JP3819185B2 - Flow velocity measuring device - Google Patents

Flow velocity measuring device Download PDF

Info

Publication number
JP3819185B2
JP3819185B2 JP25509699A JP25509699A JP3819185B2 JP 3819185 B2 JP3819185 B2 JP 3819185B2 JP 25509699 A JP25509699 A JP 25509699A JP 25509699 A JP25509699 A JP 25509699A JP 3819185 B2 JP3819185 B2 JP 3819185B2
Authority
JP
Japan
Prior art keywords
voltage
temperature
flow velocity
amplifier
terminal voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25509699A
Other languages
Japanese (ja)
Other versions
JP2001074761A (en
Inventor
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Ricoh Co Ltd
Original Assignee
Ricoh Elemex Corp
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp, Ricoh Co Ltd filed Critical Ricoh Elemex Corp
Priority to JP25509699A priority Critical patent/JP3819185B2/en
Publication of JP2001074761A publication Critical patent/JP2001074761A/en
Application granted granted Critical
Publication of JP3819185B2 publication Critical patent/JP3819185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、ガス流量計、フローメーターなどに利用され、流体による抵抗の温度変化により流速を測定する感熱式の流速測定装置に関する。
【0002】
【従来の技術】
このような流速測定装置は、例えば、特開平10−206205号公報に開示されている。
【0003】
【発明が解決しようとする課題】
図3に流量測定装置の一つの構成例を示す。この流量測定装置は、概略的には、センサ駆動部1と差電圧検出部2と増幅部3とにより構成されている。センサ駆動部1にあっては、流路中に配設されるセンサ基板(図示せず)上に実装された第1の感温抵抗体RS1と第2の感温抵抗体RS2が設けられている。これらの第1及び第2の感温抵抗体RS1,RS2も流体中に晒されるが、ここでは、第1の感温抵抗体RS1が上流側、第2の感温抵抗体RS2が下流側となるように位置関係が設定されているものとする。また、これらの第1及び第2の感温抵抗体RS1,RS2は抵抗値が等しく、かつ、高抵抗温度係数を持つものが用いられている。これらの第1及び第2の感温抵抗体RS1,RS2は加熱装置として作用する電流源4とともに直列に接続されている。即ち、電流源4は電流I1を流して抵抗体自身にジュール熱を発生させることで流体温度よりも高い温度となるようにこれらの第1及び第2の感温抵抗体RS1,RS2を等しく熱する(もっとも、加熱装置としては別個の熱源によりこれらの第1及び第2の感温抵抗体RS1,RS2を加熱するものであってもよい)。また、センサ駆動部1において、第2の感温抵抗体RS2の両端b,c点がフィードバックループ中に接続されたオペアンプ5と、電流源4と第1の感温抵抗体RS1との接続点aの出力側に接続されたオペアンプ6とが設けられている。
【0004】
差電圧検出部2は検出装置として作用するもので、オペアンプ6からd点に出力される第1の感温抵抗体RS1の端子電圧(=f点の出力)とオペアンプ5からc点(=e点)に出力される第2の感温抵抗体RS2の端子電圧(=h点の出力)との差電圧をg点に出力する加算器7を備えている。
【0005】
増幅部3は、第1の感温抵抗体RS1の端子電圧、第2の感温抵抗体RS2の端子電圧、及び、差電圧(g点出力)を各々増幅する増幅器8,9,10を備えている。
【0006】
このような構成において、第1及び第2の感温抵抗体RS1,RS2の熱は流体の流れにより奪われる。奪われる熱量は、流体の流れと関係している。例えば、流体に流れがなければ、第1及び第2の感温抵抗体RS1,RS2の温度はほぼ等しくなるため、抵抗値もほぼ等しい。よって、第1の感温抵抗体RS1の端子電圧と第2の感温抵抗体RS2の端子電圧とはほぼ等しく、差電圧検出部2のg点の出力もほぼ0となる。一方、流体に流れがある場合には下流側よりも上流側の第1の感温抵抗体RS1の熱が多く奪われるため、第1及び第2の感温抵抗体RS1,RS2の温度が異なることとなり、この上流側の第1の感温抵抗体RS1の抵抗値が下流側よりも小さくなる。よって、第1の感温抵抗体RS1の端子電圧は第2の感温抵抗体RS2の端子電圧よりも小さくなる。この端子電圧の差が流速に関係した電圧値として現れる。この結果、差電圧検出部2のg点の出力の大きさを測定することで流体の流速を知ることができるといえる。なお、これらの端子電圧、差電圧等を測定するのにA/Dコンバータ等を用いる場合、A/Dコンバータ等に合せた電圧信号に変換する必要があるため、後段に増幅部3が設けられている。
【0007】
しかしながら、図3に示す前記の装置では、複数のオペアンプを用いているため電力の消費が多く、電池で長時間駆動させることができないという不具合がある。
【0008】
この発明の目的は、消費電力を抑えることにより電池電源での駆動に好適な流量測定装置を提供することにある。
【0009】
この発明の別の目的は、流体の流速の温度補償の情報をより正確に得ることができるようにすることである。
【0010】
この発明の別の目的は、連続した流速情報を出力することができるようにすることである。
【0011】
この発明の別の目的は、流体の温度情報を適時出力することができるようにすることである。
【0012】
【課題を解決するための手段】
請求項1に記載の発明は、流体中の上流側と下流側にそれぞれ配置されて加熱する2つの感温抵抗体の端子電圧差から前記流体の流速を測定する流速測定装置において、前記各感温抵抗体の端子電圧に追従して当該電圧を保持する2つの電圧保持装置と、増幅器と、前記感温抵抗体の一方の端子電圧を前記増幅器により増幅できるようにも前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅できるようにもラインの接続状態を切り替え可能である第1のスイッチとを備えていることを特徴とする流速測定装置である。
【0013】
したがって、両電圧保持装置が保持する電圧を、共通の電位、例えばGNDを基準とした電圧にして、両電圧保持装置がそれぞれ保持している電圧の差を増幅器により増幅すれば、流体の流速を測定することができる。本装置は、単一の増幅器のみを用いる回路構成であるため、省電力化を図ることができて、電池電源での駆動に好適である。また、電圧保持装置の一方の保持している電圧を増幅器により増幅することにより流体の温度を検出して、流体の流速の温度補償の情報を得ることができる。
【0014】
請求項2に記載の発明は、流体中の上流側と下流側にそれぞれ配置されて加熱する2つの感温抵抗体の端子電圧差から前記流体の流速を測定する流速測定装置において、前記各感温抵抗体の端子電圧に追従して当該電圧を保持する2つの電圧保持装置と、増幅器と、前記流体の温度を測定する測温抵抗体と、前記測温抵抗体の端子間電圧を前記増幅器により増幅できるようにも前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅できるようにもラインの接続状態を切り替え可能である第1のスイッチとを備えていることを特徴とする流速測定装置である。
【0015】
したがって、両電圧保持装置が保持する電圧を、共通の電位、例えばGNDを基準とした電圧にして、両電圧保持装置がそれぞれ保持している電圧の差を増幅器により増幅すれば、流体の流速を測定することができる。本装置は、単一の増幅器のみを用いる回路構成であるため、省電力化を図ることができて、電池電源での駆動に好適である。また、測温抵抗体の端子間電圧を増幅器により増幅することにより流体の温度を検出して、流体の流速の温度補償の情報をより正確に得ることができる。
【0016】
請求項3に記載の発明は、請求項1または2に記載の流量測定装置において、本装置の回路へ電力を供給するラインを開閉する第2のスイッチを備えていることを特徴とする。
【0017】
したがって、流速測定の必要がないときには回路への電力供給を停止することができるので、電池電源での駆動が容易となる。
【0018】
請求項4に記載の発明は、請求項1〜3のいずれかの一に記載の流量測定装置において、前記増幅器は増幅率を可変できることを特徴とする。
【0019】
したがって、両感温抵抗体の電圧差の増幅および感温抵抗体の端子電圧の増幅または測温抵抗体の端子電圧の増幅を同一の増幅器で行うことが可能となり、増幅器を増やすこと無く流速測定と温度測定が行え、電力の消費も抑えられる。
【0020】
請求項5に記載の発明は、請求項1〜4のいずれかの一に記載の流速測定装置において、前記電圧保持装置が前記各感温抵抗体の端子電圧に追従して当該電圧を保持できるようにも前記電圧保持装置に保持した電圧を前記増幅器に印加できるようにもラインの接続状態を切り替え可能である第3のスイッチとを備えていることを特徴とする。
【0021】
したがって、各感温抵抗体の端子電圧の測定と流体の流速の測定とを交互に繰り返すことを可能とし、連続した流速情報を出力することができる。
【0022】
請求項6に記載の発明は、請求項1〜5のいずれかの一に記載の流速測定装置において、前記感温抵抗体に電流を供給する電流源を備え、この電流源は前記電流を停止または低減することができることを特徴とする。
【0023】
したがって、流速測定の必要がないときの消費電力を抑えて、電池電源での駆動が容易となる。
【0024】
請求項7に記載の発明は、請求項6に記載の流速測定装置において、前記第1のスイッチの切り替えにより前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅できるようにしているときは、前記電流源が前記感温抵抗体に供給する電流を停止または低減する電流制御手段を備えていることを特徴とする。
【0025】
したがって、流速測定を行っていないときの消費電力を抑えて、電池電源での駆動が容易となる。
【0026】
請求項8に記載の発明は、請求項1〜7のいずれかの一に記載の流速測定装置において、前記第1のスイッチを適時切り替えて前記感温抵抗体の一方の端子電圧または前記測温抵抗体の端子電圧を前記増幅器により増幅できるようにする温度測定手段を備えていることを特徴とする。
【0027】
