抵抗である。
<Embodiment> FIG. 1 is a flow velocity sensor drive circuit diagram for flow velocity measurement showing one embodiment of the present invention. Reference numeral 1 in the figure is a dry battery that corresponds to the power source of this circuit. 2 is a constant voltage circuit for obtaining a stable voltage from the power source 1, and specifically uses a Zener diode, an IC constant voltage element, or the like. Hereinafter, for convenience, the voltage of the power supply is assumed to be Va, and the output voltage of the constant voltage circuit is assumed to be vb. Components 3 to 7 are resistors constituting bridges, respectively. Of these, R of resistance 3
1 and R2 of the resistor 6 are fixed resistors having the same resistance value. Rf of the resistor 5 and Rs of the resistor 7 are fixed resistors each having the same temperature coefficient and resistance value.

抵抗4のrは流体の温度と測温抵抗体7のRsの温度差
を設定するための固定抵抗である。この値を大きくすれ
ば上述の温度差は大きくなる。8は抵抗7の加熱用ヒー
タで抵抗値RHを有する。9は差動増幅器、11は入力
オフセット零調用ボリウムである。差動増幅器9の出力
電圧でヒータ8は発熱するが、単位時間の発熱量は上記
差動増幅器9の出力電圧をV、ヒータ8の抵抗値をRH
とすれば5(W〕である。そして抵抗7とヒータ8は非
常に近接して配置されていて抵抗8の発熱により抵抗7
が効率よく加熱されるようKなっているものとする。抵
抗7とヒータ8の具体的な配置構成を示すと例えば第2
図の如くとなる。第2図において、21はガラス、セラ
ミック、樹脂等の適当な基板、22.23はそれぞれ抵
抗7.ヒータ8で抵抗値Rs、RHを有する。これらは
上記基板2I上に金属を蒸着して作られる。図に示す如
く抵抗7とヒータ8を非常に近接して蒸着することによ
り上述の目的が達成される。
The resistor r of the resistor 4 is a fixed resistor for setting the temperature difference between the temperature of the fluid and Rs of the resistance temperature detector 7. If this value is increased, the above-mentioned temperature difference will increase. Reference numeral 8 denotes a heater having a resistance 7 and a resistance value RH. 9 is a differential amplifier, and 11 is an input offset zero adjustment volume. The heater 8 generates heat due to the output voltage of the differential amplifier 9, and the amount of heat generated per unit time is determined by the output voltage of the differential amplifier 9 being V and the resistance value of the heater 8 being RH.
Then, it is 5 (W).The resistor 7 and the heater 8 are arranged very close to each other, and the heat generated by the resistor 8 causes the resistor 7 to
It is assumed that the temperature is K so that it is heated efficiently. For example, the specific arrangement of the resistor 7 and the heater 8 is as follows.
It will look like the figure. In FIG. 2, 21 is a suitable substrate made of glass, ceramic, resin, etc., and 22 and 23 are resistors 7 and 23, respectively. The heater 8 has resistance values Rs and RH. These are made by depositing metal on the substrate 2I. The above objective is achieved by depositing the resistor 7 and heater 8 in close proximity as shown.

次に無風状態であるとして第1図に示す駆動回路の回路
動作を説明する。
Next, the circuit operation of the drive circuit shown in FIG. 1 will be explained assuming that there is no wind.