したがって、流体の温度情報を適時出力することが可能となる。
【0028】
請求項9に記載の発明は、請求項3に記載の流速測定装置において、前記両電圧保持装置を前記各感温抵抗体の端子電圧に追従させて当該電圧を保持させる動作、及び、前記第1のスイッチを切り替えて前記感温抵抗体の一方の端子電圧または前記測温抵抗体の端子電圧を前記増幅器により増幅する動作、並びに、前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅する動作を適宜切り替えることで連続した流速測定を行うようにしているとき、該流速測定の必要が無い場合は前記第2のスイッチを切り替えて前記本装置の回路へ電力を供給するラインを開くことにより前記回路への電力を遮断し、前記両電圧保持装置を前記各感温抵抗体の端子電圧に追従させて当該電圧を保持させる動作、及び、前記感温抵抗体の一方の端子電圧または前記測温抵抗体の端子電圧を前記増幅器により増幅する動作、並びに、前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅する動作を休止させることを特徴とする
【0029】
したがって、間欠的な流速測定を行うことができ、流速測定の必要がない期間の消費電力を抑えて、電池電源での駆動が容易となる。
【0030】
請求項10に記載の発明は、請求項1または2に記載の流速測定装置において、前記両電圧保持装置を前記各感温抵抗体の端子電圧に追従させて当該電圧を保持させる動作と、前記第1のスイッチを切り替えて前記感温抵抗体の一方の端子電圧または前記測温抵抗体の端子電圧を前記増幅器により増幅する動作とを同時に行う同時実行手段を備えていることを特徴とする。
【0031】
したがって、流速の測定と流体温度の測定を同時に行って、これらに要する時間を短縮して消費電力を抑えて、電池電源での駆動が容易となる。
【0032】
【発明の実施の形態】
[発明の実施の形態1]
図1は、この発明の実施の形態1である流速測定装置の回路図である。図1に示すように、この流速測定装置は、感温抵抗体Ru,Rdを備えている。感温抵抗体Ru,Rdは流体中に設置され、感温抵抗体Ruは上流側に感温抵抗体Rdは下流側に設置される。この感温抵抗体Ru,Rdは白金など高い抵抗温度係数を持つもので、抵抗値、抵抗温度係数が等しく、形状を同様にして放熱などの熱的な特性が同じになるようにしており、いずれも電力により発熱する。
【0033】
電流源Ihは、直列に接続された感温抵抗体RuおよびRdに電流を供給する。電流源IhはA節で感温抵抗体Rdの一端と接続される。感温抵抗体Rdの他端はB節で感温抵抗体Ruの一端に接続される。感温抵抗体Ruの他端は接地される。
【0034】
符号C1,C2は電圧保持装置であるコンデンサである。符号U1は増幅器である差動増幅器である。符号SW1,SW2,SW3,SW4,SW5およびSW6はスイッチであり、半導体スイッチなど電気信号で開閉を制御できるものを用いている。スイッチSW5およびSW6は、第1のスイッチを構成する。スイッチSW1,SW2,SW3およびSW4は、第3のスイッチを構成する。
【0035】
制御信号S1はスイッチSW1,SW2,SW3およびSW4の開閉を制御する信号である。制御信号S2はスイッチSW5、SW6の開閉を制御する信号である。スイッチSW3は差動増幅器U1の増幅率を切り替える信号である。制御信号S4は電流源Ihの電流値を制御する信号である。制御信号S5は図1の回路への電力を供給するラインを開閉する信号である。この制御信号S1,S2,S3,S4およびS5は、この流速測定装置を駆動する図示しないマイコンより出力される。
【0036】
制御信号S1は追従状態と保持状態の2種類の状態を切り替える信号である。追従状態では、スイッチSW1はコンデンサC1の一端のD節と感温抵抗体Rdの一端のA節を接続し、スイッチSW2はコンデンサC1の他端のE節と感温抵抗体Rdの他端のB節を接続する。また、スイッチSW3はコンデンサC2の一端のF節と感温抵抗体Ruの一端のB節を接続し、スイッチSW4はコンデンサC2の他端のG節と感温抵抗体Ruの他端のC節を接続する。保持状態では、スイッチSW1はコンデンサC1の一端のD節とH節を接続し、スイッチSW2はコンデンサC1の他端のE節とI節を接続する。また、スイッチSW3はコンデンサC2の一端のF節とJ節を接続し、スイッチSW4はコンデンサC2の他端のG節とI節を接続する。
制御信号S2は温度測定状態と流速測定状態の2種類の状態を切り替える信号である。温度測定状態では、スイッチSW5は感温抵抗体Rdの一端のA節と差動増幅器U1の非反転入力端子とを接続し、スイッチSW6は感温抵抗体Rdの他端のB節と差動増幅器U1の反転入力端子とを接続する。流速測定状態では、スイッチSW5はH節と差動増幅器U1の非反転入力端子を接続し、スイッチSW6はJ節と差動増幅器U1の反転入力端子を接続する。
【0037】
制御信号S4は発熱状態と待機状態を切り替える信号である。発熱状態では、電流源Ihは感温抵抗体RuおよびRdを発熱させる電流を供給する。待機状態では、電流源Ihは感温抵抗体RuおよびRdが発熱しないように、電流源Ihを停止しまたは電流値を低減する。
【0038】
制御信号S3は通電電圧状態と微小電圧状態を切り替える信号である。通常電圧状態では、差動増幅器U1の増幅率を小さく、例えば1倍にする。微小電圧状態では、差動増幅器U1の増幅率を大きく、例えば40倍にする。
【0039】
制御信号S5は、図1の回路への電力をON/OFFする信号である。ON状態では、図1の回路へ電力を供給するラインを開閉する第2のスイッチである図示しないスイッチを閉じる。OFF状態では図1の回路へ電力を供給するラインを開閉する前記スイッチを開き電力を遮断する。
【0040】
次に、以上のような構成の流速測定装置の動作を説明する。制御信号S5により図1の回路がOFF状態にあるとき、回路は電力を断たれているため動作しない。これを以下では休止期間と呼ぶ。この休止期間のとき、電源からの図1の回路への電力の供給は最低となる。
【0041】
次に、制御信号S5をON状態、制御信号S1を追従状態、制御信号S4を発熱状態、制御信号S2,S3信号は任意の状態にする。これを以下では流速測定期間と呼ぶ。電力を供給されて図1の回路は動作可能な状態となり、電流源Ihは電流を感温抵抗素体Ru,Rdへ供給する。電流源Ihの供給する電流により、感温抵抗体Ru,Rdは発熱する。感温抵抗体RuおよびRdに生じる端子電圧はスイッチSW1,SW2,SW3およびSW4を通り、それぞれコンデンサC1およびC2に貯えられる。これにより、感温抵抗体Ruの端子電圧とコンデンサC1の端子電圧、感温抵抗体Rdの端子電圧とコンデンサC2の端子電圧はそれぞれ等しくなる。
【0042】
感温抵抗体Ru,Rdが発熱するに十分な時間が経過した後、制御信号S1を保持状態、制御信号S2を流速測定状態、制御信号S3を微小電圧状態にする。これを以下では流速出力期間と呼ぶ。差動増幅器U1の入力インピーダンスは高いためコンデンサC1とC2には感温抵抗体RdとRuの端子電圧がそれぞれ保持される。コンデンサC1のE節側とコンデンサC2のG節側がスイッチSW2,SW4を介して接地されるため、H節には接地点を基準とした感温抵抗体Rdの電圧値が現れ、J節には接地点を基準とした感温抵抗体Ruの電圧値が現れる。スイッチSW2は流速測定状態であるから、差動増幅器U1の非反転入力端子にはRdの端子電圧が、反転入力端子にはRuの端子電圧が入力されることになる。よって、差動増幅器U1の出力側のO節にはH節とJ節の電圧の差、つまり感温抵抗体Rdの端子電圧から感温抵抗体Ruの端子電圧を引いた値が増幅され出力される。
【0043】
また、制御信号S5がON状態、制御信号S4が発熱状態にあるとき、制御信号S2を温度測定状態にし、制御信号S3を通常電圧状態とすると、差動増幅器U1の出力には感温抵抗体Rdの端子電圧が出力される。これにより温度測定手段が実現される。これを以下では温度出力期間と呼ぶ。
【0044】
流速測定期間において、感温抵抗体RuとRdは電流源Ihからの電流により発熱し、流速の測定が行われる。感温抵抗体RuとRdは同じ特性を持つため抵抗値が等しい。流体に流れが無い場合、発熱した状態であっても感温抵抗体RuとRdへは同じ電流が流れ同じように発熱するため、抵抗値が等しい。つまり、感温抵抗体RuとRdの端子電圧は等しい。この電圧はそれぞれコンデンサC1とC2に貯えられる。
次に流速出力期間に移行する。コンデンサC1とC2の端子電圧は等しいため、差動増幅器U1の非反転入力端子と反転入力端子の電圧値は等しい。つまり、差動増幅器U1には差電圧0が入力される。よって、差動増幅器U1の出力はゼロとなる。
【0045】
流体に流れがある場合、流速測定期間において感温抵抗体RuとRdの発熱した熱は流体により奪い去られる。しかし、感温抵抗体Rdは感温抵抗体Ruの下流側に設置されているため感温抵抗体Ruから奪われた熱が感温抵抗体Rdに運ばれる。よって、感温抵抗体Rdは感温抵抗体Ruに比べ熱の奪われ方が少ない。熱が奪われると感温抵抗体Ru、Rdの抵抗値は下がる。感温抵抗体Rdの抵抗値の低下は感温抵抗体Ruの抵抗値の低下より小さい。つまり、感温抵抗体Ruの端子電圧値は感温抵抗体Rdの端子電圧値より小さくなる。この電圧の差は流体の流速と関係し流速が速いほど大きくなる。また、この電圧はコンデンサC1及びC2に貯えられる。
次に流速出力期間に移行する。コンデンサC1の電圧は差動増幅器U1の非反転入力端子へ、C2の電圧は差動増幅器U1の反転入力端子へ与えられる。コンデンサC1とC2の電圧の差は差動増幅器U1により増幅され出力に現れる。つまり出力には流速に関係した出力が得られる。
【0046】
流体が逆流している場合は、感温抵抗体Ruの熱の奪われ方が感温抵抗体Rdに比べ少なくなる。感温抵抗体RuとRdの関係が上下流逆になったと考えればよい。つまり、正流の時とは逆符号で流速出力期間の出力に現れる。よって、流速出力期間の出力信号の符号で流体の正流と逆流の判断ができる。そして、流速測定期間と流速出力期間を交互に繰り返すことで、連続した流速測定を行える。
【0047】
温度測定期間では、感温抵抗体Rdの端子電圧が差動増幅器U1の差動入力に与えられる。よって、感温抵抗体Rdの端子電圧が増幅されて出力される。感温抵抗体Rdは流体の温度により抵抗値を変える。つまり、感温抵抗体Rdの端子電圧は流体の温度と関係した値となっている。温度測定期間の差動増幅器U1の出力により流体の温度を知ることができる。この値により流速測定での温度依存性を補正することが可能となる。
【0048】
以上より、流速測定期間、流速出力期間および温度測定期間を適時切り替えることで、連続した流速測定を行うことができる。
【0049】
また、制御信号S5をON状態、制御信号S1を追従状態、制御信号S4を発熱状態、制御信号S2を温度測定状態、制御信号S3を通常電圧状態にする。すると、感温抵抗体RuとRdには電流が供給され発熱し、端子電圧がコンデンサC1とC2に伝えられると同時に、感温抵抗体Rdの端子電圧が差動増幅器U1の差動入力端子へ伝えられ、O節には増幅された感温抵抗体Rdの端子電圧が出力される。つまり、流速測定期間と温度測定期間とを同時に行うことになる。これにより同時実行手段を実現している。流速測定期間に温度測定を行えるために、温度測定期間に必要な時間を省くことができ、短時間に流速測定と流体の温度測定が行え、消費電力を抑えることができる。流速測定の必要が無い場合は、休止期間とすることで消費電力を抑えることができる。これにより休止手段が実現される。なお、流速出力期間には、制御信号S4により電流源Ihを停止しまたは電流値を低減する。これにより電流制御手段を実現している。
【0050】
ここで例えば、感温抵抗体Ru、Rdを特開平10-206205号公報にあるようなシリコン基板上に形成されたマイクロブリッジセンサにより作成すれば、マイクロブリッジセンサは微小な構造なため、少ない電力で流速測定が可能なまでに発熱するため、省電力な流速センサとなる。
【0051】
マイクロブリッジによる感温抵抗体RuとRdを例えば室温で500Ω程度にする。これに電流源Ihとして例えば1.75mAを流すと感温抵抗体RuとRdは100℃ほどに発熱する。このとき感温抵抗体RuとRdの端子電圧は1.2V程度となる。流体に流れが生じると感温抵抗体RuとRdの端子電圧には微妙に差が生じる。その差は最大で60mVほど生じる。流速の流れが速すぎると感温抵抗体RuとRdの奪われる熱に差が現れなくなってくるため、流速による感温抵抗体RuとRdの端子電圧の差は流速が増加すると共に増加するがだんだんと飽和しさらにはその差がなくなっていく。流速測定には流速に関連し端子電圧差が増加する部分を使用する。
本装置を電池などで駆動する場合、出力は0〜3Vほどの値となることが望まれる。温度測定期間においては感温抵抗体Rdの端子電圧約1.2Vを増幅し出力するので、差動増幅器U1の増幅率は1〜2倍にすればよい。流速出力期間においては感温抵抗体RuとRdの電圧差の60mVほどを増幅するので、差動増幅器U1の増幅率は50倍程度とすればよい。単電源で逆流を測定したい場合は、差動増幅器U1の出力のオフセットを正電圧方向にずらすことで行える。
【0052】
[発明の実施の形態2]
図2は、この発明の実施の形態2である流速測定装置の回路図である。図2において、発明の実施の形態1の場合と同様の回路要素などには図1と同一の符号を付し、詳細な説明は省略する。
【0053】
発明の実施の形態1では、温度測定期間に感温抵抗体Rdの端子電圧を出力し流体の温度信号とした。この発明の実施の形態2は、感温抵抗体Rdが流速の影響を受けその電圧を変化させるので、より正確な温度測定を行うため流体の温度測定用の測温抵抗体Rfを感温抵抗体Ru,Rdと別に設けた例である。
【0054】
測温抵抗体Rfは、例えば白金など大きな抵抗温度係数を持つ抵抗体とする。測温抵抗体Rfは流体中の感温抵抗体Ru,Rdの発熱の影響を受けない位置に設置する。測温抵抗体Rfは電流源Ifと接続される。
【0055】
発明の実施の形態1の温度測定状態においては、スイッチSW5,SW6は感温抵抗体Rdの端子電圧を差動増幅器U1へ差動入力するように切り替えたのに代えて、この発明の実施の形態2では測温抵抗体Rfの端子電圧を差動増幅器U1に差動入力するようにする。これにより流速の影響を受けずに流体の温度測定が可能となり、より正確な温度補正の為の情報が得られる。
【0056】
測温抵抗体Rfも特開平10-206205号公報にあるようなシリコン基板上の白金薄膜として形成すると、熱容量が小さく流体の温度を正確に得ることができる。測温抵抗体Rfの抵抗値は室温で例えば5kΩほどにし、電流源Ifから100μA程度の電流を流す。すると測温抵抗体Rfの端子電圧は0.5V程度となる。この電圧は流体の温度と関係し変化する。この時、温度測定期間での差動増幅器U1の増幅率は1〜3倍ほどにすればよい。
【0057】
なお、本発明の各実施の形態で示した抵抗値や増幅率は一つの例であり、他の値でもちろんかまわない。これらは、利用可能な電源電圧や感温抵抗体、測温抵抗体の特性、被測定流体の特性に合せて設計することとなる。
【0058】
【発明の効果】
請求項1に記載の発明は、両電圧保持装置が保持する電圧を、共通の電位、例えばGNDを基準とした電圧にして、両電圧保持装置がそれぞれ保持している電圧の差を増幅器により増幅すれば、流体の流速を測定することができる。本装置は、単一の増幅器のみを用いる回路構成であるため、省電力化を図ることができて、電池電源での駆動に好適である。また、電圧保持装置の一方の保持している電圧を増幅器により増幅することにより流体の温度を検出して、流体の流速の温度補償の情報を得ることができる。
【0059】
請求項2に記載の発明は、両電圧保持装置が保持する電圧を、共通の電位、例えばGNDを基準とした電圧にして、両電圧保持装置がそれぞれ保持している電圧の差を増幅器により増幅すれば、流体の流速を測定することができる。本装置は、単一の増幅器のみを用いる回路構成であるため、省電力化を図ることができて、電池電源での駆動に好適である。また、測温抵抗体の端子間電圧を増幅器により増幅することにより流体の温度を検出して、流体の流速の温度補償の情報をより正確に得ることができる。
【0060】
請求項3に記載の発明は、請求項1または2に記載の流量測定装置において、流速測定の必要がないときには回路への電力供給を停止することができるので、電池電源での駆動が容易となる。
【0061】
請求項4に記載の発明は、請求項1〜3のいずれかの一に記載の流量測定装置において、両感温抵抗体の電圧差の増幅および感温抵抗体の端子電圧の増幅または測温抵抗体の端子電圧の増幅を同一の増幅器で行うことが可能となり、増幅器を増やすこと無く流速測定と温度測定が行え、電力の消費も抑えられる。
【0062】
請求項5に記載の発明は、請求項1〜4のいずれかの一に記載の流速測定装置において、各感温抵抗体の端子電圧の測定と流体の流速の測定とを交互に繰り返すことを可能とし、連続した流速情報を出力することができる。
【0063】
請求項6に記載の発明は、請求項1〜5のいずれかの一に記載の流速測定装置において、流速測定の必要がないときの消費電力を抑えて、電池電源での駆動が容易となる。
【0064】
請求項7に記載の発明は、請求項6に記載の流速測定装置において、流速測定を行っていないときの消費電力を抑えて、電池電源での駆動が容易となる。
【0065】
請求項8に記載の発明は、請求項1〜7のいずれかの一に記載の流速測定装置において、流体の温度情報を適時出力することが可能となる。
【0066】
請求項9に記載の発明は、請求項3に記載の流速測定装置において、間欠的な流速測定を行うことができ、流速測定の必要がない期間の消費電力を抑えて、電池電源での駆動が容易となる。
【0067】
請求項10に記載の発明は、請求項1または2に記載の流速測定装置において、流速の測定と流体温度の測定を同時に行って、これらに要する時間を短縮して消費電力を抑えて、電池電源での駆動が容易となる。
【図面の簡単な説明】
【図1】この発明の実施の形態1である流速測定装置の回路図である。
【図2】この発明の実施の形態2である流速測定装置の回路図である。
【図3】従来の流速測定装置の回路図である。
【符号の説明】
Ru,Rd 感温抵抗体
Ih 電流源
C1,C2 電圧保持装置
U1 増幅器
SW1〜SW4 第3のスイッチ
SW5,SW6 第1のスイッチ
Rf 測温抵抗体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal type flow velocity measuring apparatus that is used in a gas flow meter, a flow meter, and the like and measures a flow velocity by a temperature change of resistance caused by a fluid.
[0002]
[Prior art]
Such a flow velocity measuring device is disclosed in, for example, Japanese Patent Laid-Open No. 10-206205.
[0003]
[Problems to be solved by the invention]
FIG. 3 shows one configuration example of the flow rate measuring device. This flow rate measuring device is roughly constituted by a sensor driving unit 1, a differential voltage detection unit 2, and an amplification unit 3. In the sensor driving unit 1, a first temperature sensitive resistor RS1 and a second temperature sensitive resistor RS2 mounted on a sensor substrate (not shown) disposed in the flow path are provided. Yes. These first and second temperature sensitive resistors RS1 and RS2 are also exposed to the fluid. Here, the first temperature sensitive resistor RS1 is upstream, and the second temperature sensitive resistor RS2 is downstream. It is assumed that the positional relationship is set so that The first and second temperature sensitive resistors RS1 and RS2 have the same resistance value and a high resistance temperature coefficient. These first and second temperature sensitive resistors RS1 and RS2 are connected in series with a current source 4 that acts as a heating device. That is, the current source 4 flows the current I1 to generate Joule heat in the resistor itself, so that the first and second temperature-sensitive resistors RS1 and RS2 are equally heated so that the temperature becomes higher than the fluid temperature. (However, as a heating device, the first and second temperature sensitive resistors RS1 and RS2 may be heated by separate heat sources). In the sensor driving unit 1, the operational amplifier 5 in which both ends b and c of the second temperature sensing resistor RS2 are connected in the feedback loop, and the connection point between the current source 4 and the first temperature sensing resistor RS1. An operational amplifier 6 connected to the output side of a is provided.