電源1が接続されていない状態ではR1=R2゜Rf=
Rsであるが、電源1が接続された瞬間では抵抗ブリッ
ジの両端にはVa−Vbなる電圧が加わり、RsはRH
により加熱されていないため図中のVlとv2は抵抗r
の存在によってvl>v2 となるoVI−V2の値は
rの値によって定まシ、抵抗4の値rが大きい程v1−
v2は大きくなる。このv)−v2なる電圧が差動増幅
器9で増幅され、この出力電圧Vによってヒータ8が発
熱する。この温度は効率よく測温抵抗体7に伝達される
ため、抵抗体7の抵抗値Rsはその温度係数により増加
する。従って、v2の電圧は上昇し電圧vl −v2は
小さくなる。このようなフィードバック系により最終的
にはVl−V2二〇になる。このとき、差動増幅器9の
出力電圧Vはヒータ8を加熱してVlユv2なる条件を
満すために抵抗体7の抵抗値Rsを調整するに必要な値
となる。
When power supply 1 is not connected, R1=R2゜Rf=
However, at the moment when power supply 1 is connected, a voltage of Va-Vb is applied across the resistor bridge, and Rs becomes RH.
Since Vl and v2 in the figure are not heated by the resistance r
The value of oVI-V2, where vl>v2 due to the existence of
v2 becomes larger. This voltage v)-v2 is amplified by the differential amplifier 9, and the output voltage V causes the heater 8 to generate heat. Since this temperature is efficiently transmitted to the temperature measuring resistor 7, the resistance value Rs of the resistor 7 increases according to its temperature coefficient. Therefore, the voltage v2 increases and the voltage vl - v2 decreases. Such a feedback system ultimately results in Vl-V220. At this time, the output voltage V of the differential amplifier 9 becomes a value necessary to adjust the resistance value Rs of the resistor 7 in order to heat the heater 8 and satisfy the condition of Vl y v2.

以上の説明は差動増幅器9の入力オフセットの零調整が
なされていることが必要条件となっている0 通常の場合、Rf、RsK流す電流けこれらの抵抗体5
,7でジュール熱による自己発熱がないよう充分に小さ
な値とする必要があり、また抵抗4の値rをあ″!シ大
きくすると測温抵抗体7の加熱による抵抗値Rsの増加
を大きくしなければならず、これにともなってヒータ8
による発熱量も大きくしなければならないことになる。
The above explanation requires that the input offset of the differential amplifier 9 be zero-adjusted. Normally, the current flowing through Rf and RsK is the same as the current flowing through these resistors 5.
, 7 must be set to a sufficiently small value so that self-heating due to Joule heat does not occur, and if the value r of the resistor 4 is increased, the increase in the resistance value Rs due to heating of the resistance temperature detector 7 will be increased. Therefore, the heater 8
This means that the amount of heat generated will also have to be increased.

従って全体の消費電力が増加して電源の負担が大きくな
る。
Therefore, the overall power consumption increases and the burden on the power supply increases.

これらの理由によりRf、Rsに流す電流を小さくし、
またrもできるだけ小さい方が良いことになる。従って
、抵抗4による電圧降下を大きく設定することができな
いので必然的にvl−v2の値は非常に小さくなる。
For these reasons, the current flowing through Rf and Rs is reduced,
Also, it is better for r to be as small as possible. Therefore, since the voltage drop caused by the resistor 4 cannot be set large, the value of vl-v2 inevitably becomes very small.

一方、差動増幅器9に用いる集積化された汎用の演算増
幅器の入力オフセット電圧は数mV程度であシ、信号と
なるべきvI−v2の値と同等である0 従って入力オフセット電圧を極めて小さくする必要があ
り、このために入力オフセットの零調整を行なければな
らない。回路全体が単一電源では上記入力オフセットの
零調整はできない。(vl==v2なる電圧を差動増幅
器の両人力へ加え、出力Vが0になるようオフセット調
整用ボリューム11を調整するのであるが単一電源では
OV付近では能動領域外となり正常な動作が行なわれず
、調整不可能となる。零調整のためには、差動増幅器9
の−VEE端子を負の電源に接続しなければならない。
On the other hand, the input offset voltage of the integrated general-purpose operational amplifier used in the differential amplifier 9 is about several mV, which is equivalent to the value of vI-v2 that should become a signal. Therefore, the input offset voltage is made extremely small. For this purpose, the input offset must be zero-adjusted. If the entire circuit is powered by a single power supply, the input offset cannot be adjusted to zero. (The voltage vl==v2 is applied to both sides of the differential amplifier, and the offset adjustment volume 11 is adjusted so that the output V becomes 0. However, with a single power supply, near OV it is out of the active region and normal operation is not possible. For zero adjustment, the differential amplifier 9
-VEE terminal of must be connected to the negative power supply.