[0004]
The differential voltage detection unit 2 functions as a detection device. The terminal voltage of the first temperature sensing resistor RS1 output from the operational amplifier 6 to the point d (= output at the point f) and the operational amplifier 5 from the point c (= e An adder 7 is provided for outputting a voltage difference from the terminal voltage of the second temperature-sensitive resistor RS2 (= output at the point h) to the point g.
[0005]
The amplifying unit 3 includes amplifiers 8, 9, and 10 that amplify the terminal voltage of the first temperature sensitive resistor RS1, the terminal voltage of the second temperature sensitive resistor RS2, and the differential voltage (g point output), respectively. ing.
[0006]
In such a configuration, the heat of the first and second temperature sensitive resistors RS1, RS2 is taken away by the flow of fluid. The amount of heat taken away is related to the fluid flow. For example, if there is no flow of fluid, the temperatures of the first and second temperature sensitive resistors RS1, RS2 are substantially equal, so the resistance values are also approximately equal. Therefore, the terminal voltage of the first temperature sensitive resistor RS1 and the terminal voltage of the second temperature sensitive resistor RS2 are substantially equal, and the output at the point g of the differential voltage detector 2 is also substantially zero. On the other hand, when the fluid is flowing, the heat of the first temperature-sensitive resistor RS1 on the upstream side is deprived more than that on the downstream side, so the temperatures of the first and second temperature-sensitive resistors RS1 and RS2 are different. That is, the resistance value of the first temperature-sensitive resistor RS1 on the upstream side is smaller than that on the downstream side. Therefore, the terminal voltage of the first temperature sensitive resistor RS1 is smaller than the terminal voltage of the second temperature sensitive resistor RS2. This terminal voltage difference appears as a voltage value related to the flow velocity. As a result, it can be said that the flow velocity of the fluid can be known by measuring the magnitude of the output at the point g of the differential voltage detector 2. Note that when an A / D converter or the like is used to measure these terminal voltages, differential voltages, etc., it is necessary to convert the voltage signal to match the A / D converter, etc., and therefore an amplifying unit 3 is provided in the subsequent stage. ing.
[0007]
However, the apparatus shown in FIG. 3 uses a plurality of operational amplifiers, and thus consumes a large amount of power and cannot be driven with a battery for a long time.
[0008]
An object of the present invention is to provide a flow rate measuring device suitable for driving with a battery power source by suppressing power consumption.
[0009]
Another object of the present invention is to make it possible to obtain more accurate temperature compensation information of the fluid flow velocity.
[0010]
Another object of the present invention is to enable continuous flow rate information to be output.
[0011]
Another object of the present invention is to enable timely output of fluid temperature information.
[0012]
[Means for Solving the Problems]
The invention according to claim 1 is a flow velocity measuring apparatus for measuring a flow velocity of the fluid from a terminal voltage difference between two temperature-sensitive resistors that are respectively arranged on the upstream side and the downstream side in the fluid to heat. Two voltage holding devices that follow the terminal voltage of the temperature resistor and hold the voltage, an amplifier, and the voltage holding device so that one terminal voltage of the temperature sensitive resistor can be amplified by the amplifier. A flow rate measuring device comprising: a first switch capable of switching a connection state of lines so that a difference between voltages held therein can be amplified by the amplifier.
[0013]
Therefore, if the voltage held by both voltage holding devices is set to a common potential, for example, a voltage based on GND, and the difference between the voltages held by both voltage holding devices is amplified by an amplifier, the flow rate of the fluid can be increased. Can be measured. Since this device has a circuit configuration that uses only a single amplifier, it can save power and is suitable for driving with a battery power source. Further, the temperature of the fluid can be detected by amplifying the voltage held on one side of the voltage holding device by an amplifier, and information on temperature compensation of the flow velocity of the fluid can be obtained.
[0014]
According to a second aspect of the present invention, there is provided a flow velocity measuring apparatus for measuring a flow velocity of the fluid from a terminal voltage difference between two temperature-sensitive resistors that are respectively arranged on the upstream side and the downstream side in the fluid to heat the fluid. Two voltage holding devices that hold the voltage following the terminal voltage of the temperature resistor, an amplifier, a temperature measuring resistor that measures the temperature of the fluid, and a voltage across the terminals of the temperature measuring resistor And a first switch that can switch the line connection state so that the amplifier can amplify the difference between the voltages held by the two voltage holding devices. Is a flow velocity measuring device.
[0015]
Therefore, if the voltage held by both voltage holding devices is set to a common potential, for example, a voltage based on GND, and the difference between the voltages held by both voltage holding devices is amplified by an amplifier, the flow rate of the fluid can be increased. Can be measured. Since this device has a circuit configuration that uses only a single amplifier, it can save power and is suitable for driving with a battery power source. Further, the temperature of the fluid can be detected by amplifying the voltage between the terminals of the resistance temperature detector using an amplifier, and the temperature compensation information of the fluid flow velocity can be obtained more accurately.
[0016]
A third aspect of the present invention is the flow rate measuring device according to the first or second aspect, further comprising a second switch for opening and closing a line for supplying power to the circuit of the present apparatus.
[0017]
Therefore, when there is no need to measure the flow velocity, the power supply to the circuit can be stopped, so that driving with a battery power source becomes easy.
[0018]
According to a fourth aspect of the present invention, in the flow rate measuring device according to any one of the first to third aspects, the amplifier can vary an amplification factor.
[0019]
Therefore, it is possible to amplify the voltage difference between the two temperature sensitive resistors and amplify the terminal voltage of the temperature sensitive resistor or the terminal voltage of the temperature sensing resistor with the same amplifier, and measure the flow velocity without increasing the number of amplifiers. Temperature measurement and power consumption can be reduced.
[0020]
According to a fifth aspect of the present invention, in the flow velocity measuring device according to any one of the first to fourth aspects, the voltage holding device can hold the voltage following the terminal voltage of each of the temperature sensitive resistors. And a third switch capable of switching the line connection state so that the voltage held in the voltage holding device can be applied to the amplifier.
[0021]
Therefore, the measurement of the terminal voltage of each temperature sensitive resistor and the measurement of the flow velocity of the fluid can be alternately repeated, and continuous flow velocity information can be output.
[0022]
A sixth aspect of the present invention is the flow velocity measuring apparatus according to any one of the first to fifth aspects, further comprising a current source that supplies current to the temperature sensitive resistor, and the current source stops the current. Alternatively, it can be reduced.
[0023]
Therefore, power consumption when there is no need for flow velocity measurement is suppressed, and driving with a battery power source becomes easy.
[0024]
According to a seventh aspect of the present invention, in the flow velocity measuring device according to the sixth aspect, the difference between the voltages held by the two voltage holding devices can be amplified by the amplifier by switching the first switch. The current source is provided with current control means for stopping or reducing the current supplied to the temperature sensitive resistor.
[0025]
Therefore, power consumption when the flow velocity measurement is not performed is suppressed, and driving with the battery power source becomes easy.
[0026]
The invention according to claim 8 is the flow velocity measuring device according to any one of claims 1 to 7, wherein the first switch is switched at an appropriate time so that one terminal voltage of the thermosensitive resistor or the temperature measurement is performed. A temperature measuring means is provided for enabling the terminal voltage of the resistor to be amplified by the amplifier.
[0027]
Therefore, it is possible to output fluid temperature information in a timely manner.
[0028]
The ninth aspect of the present invention is the flow velocity measuring apparatus according to the third aspect, wherein the voltage holding device is made to follow the terminal voltage of each of the temperature sensitive resistors to hold the voltage. ,as well as, Operation of amplifying one terminal voltage of the temperature sensitive resistor or the terminal voltage of the temperature measuring resistor by switching the first switch by the amplifier And Operation of amplifying the difference between the voltages held by the two voltage holding devices by the amplifier When the continuous flow velocity measurement is performed by appropriately switching the Switch the second switch to open a line to supply power to the circuit of the device The power to the circuit is cut off, the voltage holding device is made to follow the terminal voltage of each of the temperature sensitive resistors to hold the voltage, and one terminal voltage of the temperature sensitive resistor or The operation of amplifying the terminal voltage of the resistance temperature detector by the amplifier and the operation of amplifying the difference between the voltages held by the two voltage holding devices by the amplifier are suspended. .
[0029]
Therefore, intermittent flow velocity measurement can be performed, power consumption during a period when flow velocity measurement is not necessary is suppressed, and driving with a battery power source is facilitated.
[0030]
The invention according to claim 10 is the flow velocity measuring device according to claim 1 or 2, wherein the voltage holding device is made to follow the terminal voltage of each of the temperature sensitive resistors and hold the voltage, It is characterized by comprising simultaneous execution means for switching the first switch and simultaneously amplifying the one terminal voltage of the temperature sensitive resistor or the terminal voltage of the temperature measuring resistor by the amplifier.
[0031]
Accordingly, the measurement of the flow velocity and the measurement of the fluid temperature are performed at the same time, the time required for these is reduced, the power consumption is suppressed, and the driving with the battery power source becomes easy.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the Invention
1 is a circuit diagram of a flow velocity measuring apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the flow velocity measuring device includes temperature sensitive resistors Ru and Rd. The temperature sensitive resistors Ru and Rd are installed in the fluid, the temperature sensitive resistor Ru is installed on the upstream side, and the temperature sensitive resistor Rd is installed on the downstream side. The temperature sensitive resistors Ru and Rd have a high temperature coefficient of resistance such as platinum, the resistance value and the temperature coefficient of resistance are equal, the shape is the same, and the thermal characteristics such as heat dissipation are the same, Both generate heat by electric power.
[0033]
The current source Ih supplies current to the temperature sensitive resistors Ru and Rd connected in series. The current source Ih is connected to one end of the temperature sensitive resistor Rd at node A. The other end of the temperature sensitive resistor Rd is connected to one end of the temperature sensitive resistor Ru at node B. The other end of the temperature sensitive resistor Ru is grounded.
[0034]
Reference numerals C1 and C2 denote capacitors which are voltage holding devices. Symbol U1 is a differential amplifier which is an amplifier. Reference numerals SW1, SW2, SW3, SW4, SW5, and SW6 are switches, such as semiconductor switches that can be opened and closed by electric signals. The switches SW5 and SW6 constitute a first switch. The switches SW1, SW2, SW3 and SW4 constitute a third switch.
[0035]
The control signal S1 is a signal that controls opening and closing of the switches SW1, SW2, SW3, and SW4. The control signal S2 is a signal that controls opening and closing of the switches SW5 and SW6. The switch SW3 is a signal for switching the amplification factor of the differential amplifier U1. The control signal S4 is a signal for controlling the current value of the current source Ih. The control signal S5 is a signal for opening and closing a line for supplying power to the circuit of FIG. The control signals S1, S2, S3, S4 and S5 are output from a microcomputer (not shown) that drives the flow velocity measuring device.
[0036]
The control signal S1 is a signal for switching between two types of states, a tracking state and a holding state. In the follow-up state, the switch SW1 connects the node D of one end of the capacitor C1 and the node A of one end of the temperature sensitive resistor Rd, and the switch SW2 connects the node E of the other end of the capacitor C1 and the other end of the temperature sensitive resistor Rd. Connect Section B. The switch SW3 connects the F node at one end of the capacitor C2 and the B node at one end of the temperature sensitive resistor Ru, and the switch SW4 connects the G node at the other end of the capacitor C2 and the C node at the other end of the temperature sensitive resistor Ru. Connect. In the holding state, the switch SW1 connects the D and H nodes at one end of the capacitor C1, and the switch SW2 connects the E and I nodes at the other end of the capacitor C1. The switch SW3 connects the F node and the J node at one end of the capacitor C2, and the switch SW4 connects the G node and the I node at the other end of the capacitor C2.
The control signal S2 is a signal for switching between two types of states, a temperature measurement state and a flow velocity measurement state. In the temperature measurement state, the switch SW5 connects the node A at one end of the temperature sensing resistor Rd and the non-inverting input terminal of the differential amplifier U1, and the switch SW6 is differential with the node B at the other end of the temperature sensing resistor Rd. The inverting input terminal of the amplifier U1 is connected. In the flow velocity measurement state, the switch SW5 connects the H node and the non-inverting input terminal of the differential amplifier U1, and the switch SW6 connects the J node and the inverting input terminal of the differential amplifier U1.