) そこで単一電源でもこの調整を可能とするために電源!
である乾電池の電圧Vaを定電圧回路2で該電圧Vaよ
り小さな電圧vbに変換し、このV を見掛は上の接地
電位とみなしかつ本来の接地電位を負の電源とみなし、
差動増幅器9の−VER端子をこれに接続することによ
り入力オフセットの零調整が可能となる。但しこの場合
、上記調整が正確に行なわれたときの出力電圧Vはv=
vbとなる。
) So to make this adjustment possible even with a single power supply!
The voltage Va of the dry battery, which is , is converted by the constant voltage circuit 2 to a voltage vb smaller than the voltage Va, and this V is regarded as the upper ground potential, and the original ground potential is regarded as a negative power source,
By connecting the -VER terminal of the differential amplifier 9 to this, the input offset can be adjusted to zero. However, in this case, the output voltage V when the above adjustment is performed accurately is v=
It becomes vb.

これによって差動増幅器9は入力オフセットの零調整が
正確に行なわれた上で動作をするので、該差動増幅器9
の出力電圧Vは測温抵抗体7に当る流体(気体又は液体
)の流速に関係した値となる0即ち、流体の流速が増加
してくると、発熱抵抗体であるヒータ8によって加熱さ
れている測温抵抗体7の温度は下りその抵抗値Rsが減
少し、結局vI−v2が大きくなってくる。それ故差動
増幅器9の出力電圧Vも大きくなりヒータ8の発熱量が
増加し、測温抵抗体7の抵抗値Rsが増加する。最終的
にはVが以前より大きくなった値で、vl−v2::0
となり系が安定する。
As a result, the differential amplifier 9 operates after accurately adjusting the input offset to zero, so that the differential amplifier 9
The output voltage V is 0, which is a value related to the flow velocity of the fluid (gas or liquid) hitting the resistance temperature detector 7. In other words, as the flow velocity of the fluid increases, it is heated by the heater 8, which is a heat generating resistor. As the temperature of the resistance temperature detector 7 decreases, its resistance value Rs decreases, and eventually vI-v2 increases. Therefore, the output voltage V of the differential amplifier 9 also increases, the amount of heat generated by the heater 8 increases, and the resistance value Rs of the temperature measuring resistor 7 increases. Finally, V is a larger value than before, vl-v2::0
The system becomes stable.

ところで前述の説明により差動増幅器9の出力電圧Vは
流体の流速を表わすのであるが、常KVbなる電圧が加
算されている。従って、真の流体の流速を表わす電圧V
QはvO=v−vbなる演算を施さなければならない。
By the way, as explained above, the output voltage V of the differential amplifier 9 represents the flow velocity of the fluid, but a voltage KVb is usually added thereto. Therefore, the voltage V representing the true fluid flow velocity
Q must be subjected to the calculation vO=v−vb.

この目的のために第2の差動増幅器10を設ける。該差
動増幅器10の出力voが真の流速を表わす電圧である
A second differential amplifier 10 is provided for this purpose. The output vo of the differential amplifier 10 is a voltage representing the true flow velocity.

〈発明の効果〉 以上詳述した如く単一電源でも流体の流速の測定を可能
としたことにより乾電池駆動が容易になり、携帯性を要
求される流量計や風速計等への応府引期待される。
<Effects of the Invention> As detailed above, by making it possible to measure the fluid flow velocity even with a single power source, dry cell battery operation becomes easier, and this is expected to be useful for flowmeters, anemometers, etc. that require portability. be done.