[0037]
The control signal S4 is a signal for switching between the heat generation state and the standby state. In the heat generation state, the current source Ih supplies a current that causes the temperature sensitive resistors Ru and Rd to generate heat. In the standby state, the current source Ih stops the current source Ih or reduces the current value so that the temperature sensitive resistors Ru and Rd do not generate heat.
[0038]
The control signal S3 is a signal for switching between the energized voltage state and the minute voltage state. In the normal voltage state, the amplification factor of the differential amplifier U1 is made small, for example, 1 time. In the minute voltage state, the amplification factor of the differential amplifier U1 is increased, for example, 40 times.
[0039]
The control signal S5 is a signal for turning on / off the power to the circuit of FIG. In the ON state, a switch (not shown) which is a second switch for opening and closing a line for supplying power to the circuit of FIG. 1 is closed. In the OFF state, the switch for opening and closing the line for supplying power to the circuit of FIG. 1 is opened to cut off the power.
[0040]
Next, the operation of the flow velocity measuring apparatus configured as described above will be described. When the circuit of FIG. 1 is in the OFF state by the control signal S5, the circuit does not operate because the power is cut off. This is hereinafter referred to as a rest period. During this idle period, the supply of power from the power source to the circuit of FIG. 1 is minimal.
[0041]
Next, the control signal S5 is set to the ON state, the control signal S1 is set to the follow-up state, the control signal S4 is set to the heat generation state, and the control signals S2 and S3 are set to arbitrary states. This is hereinafter referred to as a flow velocity measurement period. The electric power is supplied, and the circuit of FIG. 1 becomes operable, and the current source Ih supplies the current to the temperature-sensitive resistor elements Ru and Rd. The temperature sensitive resistors Ru and Rd generate heat due to the current supplied from the current source Ih. Terminal voltages generated in the temperature sensitive resistors Ru and Rd pass through the switches SW1, SW2, SW3 and SW4 and are stored in the capacitors C1 and C2, respectively. As a result, the terminal voltage of the temperature sensitive resistor Ru and the terminal voltage of the capacitor C1, and the terminal voltage of the temperature sensitive resistor Rd and the terminal voltage of the capacitor C2 are equal.
[0042]
After a sufficient time has elapsed for the temperature sensitive resistors Ru and Rd to generate heat, the control signal S1 is held, the control signal S2 is set to the flow velocity measurement state, and the control signal S3 is set to a minute voltage state. This is hereinafter referred to as a flow velocity output period. Since the input impedance of the differential amplifier U1 is high, the terminal voltages of the temperature sensitive resistors Rd and Ru are held in the capacitors C1 and C2, respectively. Since the E node side of the capacitor C1 and the G node side of the capacitor C2 are grounded via the switches SW2 and SW4, the voltage value of the temperature sensitive resistor Rd with respect to the ground point appears in the H node, and the J node The voltage value of the temperature sensitive resistor Ru with respect to the ground point appears. Since the switch SW2 is in the flow velocity measurement state, the terminal voltage of Rd is input to the non-inverting input terminal of the differential amplifier U1, and the terminal voltage of Ru is input to the inverting input terminal. Therefore, the voltage difference between the H node and the J node, that is, the value obtained by subtracting the terminal voltage of the temperature sensing resistor Ru from the terminal voltage of the temperature sensing resistor Rd is amplified and output at the node O on the output side of the differential amplifier U1. Is done.
[0043]
Further, when the control signal S5 is in the ON state and the control signal S4 is in the heat generation state, when the control signal S2 is in the temperature measurement state and the control signal S3 is in the normal voltage state, the output of the differential amplifier U1 has a temperature sensitive resistor. The terminal voltage of Rd is output. Thereby, a temperature measuring means is realized. This is hereinafter referred to as a temperature output period.
[0044]
During the flow velocity measurement period, the temperature sensitive resistors Ru and Rd generate heat due to the current from the current source Ih, and the flow velocity is measured. Since the temperature sensitive resistors Ru and Rd have the same characteristics, the resistance values are equal. When there is no flow in the fluid, the same current flows through the temperature-sensitive resistors Ru and Rd even when the fluid is in a heated state. That is, the terminal voltages of the temperature sensitive resistors Ru and Rd are equal. This voltage is stored in capacitors C1 and C2, respectively.
Next, it shifts to the flow velocity output period. Since the terminal voltages of the capacitors C1 and C2 are equal, the voltage values of the non-inverting input terminal and the inverting input terminal of the differential amplifier U1 are equal. That is, the differential voltage 0 is input to the differential amplifier U1. Therefore, the output of the differential amplifier U1 becomes zero.
[0045]
When the fluid is flowing, the heat generated by the temperature sensitive resistors Ru and Rd is removed by the fluid during the flow velocity measurement period. However, since the temperature sensitive resistor Rd is installed on the downstream side of the temperature sensitive resistor Ru, the heat deprived from the temperature sensitive resistor Ru is carried to the temperature sensitive resistor Rd. Therefore, the temperature sensitive resistor Rd is less deprived of heat than the temperature sensitive resistor Ru. When heat is taken away, the resistance values of the temperature sensitive resistors Ru and Rd decrease. The decrease in the resistance value of the temperature sensitive resistor Rd is smaller than the decrease in the resistance value of the temperature sensitive resistor Ru. That is, the terminal voltage value of the temperature sensitive resistor Ru is smaller than the terminal voltage value of the temperature sensitive resistor Rd. This voltage difference is related to the flow velocity of the fluid, and increases as the flow velocity increases. This voltage is stored in capacitors C1 and C2.
Next, it shifts to the flow velocity output period. The voltage of the capacitor C1 is applied to the non-inverting input terminal of the differential amplifier U1, and the voltage of C2 is applied to the inverting input terminal of the differential amplifier U1. The difference between the voltages of the capacitors C1 and C2 is amplified by the differential amplifier U1 and appears at the output. That is, an output related to the flow velocity is obtained.
[0046]
When the fluid is flowing backward, the heat sensitive resistor Ru loses less heat than the temperature sensitive resistor Rd. It may be considered that the relationship between the temperature sensitive resistors Ru and Rd is reversed up and down. That is, it appears in the output of the flow velocity output period with the opposite sign to that in the normal flow. Therefore, it is possible to determine the normal flow and the reverse flow of the fluid by the sign of the output signal during the flow velocity output period. And a continuous flow velocity measurement can be performed by repeating a flow velocity measurement period and a flow velocity output period alternately.
[0047]
In the temperature measurement period, the terminal voltage of the temperature sensitive resistor Rd is given to the differential input of the differential amplifier U1. Therefore, the terminal voltage of the temperature sensitive resistor Rd is amplified and output. The temperature sensitive resistor Rd changes its resistance value depending on the temperature of the fluid. That is, the terminal voltage of the temperature sensitive resistor Rd is a value related to the temperature of the fluid. The temperature of the fluid can be known from the output of the differential amplifier U1 during the temperature measurement period. This value makes it possible to correct the temperature dependence in the flow velocity measurement.
[0048]
As described above, continuous flow velocity measurement can be performed by switching the flow velocity measurement period, the flow velocity output period, and the temperature measurement period in a timely manner.
[0049]
Further, the control signal S5 is set to the ON state, the control signal S1 is set to the follow-up state, the control signal S4 is set to the heat generation state, the control signal S2 is set to the temperature measurement state, and the control signal S3 is set to the normal voltage state. Then, current is supplied to the temperature sensitive resistors Ru and Rd to generate heat, and the terminal voltage is transmitted to the capacitors C1 and C2. At the same time, the terminal voltage of the temperature sensitive resistor Rd is supplied to the differential input terminal of the differential amplifier U1. The amplified terminal voltage of the temperature sensitive resistor Rd is output to the node O. That is, the flow rate measurement period and the temperature measurement period are performed simultaneously. This realizes simultaneous execution means. Since the temperature measurement can be performed during the flow velocity measurement period, the time required for the temperature measurement period can be omitted, and the flow velocity measurement and the fluid temperature measurement can be performed in a short time, thereby reducing power consumption. When there is no need to measure the flow velocity, the power consumption can be suppressed by setting the suspension period. Thereby, a pause means is realized. In the flow velocity output period, the current source Ih is stopped or the current value is reduced by the control signal S4. This implements a current control means.
[0050]
Here, for example, if the temperature sensitive resistors Ru and Rd are formed by a microbridge sensor formed on a silicon substrate as disclosed in Japanese Patent Application Laid-Open No. 10-206205, the microbridge sensor has a minute structure, and therefore requires less power. Since heat is generated before the flow rate can be measured, a low-power flow rate sensor is obtained.
[0051]
The temperature sensitive resistors Ru and Rd by the micro bridge are set to about 500Ω at room temperature, for example. For example, when 1.75 mA is passed as the current source Ih, the temperature sensitive resistors Ru and Rd generate heat at about 100 ° C. At this time, the terminal voltage of the temperature sensitive resistors Ru and Rd is about 1.2V. When flow occurs in the fluid, there is a slight difference between the terminal voltages of the temperature sensitive resistors Ru and Rd. The difference is about 60 mV at maximum. If the flow of the flow velocity is too fast, there will be no difference in the heat deprived of the temperature sensitive resistors Ru and Rd. Therefore, the difference in terminal voltage between the temperature sensitive resistors Ru and Rd due to the flow velocity increases as the flow velocity increases. Saturating gradually, and the difference disappears. For the flow velocity measurement, a portion where the terminal voltage difference increases in relation to the flow velocity is used.
When this apparatus is driven by a battery or the like, it is desirable that the output has a value of about 0 to 3V. Since the terminal voltage of about 1.2 V of the temperature sensitive resistor Rd is amplified and output during the temperature measurement period, the amplification factor of the differential amplifier U1 may be increased to 1 to 2 times. In the flow rate output period, about 60 mV of the voltage difference between the temperature sensitive resistors Ru and Rd is amplified, so the amplification factor of the differential amplifier U1 may be about 50 times. When it is desired to measure the reverse flow with a single power source, the offset of the output of the differential amplifier U1 can be shifted in the positive voltage direction.
[0052]
[Embodiment 2 of the Invention]
FIG. 2 is a circuit diagram of a flow velocity measuring apparatus according to the second embodiment of the present invention. In FIG. 2, the same reference numerals as those in FIG. 1 are assigned to circuit elements and the like similar to those in the first embodiment of the invention, and detailed description thereof will be omitted.
[0053]
In Embodiment 1 of the invention, the terminal voltage of the temperature-sensitive resistor Rd is output during the temperature measurement period, and is used as a fluid temperature signal. In the second embodiment of the present invention, since the temperature sensing resistor Rd is affected by the flow velocity and changes its voltage, the temperature sensing resistor Rf for measuring the temperature of the fluid is used as the temperature sensing resistor for more accurate temperature measurement. This is an example provided separately from the bodies Ru and Rd.
[0054]
The resistance temperature detector Rf is a resistor having a large resistance temperature coefficient, such as platinum. The resistance temperature detector Rf is installed at a position not affected by the heat generated by the temperature sensitive resistors Ru and Rd in the fluid. The resistance temperature detector Rf is connected to the current source If.
[0055]
In the temperature measurement state according to the first embodiment of the present invention, the switches SW5 and SW6 are switched so as to differentially input the terminal voltage of the temperature sensitive resistor Rd to the differential amplifier U1. In the second embodiment, the terminal voltage of the resistance temperature detector Rf is differentially input to the differential amplifier U1. As a result, the temperature of the fluid can be measured without being affected by the flow velocity, and information for more accurate temperature correction can be obtained.
[0056]
If the resistance temperature detector Rf is also formed as a platinum thin film on a silicon substrate as disclosed in JP-A-10-206205, the heat capacity is small and the temperature of the fluid can be obtained accurately. The resistance value of the resistance temperature detector Rf is, for example, about 5 kΩ at room temperature, and a current of about 100 μA is supplied from the current source If. Then, the terminal voltage of the resistance temperature detector Rf becomes about 0.5V. This voltage varies with the temperature of the fluid. At this time, the amplification factor of the differential amplifier U1 during the temperature measurement period may be about 1 to 3 times.
[0057]
Note that the resistance values and amplification factors shown in the embodiments of the present invention are only examples, and other values may of course be used. These are designed according to the available power supply voltage, the temperature sensitive resistor, the characteristics of the resistance temperature detector, and the characteristics of the fluid to be measured.
[0058]
【The invention's effect】
According to the first aspect of the present invention, the voltage held by both voltage holding devices is set to a common potential, for example, a voltage based on GND, and the difference between the voltages held by both voltage holding devices is amplified by an amplifier. Then, the flow rate of the fluid can be measured. Since this device has a circuit configuration that uses only a single amplifier, it can save power and is suitable for driving with a battery power source. Further, the temperature of the fluid can be detected by amplifying the voltage held on one side of the voltage holding device by an amplifier, and information on temperature compensation of the flow velocity of the fluid can be obtained.
[0059]
According to the second aspect of the present invention, the voltage held by both voltage holding devices is set to a common potential, for example, a voltage based on GND, and the difference between the voltages held by both voltage holding devices is amplified by an amplifier. Then, the flow rate of the fluid can be measured. Since this device has a circuit configuration that uses only a single amplifier, it can save power and is suitable for driving with a battery power source. Further, the temperature of the fluid can be detected by amplifying the voltage between the terminals of the resistance temperature detector using an amplifier, and the temperature compensation information of the fluid flow velocity can be obtained more accurately.
[0060]
According to the third aspect of the present invention, in the flow rate measuring device according to the first or second aspect, when the flow velocity measurement is not required, the power supply to the circuit can be stopped. Become.
[0061]
According to a fourth aspect of the present invention, in the flow rate measuring apparatus according to any one of the first to third aspects, the voltage difference between the two temperature sensitive resistors is amplified and the terminal voltage of the temperature sensitive resistor is amplified or measured. The terminal voltage of the resistor can be amplified by the same amplifier, and the flow velocity and temperature can be measured without increasing the number of amplifiers, and the power consumption can be suppressed.
[0062]
According to a fifth aspect of the present invention, in the flow velocity measuring device according to any one of the first to fourth aspects, the measurement of the terminal voltage of each temperature sensitive resistor and the measurement of the flow velocity of the fluid are repeated alternately. It is possible to output continuous flow rate information.
[0063]
According to a sixth aspect of the present invention, in the flow velocity measuring device according to any one of the first to fifth aspects, the power consumption when there is no need for the flow velocity measurement is suppressed, and the driving with the battery power source becomes easy. .
[0064]
According to a seventh aspect of the present invention, in the flow velocity measuring device according to the sixth aspect, power consumption when the flow velocity measurement is not performed is suppressed, and driving with a battery power source becomes easy.
[0065]
According to an eighth aspect of the present invention, in the flow velocity measuring device according to any one of the first to seventh aspects, fluid temperature information can be output in a timely manner.
[0066]
According to a ninth aspect of the present invention, in the flow velocity measuring device according to the third aspect, intermittent flow velocity measurement can be performed, and power consumption during a period when the flow velocity measurement is not necessary is suppressed, and driving with a battery power source is performed. Becomes easy.
[0067]
According to a tenth aspect of the present invention, there is provided the flow velocity measuring device according to the first or second aspect, wherein the flow velocity measurement and the fluid temperature measurement are simultaneously performed, the time required for these is shortened, and the power consumption is reduced, thereby reducing the battery. Driving with a power supply becomes easy.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a flow velocity measuring device according to a first embodiment of the present invention.
FIG. 2 is a circuit diagram of a flow velocity measuring apparatus according to a second embodiment of the present invention.
FIG. 3 is a circuit diagram of a conventional flow velocity measuring device.
[Explanation of symbols]
Ru, Rd Temperature sensitive resistor
Ih current source
C1, C2 voltage holding device
U1 amplifier
SW1 to SW4 Third switch
SW5, SW6 first switch
Rf RTD

Claims (10)

流体中の上流側と下流側にそれぞれ配置されて加熱する2つの感温抵抗体の端子電圧差から前記流体の流速を測定する流速測定装置において、
前記各感温抵抗体の端子電圧に追従して当該電圧を保持する2つの電圧保持装置と、
増幅器と、
前記感温抵抗体の一方の端子電圧を前記増幅器により増幅できるようにも前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅できるようにもラインの接続状態を切り替え可能である第1のスイッチとを備えていることを特徴とする流速測定装置。
In the flow velocity measuring device that measures the flow velocity of the fluid from the terminal voltage difference between two temperature sensitive resistors that are respectively arranged on the upstream side and the downstream side in the fluid to heat,
Two voltage holding devices that hold the voltage following the terminal voltage of each of the temperature sensitive resistors;
An amplifier;
The connection state of the lines can be switched so that one terminal voltage of the temperature sensitive resistor can be amplified by the amplifier and the difference between the voltages held by the two voltage holding devices can be amplified by the amplifier. A flow velocity measuring device comprising: a first switch.