!ト! to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す流速センサー駆動回路
の回路図である。 第2図はヒータと測温抵抗体の要部配置図である0 1・・・乾電池 2・・・定電圧回路 3・・・固定抵
抗4・・・固定抵抗又は半固定抵抗 5・・・測温抵抗
体6・・・固定抵抗 7・・・測温抵抗体 8・・・発
熱抵抗体9・・・差動増幅器 10・・・差動増幅器 
11・・・入力オフセット調整用ボリューム 21・・
・基板 22・・・ヒータ 23・・・測温抵抗体 代理人 弁理士 杉 山 毅 至(他1名)第 I2 第2 図
FIG. 1 is a circuit diagram of a flow rate sensor drive circuit showing one embodiment of the present invention. Figure 2 shows the layout of the main parts of the heater and resistance temperature sensor. Resistance temperature detector 6...Fixed resistance 7...Resistance temperature detector 8...Heating resistor 9...Differential amplifier 10...Differential amplifier
11...Volume for input offset adjustment 21...
・Substrate 22... Heater 23... Resistance temperature sensor Patent attorney Takeshi Sugiyama (and 1 other person) Figure I2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、第1の測温抵抗体及び該第1の測温抵抗体と同じ温
度係数を有する第2の測温抵抗体で構成される抵抗ブリ
ッジ回路と、該ブリッジ回路の一端を接地電位より高く
保つ定電圧回路と、前記ブリッジ回路からの出力電圧を
増幅する差動増幅器と、該差動増幅器の出力電圧によっ
て前記抵抗ブリッジ回路の第2の測温抵抗体を加熱する
発熱抵抗体と、前記差動増幅器の出力電圧と前記定電圧
回路の電圧を差動増幅する第2の差動増幅回路と、より
構成されていることを特徴とする流速センサー駆動回路
1. A resistance bridge circuit consisting of a first resistance temperature detector and a second resistance temperature detector having the same temperature coefficient as the first resistance temperature detector, and one end of the bridge circuit set to a temperature higher than the ground potential. a differential amplifier that amplifies the output voltage from the bridge circuit; a heating resistor that heats the second temperature measuring resistor of the resistance bridge circuit by the output voltage of the differential amplifier; A flow rate sensor drive circuit comprising: a second differential amplifier circuit that differentially amplifies the output voltage of the differential amplifier and the voltage of the constant voltage circuit.
JP61096077A 1986-04-23 1986-04-23 Flow speed sensor driving circuit Pending JPS62250312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096077A JPS62250312A (en) 1986-04-23 1986-04-23 Flow speed sensor driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096077A JPS62250312A (en) 1986-04-23 1986-04-23 Flow speed sensor driving circuit

Publications (1)

Publication Number Publication Date
JPS62250312A true JPS62250312A (en) 1987-10-31

Family

ID=14155336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096077A Pending JPS62250312A (en) 1986-04-23 1986-04-23 Flow speed sensor driving circuit

Country Status (1)

Country Link
JP (1) JPS62250312A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868618A (en) * 1981-09-30 1983-04-23 シ−メンス・アクチエンゲゼルシヤフト Flowmeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868618A (en) * 1981-09-30 1983-04-23 シ−メンス・アクチエンゲゼルシヤフト Flowmeter

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
JP2631481B2 (en) Mass flow meter and its measurement method
JPH0663803B2 (en) Zero compensation method
JP3736026B2 (en) Current-voltage conversion circuit in pyroelectric infrared detector
US7249516B2 (en) Method of operating a resistive heat-loss pressure sensor
JPS62250312A (en) Flow speed sensor driving circuit
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
US20060021444A1 (en) Method of operating a resistive heat-loss pressure sensor
JPH0618540A (en) Wind velocity sensor
JP3555013B2 (en) Thermal flow meter
JPH0663800B2 (en) Heater temperature control circuit
JP3819185B2 (en) Flow velocity measuring device
JP2531968B2 (en) Flow velocity sensor and flow velocity measuring device using the same
JP2003315129A (en) Thermal flow measuring instrument
JP2001141539A (en) Method of correcting temperature of flow sensor, and flow sensor circuit
JPH10332454A (en) Heat sensitive type flow-velocity detector
JPH065635Y2 (en) Flow velocity sensor
JPH0718729B2 (en) Heater temperature control circuit
JP2003014547A (en) Temperature difference detection apparatus
JP3373981B2 (en) Thermal flow meter
JP3788869B2 (en) Flow sensor
JPH11287685A (en) Flow sensor
JP4820017B2 (en) Flow measurement device using flow sensor
JP3771069B2 (en) Flow measuring device
JPH01245119A (en) Hot-wire type flow rate measuring instrument