流体中の上流側と下流側にそれぞれ配置されて加熱する2つの感温抵抗体の端子電圧差から前記流体の流速を測定する流速測定装置において、
前記各感温抵抗体の端子電圧に追従して当該電圧を保持する2つの電圧保持装置と、
増幅器と、
前記流体の温度を測定する測温抵抗体と、
前記測温抵抗体の端子電圧を前記増幅器により増幅できるようにも前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅できるようにもラインの接続状態を切り替え可能である第1のスイッチとを備えていることを特徴とする流速測定装置。
In the flow velocity measuring device that measures the flow velocity of the fluid from the terminal voltage difference between two temperature sensitive resistors that are respectively arranged on the upstream side and the downstream side in the fluid to heat,
Two voltage holding devices that hold the voltage following the terminal voltage of each of the temperature sensitive resistors;
An amplifier;
A resistance thermometer for measuring the temperature of the fluid;
The line connection state can be switched so that the terminal voltage of the resistance temperature detector can be amplified by the amplifier and the difference between the voltages held by the two voltage holding devices can be amplified by the amplifier. 1 is a flow velocity measuring device.
本装置の回路へ電力を供給するラインを開閉する第2のスイッチを備えていることを特徴とする請求項1または2に記載の流量測定装置。The flow rate measuring device according to claim 1, further comprising a second switch for opening and closing a line for supplying power to the circuit of the device. 前記増幅器は増幅率を可変できることを特徴とする請求項1〜3のいずれかの一に記載の流量測定装置。The flow rate measuring apparatus according to claim 1, wherein the amplifier has a variable amplification factor. 前記電圧保持装置が前記各感温抵抗体の端子電圧に追従して当該電圧を保持できるようにも前記電圧保持装置に保持した電圧を前記増幅器に印加できるようにもラインの接続状態を切り替え可能である第3のスイッチとを備えていることを特徴とする請求項1〜4のいずれかの一に記載の流速測定装置。The connection state of the line can be switched so that the voltage holding device can hold the voltage following the terminal voltage of each temperature-sensitive resistor and also can apply the voltage held in the voltage holding device to the amplifier. The flow velocity measuring device according to claim 1, further comprising: a third switch that is 前記感温抵抗体に電流を供給する電流源を備え、この電流源は前記電流を停止または低減することができることを特徴とする請求項1〜5のいずれかの一に記載の流速測定装置。The flow velocity measuring device according to claim 1, further comprising a current source that supplies current to the temperature-sensitive resistor, and the current source can stop or reduce the current. 前記第1のスイッチの切り替えにより前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅できるようにしているときは、前記電流源が前記感温抵抗体に供給する電流を停止または低減する電流制御手段を備えていることを特徴とする請求項6に記載の流速測定装置。When the difference between the voltages held by the two voltage holding devices can be amplified by the amplifier by switching the first switch, the current supplied from the current source to the temperature sensitive resistor is stopped. The flow velocity measuring device according to claim 6, further comprising a current control means for reducing the current. 前記第1のスイッチを適時切り替えて前記感温抵抗体の一方の端子電圧または前記測温抵抗体の端子電圧を前記増幅器により増幅できるようにする温度測定手段を備えていることを特徴とする請求項1〜7のいずれかの一に記載の流速測定装置。A temperature measuring means is provided for switching the first switch in a timely manner so that one terminal voltage of the temperature sensitive resistor or the terminal voltage of the temperature measuring resistor can be amplified by the amplifier. Item 8. The flow velocity measuring device according to any one of Items 1 to 7. 前記両電圧保持装置を前記各感温抵抗体の端子電圧に追従させて当該電圧を保持させる動作、及び、前記第1のスイッチを切り替えて前記感温抵抗体の一方の端子電圧または前記測温抵抗体の端子電圧を前記増幅器により増幅する動作、並びに、前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅する動作を適宜切り替えることで連続した流速測定を行うようにしているとき、該流速測定の必要が無い場合は前記第2のスイッチを切り替えて前記本装置の回路へ電力を供給するラインを開くことにより前記回路への電力を遮断し、前記両電圧保持装置を前記各感温抵抗体の端子電圧に追従させて当該電圧を保持させる動作、及び、前記感温抵抗体の一方の端子電圧または前記測温抵抗体の端子電圧を前記増幅器により増幅する動作、並びに、前記両電圧保持装置がそれぞれ保持している電圧の差を前記増幅器により増幅する動作を休止させることを特徴とする請求項3に記載の流速測定装置。The operation of causing both voltage holding devices to follow the terminal voltage of each of the temperature sensitive resistors and holding the voltage , and one terminal voltage of the temperature sensitive resistor or the temperature measurement by switching the first switch. operation for amplifying the terminal voltage of the resistor by said amplifier, and configured to perform the flow rate measurement both voltage holding device is continuous by switching the difference in voltages held respectively appropriate action amplified by the amplifier When there is no need to measure the flow velocity , the power to the circuit is cut off by switching the second switch and opening a line for supplying power to the circuit of the apparatus. The operation of keeping the voltage by following the terminal voltage of each of the temperature sensitive resistors, and one terminal voltage of the temperature sensitive resistor or the terminal voltage of the temperature measuring resistor by the amplifier. Operation of amplifying as well as the flow rate measuring apparatus according to the difference between the voltage the both voltages holding device holds each to claim 3, characterized in that halting the operation of amplifying by the amplifier. 前記両電圧保持装置を前記各感温抵抗体の端子電圧に追従させて当該電圧を保持させる動作と、前記第1のスイッチを切り替えて前記感温抵抗体の一方の端子電圧または前記測温抵抗体の端子電圧を前記増幅器により増幅する動作とを同時に行う同時実行手段を備えていることを特徴とする請求項1または2に記載の流速測定装置。The operation of causing both voltage holding devices to follow the terminal voltage of each of the temperature sensitive resistors and holding the voltage, and switching the first switch to one terminal voltage of the temperature sensitive resistor or the temperature measuring resistor. The flow velocity measuring device according to claim 1, further comprising a simultaneous execution unit that simultaneously performs an operation of amplifying a body terminal voltage by the amplifier.
JP25509699A 1999-09-09 1999-09-09 Flow velocity measuring device Expired - Fee Related JP3819185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25509699A JP3819185B2 (en) 1999-09-09 1999-09-09 Flow velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25509699A JP3819185B2 (en) 1999-09-09 1999-09-09 Flow velocity measuring device

Publications (2)

Publication Number Publication Date
JP2001074761A JP2001074761A (en) 2001-03-23
JP3819185B2 true JP3819185B2 (en) 2006-09-06

Family

ID=17274068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25509699A Expired - Fee Related JP3819185B2 (en) 1999-09-09 1999-09-09 Flow velocity measuring device

Country Status (1)

Country Link
JP (1) JP3819185B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306637A (en) * 1996-05-10 1997-11-28 Ricoh Co Ltd Heater control device
JP3272624B2 (en) * 1997-01-20 2002-04-08 株式会社山武 Thermal flow sensor
JP3470942B2 (en) * 1997-09-16 2003-11-25 株式会社リコー Flow sensor

Also Published As

Publication number Publication date
JP2001074761A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
US6232618B1 (en) Sensor with temperature-dependent measuring resistor and its use for temperature measurement
WO2003093838A1 (en) Flow velocity sensor
JP3819185B2 (en) Flow velocity measuring device
JP4809837B2 (en) How to operate a heat loss pressure sensor with resistance
JP3256658B2 (en) Flow velocity detector
JPH02120620A (en) Heater temperature control circuit
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
JP3771069B2 (en) Flow measuring device
JP3537595B2 (en) Temperature control circuit of thermal humidity sensor
JPH1172457A (en) Sensor circuit using resistor sensor as element
JP3563982B2 (en) Flow measurement device and method
JPS62250312A (en) Flow speed sensor driving circuit
JP4904008B2 (en) Thermal flow meter
JPH0718729B2 (en) Heater temperature control circuit
JP4820017B2 (en) Flow measurement device using flow sensor
JP2001141539A (en) Method of correcting temperature of flow sensor, and flow sensor circuit
JP2003315129A (en) Thermal flow measuring instrument
JP2000258216A (en) Thermosensitive flowmeter
JPH065635Y2 (en) Flow velocity sensor
JPH0642223Y2 (en) Magnetic detection circuit
JP2000074714A (en) Flow sensor
JPH09311062A (en) Drive circuit for flow rate sensor
JPH10142249A (en) Flow sensor
JPH10332454A (en) Heat sensitive type flow-velocity detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060614

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees