WO2003093838A1 - Flow velocity sensor - Google Patents

Flow velocity sensor Download PDF

Info

Publication number
WO2003093838A1
WO2003093838A1 PCT/JP2003/005473 JP0305473W WO03093838A1 WO 2003093838 A1 WO2003093838 A1 WO 2003093838A1 JP 0305473 W JP0305473 W JP 0305473W WO 03093838 A1 WO03093838 A1 WO 03093838A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
resistance
elements
flow velocity
resistor
Prior art date
Application number
PCT/JP2003/005473
Other languages
French (fr)
Japanese (ja)
Inventor
Tarou Nakata
Shoji Kamiunten
Seishi Nakano
Original Assignee
Yamatake Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamatake Corporation filed Critical Yamatake Corporation
Publication of WO2003093838A1 publication Critical patent/WO2003093838A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • G01F1/699Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters by control of a separate heating or cooling element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor

Definitions

  • the present invention relates to a flow rate sensor used for measuring a flow rate of a fluid such as a gas or a liquid.
  • the applicant has proposed in Japanese Patent Application Laid-Open No. 2-2595277 a flow rate sensor having a semiconductor fine processing configuration realizing high accuracy and high speed response.
  • the configuration of the flow velocity sensor disclosed in Japanese Patent Application Laid-Open No. 2255952/27 will be described with reference to FIGS. 6A and 6B.
  • the flow velocity sensor is formed on a base 1 made of single-crystal silicon or the like, and a void 2 is formed in the center of the base 1.
  • a thin film layer 3 is formed which is spatially isolated from the base 1 by the gap 2.
  • the thin film layer 3 is provided with a pair of slits 4 a and 4 b communicating with each other through the gap 2 at a predetermined interval. Further, between these slits 4a and 4b, there is provided a slit 5 extending in a direction orthogonal to a straight line connecting the slits 4a and 4b.
  • Two arrangement parts 6a and 6b are formed between b.
  • the disposition parts 6 a and 6 b are thermally insulated from each other by the slit 5.
  • a temperature measuring resistance element A 1 functioning as a heating element and a temperature sensor is formed in the disposing portion 6 a, and a temperature measuring resistance element B functioning as a heating element and a temperature sensor is similarly formed in the disposing portion 6 b. 1 is formed. Further, in the portion where the thin film layer 3 and the base 1 are in thermal contact with each other, that is, in the portion where the void portion 2 is not provided, an ambient temperature measuring resistance element C 1 whose resistance value changes with the ambient temperature is formed. Is done.
  • FIG. 7 is an electric circuit diagram of the flow velocity sensor proposed in Japanese Patent Application Laid-Open No. 2-259595.
  • the electric circuit of the flow velocity sensor is for measuring the flow velocity of the gas moving on the base 1, and includes a temperature difference detection circuit 100, a constant current circuit 200, and a switching circuit 300. Be composed.
  • the temperature difference detection circuit 100 is composed of a temperature measuring resistor element A1, B1 and a resistor R101, R102 having a larger resistance value. Circuit, an amplifier A101, A102 for amplifying the output voltage of the bridge circuit, a differential amplifier A103 for outputting a difference value between the output voltages of the amplifiers A101, A102, and resistors R103 to R109. Be composed.
  • the bridge circuit is supplied with a constant current from a constant current circuit 200 composed of an ambient temperature resistance element C1, transistors TR201 and TR202, and a resistor R201, and is composed of a transistor T301 and a resistor R301. It is intermittently driven by the switching circuit 300 that is operated.
  • the ambient temperature measuring resistance element C1 is provided to compensate for a change in the ambient temperature.
  • the resistance temperature elements Al and B 1 generate heat by the constant current supplied from the constant current circuit 200.
  • the resistances R101 and R102 have considerably larger resistance values than the resistance temperature measurement elements A1 and B1, it is assumed that the resistance temperature elements Al and B1 are driven by a constant current. Can be considered.
  • the resistance temperature element A1 located on the upstream side is cooled more strongly than the resistance element B1 located on the downstream side.
  • a temperature difference appears between the two resistance temperature measurement elements Al and B1
  • this temperature difference becomes a resistance change
  • the bridge circuit loses its balance, and the difference amplifier A 103 responds to the temperature difference. Output voltage.
  • the flow velocity sensor proposed in Japanese Patent Application Laid-Open No. 2-259527 is capable of detecting the flow velocity of a fluid with high accuracy because the resistance X-elements Al and B 1 are formed on the thermally insulated thin film layer 3. Has features. However, in this flow velocity sensor, when the flow velocity increases, the amount of heat energy taken from the downstream resistance temperature measuring element B 1 increases and the temperature decreases, and the upstream and downstream resistance temperature elements A 1, B 1 The difference in resistance value of 1 decreases. For this reason, in the flow velocity sensor proposed in Japanese Patent Application Laid-Open No. 2-259527, there is a problem that, when the flow velocity is increased, the sensitivity is reduced and measurement at a high flow velocity becomes difficult.
  • the temperature measurement resistance elements Al and B 1 are driven by a constant current, so that the average temperature of the temperature measurement resistance elements Al and B 1 and the thin film layer 3 in the vicinity thereof changes depending on the flow velocity. . That is, the series resistance of the resistance temperature elements A 1 and B 1 changes.
  • the series resistance of the resistance temperature elements A 1 and B 1 changes.
  • the resistance of the resistance temperature elements A 1 and B 1 and the thin Along with the thermal delay due to the heat capacity of the membrane layer 3, the temperature change due to the change in the calorific value of the resistance temperature measuring elements A 1 and B 1 interferes with this, resulting in a delay in the response speed. There was a problem.
  • the present invention has been made to solve the above problems, and has as its object to provide a high-speed response flow rate sensor capable of measuring a wide range of flow rates.
  • a flow rate sensor includes a base having an air gap, a thin film layer formed on a surface of the base on which the air gap is formed, and a serial connection formed on the thin film layer.
  • a flow rate calculating means for determining a flow velocity of the fluid based on a temperature difference between the first and second resistance temperature resistance elements obtained, and the first and second resistance temperature resistance elements;
  • Control means for controlling the average temperature of the second resistance temperature element to be always higher than the ambient temperature by a constant temperature.
  • the first and second temperature measuring resistance elements have functions as a heating element and a temperature sensor
  • the control means includes first and second temperature measuring resistance elements. This is to control the current flowing through the device.
  • one configuration example of the flow rate sensor according to the present invention further includes a heating unit disposed near the first and second resistance temperature elements having a function as a temperature sensor, and the control unit supplies the heating unit with the heating unit. The current is controlled.
  • one configuration example of the flow velocity sensor of the present invention further includes an ambient temperature sensor for measuring an ambient temperature unaffected by the flow of the fluid, and the first and second resistance temperature measuring elements and the ambient temperature sensor are each provided with a bridge circuit.
  • the control means controls the current flowing through the first and second resistance temperature measuring elements so as to keep the voltage difference between the respective middle points of the bridge circuit constant. It is.
  • the apparatus further includes an ambient temperature sensor that measures an ambient temperature unaffected by the flow of the fluid.
  • the first and second resistance temperature measuring elements and the ambient temperature sensor each constitute one side of a bridge circuit. The current flowing to the heating means may be controlled so that the voltage difference between the respective midpoints of the circuit is constant.
  • the apparatus further comprises at least one voltage follower circuit connected to both ends of the first and second resistance temperature elements, and the flow rate calculating means includes a first and a second resistance temperature element connected in series. The flow rate may be determined by comparing the divided voltage of the voltage between both ends and the voltage at the connection point of the first and second resistance temperature measuring elements.
  • the first and second temperature measuring resistance elements are arranged side by side at a predetermined interval in a flowing direction of the fluid in the thin film layer, and generate heat by flowing current. It was made.
  • one configuration example of the flow rate sensor of the present invention further includes a slit formed on the thin film layer between the first and second resistance temperature elements, and thermally insulating the first and second resistance temperature elements from each other. It is a thing.
  • the thin film layer is further provided with slits formed at predetermined intervals from each other.
  • the base includes a diaphragm, and the first and second temperature measurement resistance elements are formed on a surface of the diaphragm opposite to the flow path side, and
  • the calculating means measures the flow velocity of the gas moving on the side of the diaphragm opposite to the side on which the first and second temperature measuring resistance elements are formed.
  • a flow path forming member having a through hole for forming a flow path together with the base is further provided.
  • the flow velocity calculating means includes a bridge circuit, a differential amplifier circuit, and an output circuit, and the bridge circuit includes a resistor, a first resistance temperature element, and a second resistance element connected in series.
  • the differential amplifier circuit includes a first series circuit, and a second series circuit in which a resistor, a resistor, and an ambient temperature sensor are connected in series. And an operational amplifier connected to the non-inverting input terminal at the connection point between the resistor and the resistor, and the output terminal connected to the connection point between the resistor and the resistor.
  • An operational amplifier connected to the connection point of the first resistance temperature element and having an inverting input terminal and an output terminal connected thereto, one end connected to the output terminal of the operational amplifier, and one end connected to the other end of the resistance And the other end is grounded,
  • a non-inverting input terminal is connected to a connection point between the first resistance temperature element and the second resistance temperature element, and an inverting input terminal is provided with an operational amplifier connected to a connection point between the resistors.
  • a flow rate sensor includes a base having an air gap, a thin film layer formed on a surface of the base on which the air gap is formed, and a serial connection formed on the thin film layer.
  • the flow rate of the fluid is determined based on the temperature difference between the first and second resistance temperature elements and the first and second resistance temperature elements, which function as a heating element and a temperature sensor. And a current flowing through the first and second resistance temperature measuring elements so that the average temperature of the first and second resistance temperature elements is always higher than the ambient temperature by a constant temperature. And control means for performing such operations.
  • a base having a gap, a thin film layer formed on the surface of the base on which the gap is formed, and a temperature sensor formed on the thin film layer and connected in series
  • a first resistance temperature element and a second resistance temperature element having a function a heating means disposed in the vicinity of the first and second resistance temperature elements;
  • Flow velocity calculating means for calculating the flow velocity of the fluid based on the temperature difference, and controlling the current supplied to the heating means so that the average temperature of the first and second temperature measuring resistance elements is always higher than the ambient temperature by a constant temperature. It is provided with control means for controlling.
  • 1A and 1B are a plan view and a sectional view of a flow rate sensor according to a first embodiment of the present invention.
  • FIG. 2 is an electric circuit diagram of the flow velocity sensor of FIG.
  • FIG. 3 is a plan view of a flow velocity sensor according to a second embodiment of the present invention.
  • FIG. 4 is an electric circuit diagram of the flow velocity sensor of FIG.
  • FIG. 5 is a sectional view of a flow velocity sensor according to a third embodiment of the present invention.
  • 6A and 6B are a plan view and a cross-sectional view of a conventional flow velocity sensor.
  • FIG. 7 is an electric circuit diagram of a conventional flow velocity sensor.
  • FIG. 1A is a plan view of a flow velocity sensor according to a first embodiment of the present invention
  • FIG. 1B is a cross-sectional view taken along the line I-I of FIG. 1A
  • FIG. It is a circuit diagram.
  • the flow rate sensor of the present embodiment is formed on a base 101 made of single-crystal silicon or the like, and a void 102 is formed in the center of the base 101 by, for example, anisotropic etching. Further, on the base 101, a thin film layer (diaphragm member) 103 which is spatially isolated from the base 101 by the gap 102 is formed. Fluid such as gas passes over the thin film layer 103.
  • the thin film layer 103 is provided with a pair of slits 104 a and 104 b communicating with each other through the gap 102 at a predetermined interval. Further, between these slits 104a and 104b, there is provided a slit 105 extending in a direction perpendicular to a straight line connecting the slits 104a and 104b. Two arranging portions 106a and 106b are formed between the slits 104a and 104b along the flowing direction. The arrangement portions 106a and 106b are thermally insulated from each other by the slit 105.
  • a temperature measuring resistance element A functioning as a heating element and a temperature sensor is formed in the disposing portion 106a by a thin film forming technique.
  • a temperature measuring element functioning as a heating element and a temperature sensor is formed in the disposing portion 106b.
  • Resistive element B is formed by a thin film forming technique.
  • the resistance value changes depending on the ambient temperature (temperature of the fluid).
  • Ambient temperature sensor) C is formed by thin film formation technology.
  • 107 and 108 are pads for connecting both ends of the resistance temperature element A to an external electric circuit.
  • Reference numerals 109 and 110 are pads for connecting both ends of the resistance temperature element B to the electric circuit 20.
  • Reference numerals 111 and 112 denote pads for connecting both ends of the ambient temperature resistance measuring element C to the electric circuit 20.
  • the electric circuit 20 of the flow rate sensor according to the present embodiment measures the flow rate of the fluid moving on the base 101. And a bridge circuit 21, a differential amplifier circuit (control circuit) 22, and an output circuit 23.
  • the bridge circuit 21 includes a first series circuit in which a resistor R1, a resistance temperature element A and a resistance element B are connected in series, a resistance R2, a resistance R3, and an ambient temperature resistance element C. And a second series circuit connected in series, and is configured by connecting the first series circuit and the second series circuit in parallel.
  • the inverting input terminal is connected to the connection point of the resistor R1 and the resistance thermometer element A
  • the non-inverting input terminal is connected to the connection point of the resistor R2 and the resistor R3
  • the output terminal is It consists of an operational amplifier A1 connected to the connection point of the resistor R1 and the resistor R2.
  • the differential amplifier circuit 22 calculates the difference value between the potential V 1 at the connection point between the resistors R 2 and R 3 and the potential V 2 at the connection point between the resistance R 1 and the resistance element A.
  • the amplified output voltage Vo is applied to the connection point between the resistors R1 and R2 of the bridge circuit 21.
  • the output circuit 23 has an operational amplifier A 2 having a non-inverting input terminal connected to the connection point of the resistor R 1 and the resistance temperature measuring element A, and an inverting input terminal and an output terminal connected thereto, and one end having an operational amplifier A 2.
  • the resistor R5 connected to the output terminal of the resistor R5, one end is connected to the other end of the resistor R5, and the other end is grounded.
  • the operational amplifier A3 is connected to the connection point of the element B, and has an inverting input terminal connected to the connection point of the resistor R5 and the resistor R6.
  • the balance condition of the bridge circuit 21 is
  • Resistance value of resistance R 1 Z resistance value of resistance R 2 / (resistance value of resistance R 3 + resistance element of ambient temperature resistance C) Resistance value)
  • the resistance value of the resistor R2 the resistance value of the resistor R3 + the resistance value of the ambient temperature measuring resistance element C, and
  • Resistance value of resistance R 1 (resistance value of resistance element A + resistance value of resistance element B) at the set temperature
  • Resistance R 3 is the average temperature of resistance temperature elements A and B This is an adjustment resistor to maintain the temperature difference between the temperature and the temperature measurement resistance element C.
  • the temperature difference may not be kept constant, but may be changed, for example, such that this difference increases as the ambient temperature increases.
  • the bridge circuit 21 loses its balance and the potential V 1 at the connection point between the resistor R 2 and the resistor R 3 is reduced.
  • the differential amplifier circuit 22 raises the applied voltage Vo to the bridge circuit 21 in order to rebalance the bridge circuit 21.
  • the current supplied to the resistance thermometer elements A and B increases, so that the calorific value of the resistance thermometer elements A and B increases, and the resistance values of the resistance thermometer elements A and B increase. Balance occurs where the equilibrium condition is satisfied.
  • the resistance elements A and B are cooled, the resistance values of the resistance elements A and B decrease, and the potential V 2 at the connection point between the resistance R1 and the resistance element A is obtained.
  • the differential amplifier circuit 22 increases the voltage Vo applied to the bridge circuit 21. As a result, the calorific values of the resistance temperature elements A and B increase, the resistance values of the resistance temperature elements A and B increase, and the balance is established when the above-mentioned equilibrium condition is satisfied.
  • the differential amplifier circuit 22 detects the temperature detected by the temperature measuring resistance elements A and B (the average value of the temperatures detected by the elements A and B) by the ambient temperature temperature measuring resistance element C.
  • the resistance elements A and B generate heat so that the temperature is always higher than the ambient temperature.
  • the operational amplifier A2 forms a port follower.
  • the series circuit composed of the resistors R 5 and R 6 is connected to the series circuit composed of the resistance temperature elements A and B via the voltage follower A 2.
  • the voltage follower By using the voltage follower, the current flowing in the bridge circuit 21 is prevented from flowing out to the resistors R5 and R6.
  • the output voltage of the operational amplifier A3 becomes zero.
  • the output voltage when the flow velocity is 0 may be calibrated as the output voltage at the flow velocity 0, or an offset may be set so that the output voltage becomes an arbitrary voltage value when the flow velocity is 0. Good.
  • the resistance temperature elements A and B are cooled.
  • the resistance element A located upstream is cooled more strongly than the resistance element B located downstream, so that the resistance value of the resistance element A is the resistance of the resistance element B. Value.
  • the potential V 3 at the connection point between the resistance element A and the resistance element B rises, so that a difference occurs between the potential V 3 and the potential V 4 at the connection point between the resistors R 5 and R 6.
  • the operational amplifier A 3 outputs an output voltage corresponding to the flow velocity, that is, a voltage proportional to (V 3 ⁇ V 4).
  • the resistance temperature measuring element G regardless of the ambient temperature and the flow velocity, the resistance temperature measuring element G.
  • the resistance elements A and B generate heat so that the average value of the temperatures detected at points A and B is always higher than the ambient temperature by a certain amount.
  • the resistance of the resistance elements A and B increases. The difference in resistance value does not decrease and the sensitivity does not decrease.
  • a series circuit composed of the resistance temperature elements A and B and a series circuit composed of the resistances R5 and R6 are connected in parallel.
  • the terminal voltage of the resistor R5 (the output voltage of the port-follower A2) is correspondingly changed. ) Also changes to the same value as the voltage V2, so the reference potential (potential V4) of the RTD elements A and B is always adjusted to the value obtained by multiplying the voltage V2 by the predetermined ratio R6Z (R5 + R6). .
  • the potential difference V3-V4 is a value that reflects only the flow velocity, and a characteristic that increases almost linearly as the flow velocity increases is obtained.
  • FIG. 3 is a plan view of a flow rate sensor according to a second embodiment of the present invention
  • FIG. 4 is an electric circuit diagram of the flow rate sensor of FIG. 3.
  • a temperature-measuring resistance element A ′ functioning as a temperature sensor and a heating resistance element D functioning as a heating element are formed in the disposing portion 106a by a thin-film forming technique.
  • a temperature measuring resistance element B 'functioning as a temperature sensor and a heating resistance element E functioning as a heating element are formed in the disposition portion 106b by a thin film forming technique.
  • 107 and 108 are pads for connecting both ends of the resistance temperature measuring element A 'to the electric circuit 20a.
  • Reference numerals 109 and 110 denote pads for connecting both ends of the resistance temperature measuring element B 'to the electric circuit 20a.
  • 113 and 114 are pads for connecting both ends of the heating resistance element D to an external electric circuit 20a.
  • 115 and 116 are pads for connecting both ends of the heating resistor element E to the electric circuit 20a.
  • the bridge circuit 21a of this embodiment uses temperature-measuring resistance elements A 'and B' functioning as temperature sensors instead of the temperature-measuring resistance elements A and B functioning as a heating element and a temperature sensor.
  • a constant voltage Vs is applied to the connection point between the resistors R1 and R2 of the bridge circuit 21a, and the non-inverting input terminal is connected to the resistor R2 and the resistor R2.
  • the operational amplifier A4 is connected to the connection point of R3 and the inverting input terminal is connected to the connection point of the resistor R1 and the resistance temperature measuring element A '.
  • a heating resistor element D and a heating resistor element E are connected in series to the output terminal of the operational amplifier A4.
  • the operational amplifier A4, the heating resistor element D, and the heating resistor element E form a control circuit 22a.
  • Resistance value of resistance R1 / resistance value of resistance R2 / (resistance value of resistance R3 + resistance value of ambient temperature resistance element Mentor C resistance)
  • the operational amplifier A4 When a voltage Vs is applied to the bridge circuit 21a, the operational amplifier A4 generates a potential VI at a connection point between the resistor R2 and the resistor R3 and a potential V at a connection point between the resistor R1 and the resistance temperature measuring element A '. Amplify and output the difference voltage V 1 -V2 from 2.
  • the operational amplifier A4 outputs the output voltage To rise.
  • the current supplied to the heating resistor elements D and E increases, so that the amount of heat generated by the heating resistor elements D and E increases, and the resistance values of the temperature measuring resistor elements A ′ and B ′ increase. Balance when the equilibrium condition is satisfied.
  • the resistance values of the resistance elements A 'and B' decrease, and the potential V2 at the connection point between the resistance R1 and the resistance element A 'decreases.
  • the operational amplifier A4 increases the output voltage. As a result, the amount of heat generated by the heat generating resistance elements D and E increases, and the resistance values of the temperature measuring resistance elements A ′ and B ′ increase.
  • the resistance R3 is deleted and the resistance R2 is directly connected to the ambient temperature resistance element C.
  • the resistance elements A and B (A ', B By adding a resistor in parallel with the series circuit consisting of '), adjustment may be made to maintain the temperature difference between the RTD elements A' and B 'and the ambient temperature RTD element C.
  • the base 1 made of single-crystal silicon is used.
  • a base made of stainless steel, ceramic, sapphire, or the like may be used.
  • the average temperature of the two resistance temperature elements connected in series using the bridge circuit and the differential amplifier circuit is calculated from the ambient temperature measured by the ambient temperature resistance element.
  • the current is controlled using a microcomputer or the like so that the average temperature of the two temperature measuring resistance elements connected in series is higher than the ambient temperature by a certain temperature.
  • the voltage may be controlled.
  • the series resistance at the average temperature which is the setting target of the two temperature measuring resistance elements connected in series, is obtained from the relational expression between temperature and resistance, and the current or voltage applied to achieve the resistance is controlled. May be.
  • a general external temperature sensor may be used for measuring the ambient temperature.
  • the slit 105 may be omitted, and the wiring may be taken out from the middle point of one RTD, so that it may be used as substantially two RTDs. .
  • FIG. 5 is a sectional view of a flow rate sensor according to a third embodiment of the present invention, and the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals.
  • the elements A, B, and C are provided in the flow of the fluid.
  • the thin portion (diaphragm portion) 13 3 Elements A, B, and C are provided on the opposite side of the flow path side and not directly in contact with the fluid to be measured.
  • 13 1 is a flow path forming member made of stainless steel
  • 13 2 is a stainless steel base installed on the flow path forming member 13 1
  • 13 3 is a base 13 2
  • the thin part (diaphragm part) 134 formed on the base 132 is an electrical insulating film such as silicon oxide, silicon nitride, alumina or polyimide.
  • the flow path forming member 13 1 has two through holes 13 7 and 13 8 which form a flow path 13 6 of the fluid.
  • An oval concave portion 135 is formed in the center of the lower surface of the base 132, so that the surface side where the concave portion 135 is formed forms a thin portion (diaphragm portion) 133.
  • the concave portion 135 communicates with the through holes 133 and 138 at both ends.
  • the recesses 135 are preferably oval in order to smoothly flow the fluid, but are not limited to this, and may be rectangular or circular.
  • an electric insulating film 1 34 is formed over the entire surface, and the surface of the electric insulating film 1 34 has temperature-measuring resistance elements A and B and an ambient temperature temperature-measuring resistance element ( :
  • the pads 107 to 112 are formed in the same manner as in the first embodiment.
  • the electric circuit is as shown in Fig. 2.
  • the recesses 135 are formed.
  • An electric insulating film is formed on the entire bottom surface, and the temperature measuring resistance elements A and B and the pad are formed in the same manner on the surface of the electric insulating film. It may be formed in the same manner together with the pad via the electric insulating film in the portion, and the fluid may flow on the opposite surface.
  • the temperature-measuring resistance elements A and B instead of the temperature-measuring resistance elements A and B, the temperature-measuring resistance element C and the pads 107 to 112 of the first embodiment, the temperature-measuring resistance elements A ′ and A ′ of the second embodiment are used.
  • B ′ the ambient temperature resistance element C, the heating resistance elements D and E, and the pads 107 to 116 may be formed.
  • the electric circuit in this case is as shown in FIG.
  • the elements A, B, C, ⁇ ,., ⁇ ′, D, ⁇ ⁇ ⁇ ⁇ in the first to third embodiments of the present invention are all preferably formed of a platinum thin film or the like. It is not limited to this.
  • the average temperature of the first resistance temperature element and the second temperature resistance element (the average value of the temperatures detected by the first and second resistance temperature elements) is Since the voltage applied to the first resistance temperature element and the second resistance temperature element is controlled such that the temperature is always higher than the ambient temperature by a certain amount, the decrease in sensitivity is reduced even if the flow velocity increases. As a result, a wide range of flow velocities from low to high can be measured. Further, according to the present invention, since the temperatures of the first and second resistance temperature measuring elements can be kept constant, the response speed can be made faster than before. Further, by forming the output circuit from the third series circuit and the differential amplifier, it is possible to extract a value corresponding to the flow velocity of the fluid.
  • the flow sensor according to the present invention is suitable for measuring a wide range of flow velocities, particularly high flow velocities.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

A flow velocity sensor, comprising a base stand having a space part, a thin-film layer formed on the surface of the base stand where the space part is formed, a first temperature measuring resistance element and a second temperature measuring resistance element formed on the thin-film layer and connected in series to each other, a flow velocity calculation means for calculating the flow velocity of fluid based on a temperature difference between the first and second temperature measuring resistance elements, and a control means for controlling the first and second temperature measuring resistance elements so that the averaged temperature of the first and second temperature measuring resistance elements is always higher by a specified temperature than the ambient temperature.

Description

明 細 書 流速センサ 発明の背景  Description Flow velocity sensor Background of the invention
本発明は、 気体や液体等の流体の流速測定に用いられる流速センサに関するも のである。  The present invention relates to a flow rate sensor used for measuring a flow rate of a fluid such as a gas or a liquid.
出願人は、 特開平 2— 2 5 9 5 2 7号公報で、 高精度かつ高速応答を実現する 半導体微細加工構成の流速センサを提案した。 この特開平 2— 2 5 9 5 2 7号公 報の流速センサの構成を、 図 6 A、 図 6 Bを用いて説明する。  The applicant has proposed in Japanese Patent Application Laid-Open No. 2-2595277 a flow rate sensor having a semiconductor fine processing configuration realizing high accuracy and high speed response. The configuration of the flow velocity sensor disclosed in Japanese Patent Application Laid-Open No. 2255952/27 will be described with reference to FIGS. 6A and 6B.
流速センサは、 単結晶シリコンなどからなる基台 1上に形成され、 この基台 1 の中央部には空隙部 2が形成される。 また、 基台 1上には、 空隙部 2によって基 台 1から空間的に隔離された薄膜層 3が形成される。 薄膜層 3には、 空隙部 2を 介して連通する対をなすスリット 4 a, 4 bが互いに所定の間隔をおいて設けら れる。 さらに、 これらのスリット 4 a, 4 bの間には、 スリット 4 a, 4 bの間 を結ぶ直線と直交する方向に延びるスリット 5が設けられ、 このスリット 5によ り、 スリット 4 a, 4 bの間に 2つの配設部 6 a , 6 bが形成される。 配設部 6 a , 6 bは、 スリット 5により互いに熱的に絶縁される。  The flow velocity sensor is formed on a base 1 made of single-crystal silicon or the like, and a void 2 is formed in the center of the base 1. On the base 1, a thin film layer 3 is formed which is spatially isolated from the base 1 by the gap 2. The thin film layer 3 is provided with a pair of slits 4 a and 4 b communicating with each other through the gap 2 at a predetermined interval. Further, between these slits 4a and 4b, there is provided a slit 5 extending in a direction orthogonal to a straight line connecting the slits 4a and 4b. Two arrangement parts 6a and 6b are formed between b. The disposition parts 6 a and 6 b are thermally insulated from each other by the slit 5.
配設部 6 aには、 発熱体兼温度センサとして機能する測温抵抗エレメント A 1 が形成され、 同様に、 配設部 6 bには、 発熱体兼温度センサとして機能する測温 抵抗エレメント B 1が形成される。 また、 薄膜層 3と基台 1とが熱的に接する部 分、 すなわち空隙部 2が設けられていない部分には、 周囲温度により抵抗値が変 化する周囲温度測温抵抗エレメント C 1が形成される。  A temperature measuring resistance element A 1 functioning as a heating element and a temperature sensor is formed in the disposing portion 6 a, and a temperature measuring resistance element B functioning as a heating element and a temperature sensor is similarly formed in the disposing portion 6 b. 1 is formed. Further, in the portion where the thin film layer 3 and the base 1 are in thermal contact with each other, that is, in the portion where the void portion 2 is not provided, an ambient temperature measuring resistance element C 1 whose resistance value changes with the ambient temperature is formed. Is done.
図 7は特開平 2— 2 5 9 5 2 7号公報で提案した流速センサの電気回路図であ る。 流速センサの電気回路は、 基台 1上を移動する気体の流速を測定するための ものであり、 温度差検出回路 1 0 0と、 定電流回路 2 0 0と、 スイッチング回路 3 0 0とで構成される。 温度差検出回路 1 0 0は、 測温抵抗エレメント A l, B 1とそれより大きな抵抗値を持つ抵抗 R 1 0 1 , R 1 0 2とで構成されるプリッ ジ回路と、 このブリッジ回路の出力電圧を増幅する増幅器 A 101, A102と、 この増幅器 A 101, A 102の出力電圧の差分値を出力する差分増幅器 A 10 3と、 抵抗 R 103から R109とで構成される。 プリッジ回路は、 周囲温度測 温抵抗エレメント C 1とトランジスタ TR 201, TR 202と抵抗 R 201で 構成される定電流回路 200から定電流を供給されるとともに、 トランジスタ T 301と抵抗 R 301とで構成されるスイッチング回路 300により間欠的に 駆動される。 FIG. 7 is an electric circuit diagram of the flow velocity sensor proposed in Japanese Patent Application Laid-Open No. 2-259595. The electric circuit of the flow velocity sensor is for measuring the flow velocity of the gas moving on the base 1, and includes a temperature difference detection circuit 100, a constant current circuit 200, and a switching circuit 300. Be composed. The temperature difference detection circuit 100 is composed of a temperature measuring resistor element A1, B1 and a resistor R101, R102 having a larger resistance value. Circuit, an amplifier A101, A102 for amplifying the output voltage of the bridge circuit, a differential amplifier A103 for outputting a difference value between the output voltages of the amplifiers A101, A102, and resistors R103 to R109. Be composed. The bridge circuit is supplied with a constant current from a constant current circuit 200 composed of an ambient temperature resistance element C1, transistors TR201 and TR202, and a resistor R201, and is composed of a transistor T301 and a resistor R301. It is intermittently driven by the switching circuit 300 that is operated.
ここで、 周囲温度測温抵抗エレメント C 1は、 周囲温度の変化を補償するため に設けられる。 測温抵抗エレメント Al, B 1は、 定電流回路 200から供給さ れる定電流によって発熱する。 ここで、 抵抗 R 101, R 102は、 測温抵抗ェ レメント A 1, B 1に比べてかなり大きな抵抗値を有するため、 測温抵抗エレメ ント Al, B 1は一定電流で駆動されるものと見なすことができる。  Here, the ambient temperature measuring resistance element C1 is provided to compensate for a change in the ambient temperature. The resistance temperature elements Al and B 1 generate heat by the constant current supplied from the constant current circuit 200. Here, since the resistances R101 and R102 have considerably larger resistance values than the resistance temperature measurement elements A1 and B1, it is assumed that the resistance temperature elements Al and B1 are driven by a constant current. Can be considered.
流速センサの表面で気体が流れると、 その上流側に位置する測温抵抗エレメン ト A 1は、 その下流側に位置する測温抵抗エレメント B 1に比べて、 より強く冷 やされる。 これにより、 2つの測温抵抗ェレメント Al, B 1間に温度差が現れ、 この温度差は抵抗変化となり、 前記ブリッジ回路はその平衡を失って、 差分増幅 器 A 103はその温度差に応じた電圧を出力する。  When the gas flows on the surface of the flow velocity sensor, the resistance temperature element A1 located on the upstream side is cooled more strongly than the resistance element B1 located on the downstream side. As a result, a temperature difference appears between the two resistance temperature measurement elements Al and B1, and this temperature difference becomes a resistance change, the bridge circuit loses its balance, and the difference amplifier A 103 responds to the temperature difference. Output voltage.
特開平 2— 259527号公報で提案した流速センサは、 測温抵抗 Xレメント Al, B 1を熱絶縁した薄膜層 3上に形成していることから、 流体の流速を高精 度に検出できるという特徴を有している。 しかしながら、 この流速センサでは、 流速が増加すると、 下流側の測温抵抗エレメント B 1から奪われる熱エネルギ一 が増大して温度が低下し、 上流側と下流側の測温抵抗エレメント A 1, B 1の抵 抗値の差が減少する。 このため、 特開平 2— 259527号公報で提案した流速 センサでは、 流速が増加すると、 感度が低下し、 高流速における測定が困難にな るという問題点があった。 また、 この流速センサでは、 測温抵抗エレメント Al, B 1を定電流駆動しているため、 流速によつて測温抵抗ェレメント Al, B 1お よびその近傍の薄膜層 3の平均温度が変化する。 つまり、 測温抵抗エレメント A 1, B 1の直列抵抗が変化する。 この温度、 つまり測温抵抗エレメント A 1, B 1の直列抵抗が変化すると、 測温抵抗エレメント A 1, B 1およびその近傍の薄 膜層 3が持つ熱容量のための熱的遅れとともに測温抵抗エレメント A l, B 1で の発熱量変化による温度変化がこれと干渉することによる遅れが生じ、 結果とし て応答速度が遅くなるという問題点があった。 The flow velocity sensor proposed in Japanese Patent Application Laid-Open No. 2-259527 is capable of detecting the flow velocity of a fluid with high accuracy because the resistance X-elements Al and B 1 are formed on the thermally insulated thin film layer 3. Has features. However, in this flow velocity sensor, when the flow velocity increases, the amount of heat energy taken from the downstream resistance temperature measuring element B 1 increases and the temperature decreases, and the upstream and downstream resistance temperature elements A 1, B 1 The difference in resistance value of 1 decreases. For this reason, in the flow velocity sensor proposed in Japanese Patent Application Laid-Open No. 2-259527, there is a problem that, when the flow velocity is increased, the sensitivity is reduced and measurement at a high flow velocity becomes difficult. In this flow velocity sensor, the temperature measurement resistance elements Al and B 1 are driven by a constant current, so that the average temperature of the temperature measurement resistance elements Al and B 1 and the thin film layer 3 in the vicinity thereof changes depending on the flow velocity. . That is, the series resistance of the resistance temperature elements A 1 and B 1 changes. When this temperature, that is, the series resistance of the resistance temperature measuring elements A 1 and B 1 changes, the resistance of the resistance temperature elements A 1 and B 1 and the thin Along with the thermal delay due to the heat capacity of the membrane layer 3, the temperature change due to the change in the calorific value of the resistance temperature measuring elements A 1 and B 1 interferes with this, resulting in a delay in the response speed. There was a problem.
発明の概要 Summary of the Invention
本発明は、 上記課題を解決するためになされたもので、 広範囲な流速を測定す ることができる高速応答の流速センサを提供することを目的とする。  The present invention has been made to solve the above problems, and has as its object to provide a high-speed response flow rate sensor capable of measuring a wide range of flow rates.
本発明にかかる流速センサは、 空隙部を有する基台と、 この基台上の空隙部が 形成された側の面上に形成された薄膜層と、 薄膜層上に形成され、 直列に接続さ れた第 1の測温抵抗エレメントおよび第 2の測温抵抗エレメントと、 第 1および 第 2の測温抵抗エレメントの温度差に基づいて、 流体の流速を求める流速演算手 段と、 第 1および第 2の測温抵抗エレメントの平均温度が周囲温度より常に一定 温度だけ高くなるように制御する制御手段とを備えたものである。  A flow rate sensor according to the present invention includes a base having an air gap, a thin film layer formed on a surface of the base on which the air gap is formed, and a serial connection formed on the thin film layer. A flow rate calculating means for determining a flow velocity of the fluid based on a temperature difference between the first and second resistance temperature resistance elements obtained, and the first and second resistance temperature resistance elements; Control means for controlling the average temperature of the second resistance temperature element to be always higher than the ambient temperature by a constant temperature.
また、 本発明の流速センサの 1構成例は、 第 1及び第 2測温抵抗エレメントは、 発熱体および温度センサとしての機能を有し、 制御手段は、 第 1および第 2の測 温抵抗ェレメントに流される電流を制御するようにしたものである。  In one configuration example of the flow rate sensor of the present invention, the first and second temperature measuring resistance elements have functions as a heating element and a temperature sensor, and the control means includes first and second temperature measuring resistance elements. This is to control the current flowing through the device.
また、 本発明の流速センサの 1構成例は、 温度センサとしての機能を有する第 1及び第 2測温抵抗ェレメントの近傍に配置された発熱手段をさらに備え、 制御 手段は、 発熱手段へ供給する電流を制御するようにしたものである。  Further, one configuration example of the flow rate sensor according to the present invention further includes a heating unit disposed near the first and second resistance temperature elements having a function as a temperature sensor, and the control unit supplies the heating unit with the heating unit. The current is controlled.
また、 本発明の流速センサの 1構成例は、 流体の流れに影響されない周囲温度 を測定する周囲温度センサをさらに備え、 第 1および第 2の測温抵抗エレメント、 周囲温度センサは、 それぞれブリッジ回路の一辺を構成し、 制御手段は、 ブリツ ジ回路の各中点の電圧差を一定にするように、 第 1および第 2の測温抵抗エレメ ン卜に流される電流を制御するようにしたものである。 また、 流体の流れに影響 されない周囲温度を測定する周囲温度センサをさらに備え、 第 1および第 2の測 温抵抗エレメント、 周囲温度センサは、 それぞれブリッジ回路の一辺を構成し、 制御手段は、 ブリッジ回路の各中点の電圧差を一定にするように、 発熱手段に流 す電流を制御するようにしてもよい。  Further, one configuration example of the flow velocity sensor of the present invention further includes an ambient temperature sensor for measuring an ambient temperature unaffected by the flow of the fluid, and the first and second resistance temperature measuring elements and the ambient temperature sensor are each provided with a bridge circuit. The control means controls the current flowing through the first and second resistance temperature measuring elements so as to keep the voltage difference between the respective middle points of the bridge circuit constant. It is. The apparatus further includes an ambient temperature sensor that measures an ambient temperature unaffected by the flow of the fluid. The first and second resistance temperature measuring elements and the ambient temperature sensor each constitute one side of a bridge circuit. The current flowing to the heating means may be controlled so that the voltage difference between the respective midpoints of the circuit is constant.
さらに、 第 1および第 2の測温抵抗エレメントの両端と接続された少なくとも 1つのボルテージフォロア回路をさらに備え、 流速演算手段は、 直列に接続され た第 1および第 2の測温抵抗エレメントの両端電圧の分圧と第 1およぴ第 2の測 温抵抗ェレメントの接続点の電圧とを比較して流速を求めるようにしたものであ る。 また、 第 1および第 2の測温抵抗エレメントの両端と接続された少なくとも 1つのボルテージフォロア回路をさらに備え、 流速演算手段は、 直列に接続され た第 1および第 2の測温抵抗エレメン卜の両端電圧の分圧と第 1および第 2の測 温抵抗エレメントの接続点の電圧とを比較して流速を求めるようにしてもよい。 さらに、 本発明の流速センサの 1構成例は、 第 1および第 2測温抵抗エレメン トは、 薄膜層の流体の流れる方向に互いに所定の間隔をおいて並設され、 流れる 電流によって発熱するようにしたものである。 Furthermore, at least one voltage follower circuit connected to both ends of the first and second resistance temperature measuring elements is further provided, and the flow rate calculating means is connected in series. The flow velocity is obtained by comparing the divided voltage of the voltage between both ends of the first and second resistance temperature elements and the voltage at the connection point of the first and second resistance temperature elements. . Further, the apparatus further comprises at least one voltage follower circuit connected to both ends of the first and second resistance temperature elements, and the flow rate calculating means includes a first and a second resistance temperature element connected in series. The flow rate may be determined by comparing the divided voltage of the voltage between both ends and the voltage at the connection point of the first and second resistance temperature measuring elements. Further, in one configuration example of the flow rate sensor according to the present invention, the first and second temperature measuring resistance elements are arranged side by side at a predetermined interval in a flowing direction of the fluid in the thin film layer, and generate heat by flowing current. It was made.
また、 本発明の流速センサの 1構成例は、 第 1及び第 2測温抵抗エレメント間 の薄膜層に形成され、 第 1及び第 2測温抵抗エレメントを互いに熱的に絶縁する スリツトをさらに備えたものである。  Further, one configuration example of the flow rate sensor of the present invention further includes a slit formed on the thin film layer between the first and second resistance temperature elements, and thermally insulating the first and second resistance temperature elements from each other. It is a thing.
また、 本発明の流速センサの 1構成例は、 薄膜層に、 互いに所定の間隔をおい て形成されたスリットをさらに備えるようにしたものである。  In one configuration example of the flow rate sensor of the present invention, the thin film layer is further provided with slits formed at predetermined intervals from each other.
また、 本発明の流速センサの 1構成例は、 基台は、 ダイヤフラム部を備え、 第 1及び第 2測温抵抗ェレメントは、 ダイヤフラム部の流路側とは反対側の面上に 形成され、 流速演算手段はダイャフラム部の第 1および第 2測温抵抗ェレメント が形成された側と反対側を移動する気体の流速を測定するようにしたものである。 さらに、 基台とともに流路を形成する貫通孔を有する流路形成部材をさらに備 えるようにしたものである。  In one configuration example of the flow rate sensor of the present invention, the base includes a diaphragm, and the first and second temperature measurement resistance elements are formed on a surface of the diaphragm opposite to the flow path side, and The calculating means measures the flow velocity of the gas moving on the side of the diaphragm opposite to the side on which the first and second temperature measuring resistance elements are formed. Further, a flow path forming member having a through hole for forming a flow path together with the base is further provided.
また、 流速演算手段は、 ブリッジ回路と、 差動増幅回路と、 出力回路とを備え、 ブリッジ回路は、 抵抗と第 1測温抵抗ェレメン卜と第 2測温抵抗ェレメン卜とを 直列に接続した第 1の直列回路と、 抵抗と抵抗と周囲温度センサとを直列に接続 した第 2の直列回路とを備え、 差動増幅回路は、 反転入力端子が抵抗と第 1測温 抵抗エレメントの接続点に接続され、 非反転入力端子が抵抗と抵抗の接続点に接 続され、 出力端子が抵抗と抵抗の接続点に接続された演算増幅器を備え、 出力回 路は、 非反転入力端子が抵抗と第 1測温抵抗エレメントの接続点に接続され、 反 転入力端子と出力端子とが接続された演算増幅器と、 一端が演算増幅器の出力端 子に接続された抵抗と、 一端が抵抗の他端と接続され、 他端が接地された抵抗と、 非反転入力端子が第 1測温抵抗エレメントと第 2測温抵抗エレメントの接続点に 接続され、 反転入力端子が抵抗と抵抗の接続点に接続された演算増幅器を備える ようにしたものである。 The flow velocity calculating means includes a bridge circuit, a differential amplifier circuit, and an output circuit, and the bridge circuit includes a resistor, a first resistance temperature element, and a second resistance element connected in series. The differential amplifier circuit includes a first series circuit, and a second series circuit in which a resistor, a resistor, and an ambient temperature sensor are connected in series. And an operational amplifier connected to the non-inverting input terminal at the connection point between the resistor and the resistor, and the output terminal connected to the connection point between the resistor and the resistor. An operational amplifier connected to the connection point of the first resistance temperature element and having an inverting input terminal and an output terminal connected thereto, one end connected to the output terminal of the operational amplifier, and one end connected to the other end of the resistance And the other end is grounded, A non-inverting input terminal is connected to a connection point between the first resistance temperature element and the second resistance temperature element, and an inverting input terminal is provided with an operational amplifier connected to a connection point between the resistors.
また、 本発明にかかる流速センサは、 空隙部を有する基台と、 この基台上の空 隙部が形成された側の面上に形成された薄膜層と、 薄膜層上に形成され、 直列に 接続された発熱体および温度センサとしての機能を有する第 1の測温抵抗エレメ ントおよび第 2の測温抵抗エレメントと、 第 1および第 2の測温抵抗エレメント の温度差に基づいて、 流体の流速を求める流速演算手段と、 第 1および第 2の測 温抵抗エレメン卜の平均温度が周囲温度より常に一定温度だけ高くなるように、 第 1および第 2の測温抵抗エレメントに流される電流を制御する制御手段とを備 えたものである。  In addition, a flow rate sensor according to the present invention includes a base having an air gap, a thin film layer formed on a surface of the base on which the air gap is formed, and a serial connection formed on the thin film layer. The flow rate of the fluid is determined based on the temperature difference between the first and second resistance temperature elements and the first and second resistance temperature elements, which function as a heating element and a temperature sensor. And a current flowing through the first and second resistance temperature measuring elements so that the average temperature of the first and second resistance temperature elements is always higher than the ambient temperature by a constant temperature. And control means for performing such operations.
また、 空隙部を有する基台と、 この基台上の空隙部が形成された側の面上に形 成された薄膜層と、 薄膜層上に形成され、 直列に接続された温度センサとしての 機能を有する第 1の測温抵抗エレメントおよび第 2の測温抵抗エレメントと、 第 1及び第 2測温抵抗エレメントの近傍に配置された発熱手段と、 第 1および第 2 の測温抵抗エレメントの温度差に基づいて、 流体の流速を求める流速演算手段と、 第 1および第 2の測温抵抗ェレメントの平均温度が周囲温度より常に一定温度だ け高くなるように発熱手段へ供給する電流を制御制御する制御手段とを備えたも のである。  Further, a base having a gap, a thin film layer formed on the surface of the base on which the gap is formed, and a temperature sensor formed on the thin film layer and connected in series A first resistance temperature element and a second resistance temperature element having a function; a heating means disposed in the vicinity of the first and second resistance temperature elements; Flow velocity calculating means for calculating the flow velocity of the fluid based on the temperature difference, and controlling the current supplied to the heating means so that the average temperature of the first and second temperature measuring resistance elements is always higher than the ambient temperature by a constant temperature. It is provided with control means for controlling.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 A、 図 I Bは、 本発明の第 1の実施例となる流速センサの平面図及び断面 図である。  1A and 1B are a plan view and a sectional view of a flow rate sensor according to a first embodiment of the present invention.
図 2は、 図 1の流速センサの電気回路図である。  FIG. 2 is an electric circuit diagram of the flow velocity sensor of FIG.
図 3は、 本発明の第 2の実施例となる流速センサの平面図である。  FIG. 3 is a plan view of a flow velocity sensor according to a second embodiment of the present invention.
図 4は、 図 3の流速センサの電気回路図である。  FIG. 4 is an electric circuit diagram of the flow velocity sensor of FIG.
図 5は、 本発明の第 3の実施例となる流速センサの断面図である。  FIG. 5 is a sectional view of a flow velocity sensor according to a third embodiment of the present invention.
図 6 A、 図 6 Bは、 従来の流速センサの平面図及び断面図である。  6A and 6B are a plan view and a cross-sectional view of a conventional flow velocity sensor.
図 7は、 従来の流速センサの電気回路図である。  FIG. 7 is an electric circuit diagram of a conventional flow velocity sensor.
実施例の詳細な説明 [第 1の実施例] Detailed description of the embodiment [First embodiment]
以下、 本発明の実施例について図面を参照して詳細に説明する。 図 1 Aは本発 明の第 1の実施例となる流速センサの平面図、 図 1 Bは図 1 Aの I一 I線断面図、 図 2は図 1A, 図 1 Bの流速センサの電気回路図である。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a plan view of a flow velocity sensor according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along the line I-I of FIG. 1A, and FIG. It is a circuit diagram.
本実施例の流速センサは、 単結晶シリコンなどからなる基台 101上に形成さ れ、 この基台 101の中央部には、 例えば異方性エッチング等によって空隙部 1 02が形成される。 また、 基台 101上には、 空隙部 102によって基台 101 から空間的に隔離された薄膜層 (ダイァフラム部材) 103が形成される。 ガス 等の流体は、 この薄膜層 103上を通過する。  The flow rate sensor of the present embodiment is formed on a base 101 made of single-crystal silicon or the like, and a void 102 is formed in the center of the base 101 by, for example, anisotropic etching. Further, on the base 101, a thin film layer (diaphragm member) 103 which is spatially isolated from the base 101 by the gap 102 is formed. Fluid such as gas passes over the thin film layer 103.
薄膜層 103には、 空隙部 102を介して連通する対をなすスリツト 104 a, 104 bが互いに所定の間隔をおいて設けられる。 さらに、 これらのスリット 1 04 a, 104 bの間には、 スリット 104 a, 1 04bの間を結ぶ直線と直交 する方向に延びるスリット 105が設けられ、 このスリット 105により、 図 1 に示す流体の流れる方向に沿ってスリット 104 a, 104bの間に 2つの配設 部 106 a, 106 bが形成される。 配設部 106 a, 106 bは、 スリット 1 05により互いに熱的に絶縁されている。  The thin film layer 103 is provided with a pair of slits 104 a and 104 b communicating with each other through the gap 102 at a predetermined interval. Further, between these slits 104a and 104b, there is provided a slit 105 extending in a direction perpendicular to a straight line connecting the slits 104a and 104b. Two arranging portions 106a and 106b are formed between the slits 104a and 104b along the flowing direction. The arrangement portions 106a and 106b are thermally insulated from each other by the slit 105.
配設部 106 aには、 発熱体兼温度センサとして機能する測温抵抗エレメント Aが薄膜形成技術により形成され、 同様に、 配設部 106 bには、 発熱体兼温度 センサとして機能する測温抵抗エレメント Bが薄膜形成技術により形成される。 また、 薄膜層 103と基台 101とが熱的に接する部分、 すなわち空隙部 102 が設けられていない部分には、 周囲温度 (流体の温度) により抵抗値が変化する 周囲温度測温抵抗エレメント (周囲温度センサ) Cが薄膜形成技術により形成さ れる。  A temperature measuring resistance element A functioning as a heating element and a temperature sensor is formed in the disposing portion 106a by a thin film forming technique. Similarly, a temperature measuring element functioning as a heating element and a temperature sensor is formed in the disposing portion 106b. Resistive element B is formed by a thin film forming technique. In a portion where the thin film layer 103 and the base 101 are in thermal contact with each other, that is, in a portion where the gap 102 is not provided, the resistance value changes depending on the ambient temperature (temperature of the fluid). Ambient temperature sensor) C is formed by thin film formation technology.
107, 108は測温抵抗エレメント Aの両端を外部の電気回路と接続するた めのパッドである。 また、 109, 110は測温抵抗エレメント Bの両端を電気 回路 20と接続するためのパッドである。 また、 1 11, 112は周囲温度測温 抵抗エレメント Cの両端を電気回路 20と接続するためのパッドである。  107 and 108 are pads for connecting both ends of the resistance temperature element A to an external electric circuit. Reference numerals 109 and 110 are pads for connecting both ends of the resistance temperature element B to the electric circuit 20. Reference numerals 111 and 112 denote pads for connecting both ends of the ambient temperature resistance measuring element C to the electric circuit 20.
次に、 本実施例の流速センサの電気回路 20を図 2を用いて説明する。 本実施 例の流速センサの電気回路 20は、 基台 101上を移動する流体の流速を測定す るためのものであり、 ブリッジ回路 2 1と、 差動増幅回路 (制御回路) 2 2と、 出力回路 2 3とを有している。 ブリッジ回路 2 1は、 抵抗 R 1と測温抵抗エレメ ント Aと測温抵抗エレメント Bとを直列に接続した第 1の直列回路と、 抵抗 R 2 と抵抗 R 3と周囲温度測温抵抗エレメント Cとを直列に接続した第 2の直列回路 とからなり、 第 1の直列回路と第 2の直列回路とを並列に接続することで構成さ れている。 Next, the electric circuit 20 of the flow rate sensor according to the present embodiment will be described with reference to FIG. The electric circuit 20 of the flow rate sensor according to the present embodiment measures the flow rate of the fluid moving on the base 101. And a bridge circuit 21, a differential amplifier circuit (control circuit) 22, and an output circuit 23. The bridge circuit 21 includes a first series circuit in which a resistor R1, a resistance temperature element A and a resistance element B are connected in series, a resistance R2, a resistance R3, and an ambient temperature resistance element C. And a second series circuit connected in series, and is configured by connecting the first series circuit and the second series circuit in parallel.
差動増幅回路 2 2は、 反転入力端子が抵抗 R 1と測温抵抗エレメント Aの接続 点に接続され、 非反転入力端子が抵抗 R 2と抵抗 R 3の接続点に接続され、 出力 端子が抵抗 R 1と抵抗 R 2の接続点に接続された演算増幅器 A 1から構成される。  In the differential amplifier circuit 22, the inverting input terminal is connected to the connection point of the resistor R1 and the resistance thermometer element A, the non-inverting input terminal is connected to the connection point of the resistor R2 and the resistor R3, and the output terminal is It consists of an operational amplifier A1 connected to the connection point of the resistor R1 and the resistor R2.
このような構成により、 差動増幅回路 2 2は、 抵抗 R 2と抵抗 R 3の接続点の 電位 V 1と、 抵抗 R 1と測温抵抗エレメント Aの接続点の電位 V 2との差分値を 増幅した出力電圧 V oをプリッジ回路 2 1の抵抗 R 1と抵抗 R 2の接続点に印加 する。  With such a configuration, the differential amplifier circuit 22 calculates the difference value between the potential V 1 at the connection point between the resistors R 2 and R 3 and the potential V 2 at the connection point between the resistance R 1 and the resistance element A. The amplified output voltage Vo is applied to the connection point between the resistors R1 and R2 of the bridge circuit 21.
出力回路 2 3は、 非反転入力端子が抵抗 R 1と測温抵抗エレメント Aの接続点 に接続され、 反転入力端子と出力端子とが接続された演算増幅器 A 2と、 一端が 演算増幅器 A 2の出力端子に接続された抵抗 R 5と、 一端が抵抗 R 5の他端と接 続され、 他端が接地された抵抗 R 6と、 非反転入力端子が測温抵抗エレメント A と測温抵抗エレメン卜 Bの接続点に接続され、 反転入力端子が抵抗 R 5と抵抗 R 6の接続点に接続された演算増幅器 A 3とから構成される。  The output circuit 23 has an operational amplifier A 2 having a non-inverting input terminal connected to the connection point of the resistor R 1 and the resistance temperature measuring element A, and an inverting input terminal and an output terminal connected thereto, and one end having an operational amplifier A 2. The resistor R5 connected to the output terminal of the resistor R5, one end is connected to the other end of the resistor R5, and the other end is grounded. The operational amplifier A3 is connected to the connection point of the element B, and has an inverting input terminal connected to the connection point of the resistor R5 and the resistor R6.
ブリッジ回路 2 1の平衡条件は、  The balance condition of the bridge circuit 21 is
抵抗 R 1の抵抗値 Z (測温抵抗エレメント Aの抵抗値 +測温抵抗エレメント Bの 抵抗値) =抵抗 R 2の抵抗値/ (抵抗 R 3の抵抗値 +周囲温度測温抵抗エレメン ト Cの抵抗値) Resistance value of resistance R 1 Z (resistance value of resistance temperature element A + resistance value of resistance temperature element B) = resistance value of resistance R 2 / (resistance value of resistance R 3 + resistance element of ambient temperature resistance C) Resistance value)
である。 なお、 本実施例では、 室温などの基準となる周囲温度において It is. Note that, in this example, at a reference ambient temperature such as room temperature,
抵抗 R 2の抵抗値 =抵抗 R 3の抵抗値 +周囲温度測温抵抗エレメント Cの抵抗値 となるように、 また The resistance value of the resistor R2 = the resistance value of the resistor R3 + the resistance value of the ambient temperature measuring resistance element C, and
抵抗 R 1の抵抗値 = (測温抵抗エレメント Aの抵抗値 +測温抵抗エレメント Bの 抵抗値) の設定温度における抵抗値 Resistance value of resistance R 1 = (resistance value of resistance element A + resistance value of resistance element B) at the set temperature
となるように設定されている。 抵抗 R 3は、 測温抵抗エレメント A, Bの平均温 度と周囲温度測温抵抗ェレメント Cの温度差を維持するための調整用抵抗である。 なお、 流速センサの温度特性を補正する目的のため、 上記温度差を一定とせずに、 例えば周囲温度が高くなるほどこの差を大きくするというように変化させてもよ い。 It is set to be. Resistance R 3 is the average temperature of resistance temperature elements A and B This is an adjustment resistor to maintain the temperature difference between the temperature and the temperature measurement resistance element C. For the purpose of correcting the temperature characteristics of the flow rate sensor, the temperature difference may not be kept constant, but may be changed, for example, such that this difference increases as the ambient temperature increases.
差動増幅回路 2 2の演算増幅器 A 1からブリッジ回路 2 1の抵抗 R l, R 2に 電圧が印加されると、 測温抵抗エレメント A, Bに電流が流れてこれらが発熱し、 その結果、 測温抵抗エレメント A, Bの抵抗値が増加して、 前記平衡条件が成立 するところでバランスする。  When a voltage is applied from the operational amplifier A 1 of the differential amplifier circuit 22 to the resistors R 1 and R 2 of the bridge circuit 21, a current flows through the resistance thermometer elements A and B, generating heat. However, when the resistance values of the resistance temperature elements A and B increase and the equilibrium condition is satisfied, the balance is achieved.
ここで、 周囲温度が上昇して周囲温度測温抵抗エレメント Cの抵抗値が増加す ると、 ブリツジ回路 2 1の平衡が失われ、 抵抗 R 2と抵抗 R 3の接続点の電位 V 1が上昇するので、 差動増幅回路 2 2は、 ブリッジ回路 2 1を再度平衡にさせる ベく、 ブリッジ回路 2 1への印加電圧 V oを上昇させる。 これにより、 測温抵抗 エレメント A, Bに供給される電流が増加するので、 測温抵抗エレメント A, B の発熱量が増大し、 測温抵抗エレメント A, Bの抵抗値が増加して、 前記平衡条 件が成立するところでバランスする。  Here, when the ambient temperature rises and the resistance value of the ambient temperature measuring resistance element C increases, the bridge circuit 21 loses its balance and the potential V 1 at the connection point between the resistor R 2 and the resistor R 3 is reduced. As the voltage rises, the differential amplifier circuit 22 raises the applied voltage Vo to the bridge circuit 21 in order to rebalance the bridge circuit 21. As a result, the current supplied to the resistance thermometer elements A and B increases, so that the calorific value of the resistance thermometer elements A and B increases, and the resistance values of the resistance thermometer elements A and B increase. Balance occurs where the equilibrium condition is satisfied.
周囲温度が低下して周囲温度測温抵抗エレメント Cの抵抗値が減少すると、 抵 抗 R 2と抵抗 R 3の接続点の電位 V 1が低下するので、 差動増幅回路 2 は、 ブ リッジ回路 2 1への印加電圧 V oを低下させる。 これにより、 測温抵抗エレメン ト A, Bの発熱量が減少し、 測温抵抗エレメント A, Bの抵抗値が減少して、 前 記平衡条件が成立するところでバランスする。  When the ambient temperature decreases and the resistance value of the ambient temperature resistance element C decreases, the potential V1 at the connection point between the resistor R2 and the resistor R3 decreases. 21 Decrease the applied voltage V o to 1. As a result, the calorific values of the resistance temperature elements A and B decrease, the resistance values of the resistance temperature elements A and B decrease, and the balance is established where the above-mentioned equilibrium condition is satisfied.
一方、 流体に流速が生じると、 測温抵抗エレメント A, Bが冷やされ、 測温抵 抗エレメント A, Bの抵抗値が下がり、 抵抗 R 1と測温抵抗エレメント Aの接続 点の電位 V 2が低下するので、 差動増幅回路 2 2は、 ブリッジ回路 2 1への印加 電圧 V oを上昇させる。 これにより、 測温抵抗エレメント A, Bの発熱量が増大 し、 測温抵抗エレメント A, Bの抵抗値が増加して、 前記平衡条件が成立すると ころでバランスする。  On the other hand, when a flow velocity occurs in the fluid, the resistance elements A and B are cooled, the resistance values of the resistance elements A and B decrease, and the potential V 2 at the connection point between the resistance R1 and the resistance element A is obtained. , The differential amplifier circuit 22 increases the voltage Vo applied to the bridge circuit 21. As a result, the calorific values of the resistance temperature elements A and B increase, the resistance values of the resistance temperature elements A and B increase, and the balance is established when the above-mentioned equilibrium condition is satisfied.
また、 流速が減少して、 測温抵抗エレメント A, Bの抵抗値が上昇すると、 抵 抗 R 1と測温抵抗エレメント Aの接続点の電位 V 2が上昇するので、 差動増幅回 路 2 2は、 ブリッジ回路 2 1への印加電圧 V oを低下させる。 これにより、 測温 抵抗エレメント A, Bの発熱量が減少し、 測温抵抗エレメント A, Bの抵抗値が 減少して、 前記平衡条件が成立するところでバランスする。 When the flow velocity decreases and the resistance values of the resistance elements A and B increase, the potential V2 at the connection point between the resistance R1 and the resistance element A increases, so that the differential amplification circuit 2 2 lowers the applied voltage V o to the bridge circuit 21. This allows temperature measurement The calorific value of resistance elements A and B decreases, and the resistance values of resistance temperature elements A and B decrease.
以上のように、 差動増幅回路 2 2は、 測温抵抗エレメント A, Bで検出される 温度 (エレメント A, Bで検出される温度の平均値) が周囲温度測温抵抗エレメ ント Cで検出される周囲温度よりも常に一定温度高くなるように、 測温抵抗ェレ メント A, Bを発熱させる。  As described above, the differential amplifier circuit 22 detects the temperature detected by the temperature measuring resistance elements A and B (the average value of the temperatures detected by the elements A and B) by the ambient temperature temperature measuring resistance element C. The resistance elements A and B generate heat so that the temperature is always higher than the ambient temperature.
次に、 演算増幅器 A 2はポルテ一ジフォロアを構成している。 抵抗 R 5, R 6 からなる直列回路は、 このボルテージフォロア A 2を介して測温抵抗エレメント A, Bからなる直列回路に接続されている。 ボルテージフォロアを用いることに より、 ブリッジ回路 2 1内を流れる電流が抵抗 R 5 , R 6に流出しないようにし ている。  Next, the operational amplifier A2 forms a port follower. The series circuit composed of the resistors R 5 and R 6 is connected to the series circuit composed of the resistance temperature elements A and B via the voltage follower A 2. By using the voltage follower, the current flowing in the bridge circuit 21 is prevented from flowing out to the resistors R5 and R6.
抵抗 R 5, R 6は、 一般的には流速が 0のとき、  Generally, when the flow velocity is 0, the resistances R 5 and R 6
抵抗 R 5の抵抗値 Z抵抗 R 6の抵抗値-測温抵抗エレメント Aの抵抗値 Z測温抵 抗エレメント Bの抵抗値 , Resistance value of resistance R5 Z resistance value of resistance R6-resistance value of temperature measuring resistance element A Z resistance value of temperature measuring resistance element B,
が成立するように設定されている。 したがって、 流速が 0のとき、 測温抵抗エレ メン卜 Aと測温抵抗エレメント Bの接続点の電位 V 3と、 抵抗 R 5と抵抗 R 6の 接続点の電位 V 4が同電位となるので、 演算増幅器 A 3の出力電圧は 0となる。 なお、 上記のように設定せずに、 流速が 0のときの出力電圧を流速 0の出力電圧 として校正したり、 オフセットをもたせて流速 0のとき任意の電圧値になるよう に設定してもよい。 Is set to hold. Therefore, when the flow velocity is 0, the potential V 3 at the connection point between the resistance element A and the resistance element B and the potential V 4 at the connection point between the resistance R 5 and the resistance R 6 become the same potential. The output voltage of the operational amplifier A3 becomes zero. Instead of setting as described above, the output voltage when the flow velocity is 0 may be calibrated as the output voltage at the flow velocity 0, or an offset may be set so that the output voltage becomes an arbitrary voltage value when the flow velocity is 0. Good.
前述のように、 流体に流速が生じると、 測温抵抗エレメント A, Bが冷やされ る。 このとき、 上流側に位置する測温抵抗エレメント Aは、 下流側に位置する測 温抵抗エレメント Bに比べてより強く冷やされるので、 測温抵抗ェレメント Aの 抵抗値が測温抵抗エレメント Bの抵抗値よりも小さくなる。 その結果、 測温抵抗 エレメント Aと測温抵抗エレメント Bの接続点の電位 V 3が上昇するので、 電位 V 3と、 抵抗 R 5と抵抗 R 6の接続点の電位 V 4とに差が生じる。 演算増幅器 A 3は、 流速に応じた出力電圧、 すなわち (V 3— V 4 ) に比例した電圧を出力す る。  As described above, when the flow velocity occurs in the fluid, the resistance temperature elements A and B are cooled. At this time, the resistance element A located upstream is cooled more strongly than the resistance element B located downstream, so that the resistance value of the resistance element A is the resistance of the resistance element B. Value. As a result, the potential V 3 at the connection point between the resistance element A and the resistance element B rises, so that a difference occurs between the potential V 3 and the potential V 4 at the connection point between the resistors R 5 and R 6. . The operational amplifier A 3 outputs an output voltage corresponding to the flow velocity, that is, a voltage proportional to (V 3 −V 4).
以上のように、 本実施例では、 周囲温度や流速に関係なく、 測温抵抗エレメン ト A, Bで検出する温度の平均値が周囲温度よりも常に一定温度高くなるように 測温抵抗エレメント A, Bを発熱させるので、 流速が増加したときに、 測温抵抗 エレメント A, Bの抵抗値の差が減少して感度が低下することがなくなる。 また、 本実施例では、 測温抵抗エレメント A, Bからなる直列回路と、 抵抗 R 5, R 6からなる直列回路とを並列に接続している。 したがって、 周囲温度又は 流速の変化により、 ブリッジ回路 21への印加電圧 Voが変化して、 電圧 V2が 変化しても、 これに応じて抵抗 R 5の端子電圧 (ポルテ一ジフォロア A 2の出力 電圧) も電圧 V 2と同じ値に変化するので、 測温抵抗エレメント A, Bのリファ レンス電位 (電位 V4) は、 電圧 V2に所定比 R6Z (R5+R6) をかけた値 に常に調整される。 その結果、 電位差 V3— V4は、 流速のみを反映した値とな り、 流速の増大に伴ってほぼ直線的に増加する特性が得られる。 As described above, in this embodiment, regardless of the ambient temperature and the flow velocity, the resistance temperature measuring element G. The resistance elements A and B generate heat so that the average value of the temperatures detected at points A and B is always higher than the ambient temperature by a certain amount. When the flow velocity increases, the resistance of the resistance elements A and B increases. The difference in resistance value does not decrease and the sensitivity does not decrease. In this embodiment, a series circuit composed of the resistance temperature elements A and B and a series circuit composed of the resistances R5 and R6 are connected in parallel. Therefore, even if the voltage Vo applied to the bridge circuit 21 changes due to a change in the ambient temperature or the flow velocity, and the voltage V2 changes, the terminal voltage of the resistor R5 (the output voltage of the port-follower A2) is correspondingly changed. ) Also changes to the same value as the voltage V2, so the reference potential (potential V4) of the RTD elements A and B is always adjusted to the value obtained by multiplying the voltage V2 by the predetermined ratio R6Z (R5 + R6). . As a result, the potential difference V3-V4 is a value that reflects only the flow velocity, and a characteristic that increases almost linearly as the flow velocity increases is obtained.
[第 2の実施例]  [Second embodiment]
図 3は本発明の第 2の実施例となる流速センサの平面図、 図 4は図 3の流速セ ンサの電気回路図であり、 図 1、 図 2と同一の構成には同一の符号を付す。 本実 施例では、 配設部 106 aに、 温度センサとして機能する測温抵抗エレメント A ' と、 発熱体として機能する発熱抵抗エレメント Dとが薄膜形成技術により形成 される。 同様に、 配設部 106 bには、 温度センサとして機能する測温抵抗エレ メント B' と、 発熱体として機能する発熱抵抗エレメント Eとが薄膜形成技術に より形成されている。  FIG. 3 is a plan view of a flow rate sensor according to a second embodiment of the present invention, and FIG. 4 is an electric circuit diagram of the flow rate sensor of FIG. 3. The same components as those in FIGS. Attach. In the present embodiment, a temperature-measuring resistance element A ′ functioning as a temperature sensor and a heating resistance element D functioning as a heating element are formed in the disposing portion 106a by a thin-film forming technique. Similarly, a temperature measuring resistance element B 'functioning as a temperature sensor and a heating resistance element E functioning as a heating element are formed in the disposition portion 106b by a thin film forming technique.
107, 108は測温抵抗エレメント A' の両端を電気回路 20 aと接続する ためのパッドである。 また、 109, 1 10は測温抵抗エレメント B' の両端を 電気回路 20 aと接続するためのパッドである。 また、 113, 114は発熱抵 抗エレメント Dの両端を外部の電気回路 20 aと接続するためのパッドである。 また、 115, 1 16は発熱抵抗エレメント Eの両端を電気回路 20 aと接続す るためのパッドである。  107 and 108 are pads for connecting both ends of the resistance temperature measuring element A 'to the electric circuit 20a. Reference numerals 109 and 110 denote pads for connecting both ends of the resistance temperature measuring element B 'to the electric circuit 20a. 113 and 114 are pads for connecting both ends of the heating resistance element D to an external electric circuit 20a. 115 and 116 are pads for connecting both ends of the heating resistor element E to the electric circuit 20a.
本実施例のブリッジ回路 21 aは、 発熱体兼温度センサとして機能する測温抵 抗エレメント A, Bの代わりに、 温度センサとして機能する測温抵抗エレメント A' , B' を用いている。 また、 本実施例では、 ブリッジ回路 21 aの抵抗 R 1 と抵抗 R 2の接続点に一定電圧 V sを印加し、 非反転入力端子が抵抗 R 2と抵抗 R 3の接続点に接続され、 反転入力端子が抵抗 R 1と測温抵抗エレメント A' の 接続点に接続された演算増幅器 A 4を用いている。 演算増幅器 A 4の出力端子に は、 発熱抵抗エレメント Dと発熱抵抗エレメント Eとが直列に接続されている。 演算増幅器 A4、 発熱抵抗エレメント D、 発熱抵抗エレメント Eは、 制御回路 2 2 aを構成する。 The bridge circuit 21a of this embodiment uses temperature-measuring resistance elements A 'and B' functioning as temperature sensors instead of the temperature-measuring resistance elements A and B functioning as a heating element and a temperature sensor. In this embodiment, a constant voltage Vs is applied to the connection point between the resistors R1 and R2 of the bridge circuit 21a, and the non-inverting input terminal is connected to the resistor R2 and the resistor R2. The operational amplifier A4 is connected to the connection point of R3 and the inverting input terminal is connected to the connection point of the resistor R1 and the resistance temperature measuring element A '. A heating resistor element D and a heating resistor element E are connected in series to the output terminal of the operational amplifier A4. The operational amplifier A4, the heating resistor element D, and the heating resistor element E form a control circuit 22a.
ブリッジ回路 21 aの平衡条件は、  The balance condition of bridge circuit 21a is
抵抗 R 1の抵抗値/ (測温抵抗エレメント A' の抵抗値 +測温抵抗エレメント B ' の抵抗値) =抵抗 R 2の抵抗値/ (抵抗 R 3の抵抗値 +周囲温度測温抵抗エレ メント Cの抵抗値) Resistance value of resistance R1 / (resistance value of resistance element A '+ resistance value of resistance element B') = resistance value of resistance R2 / (resistance value of resistance R3 + resistance value of ambient temperature resistance element Mentor C resistance)
である。 ブリッジ回路 21 aに電圧 Vsが印加されると、 演算増幅器 A4は、 抵 抗 R 2と抵抗 R 3の接続点の電位 VIと、 抵抗 R 1と測温抵抗エレメント A' の 接続点の電位 V 2との差分電圧 V 1 -V2を増幅して出力する。 It is. When a voltage Vs is applied to the bridge circuit 21a, the operational amplifier A4 generates a potential VI at a connection point between the resistor R2 and the resistor R3 and a potential V at a connection point between the resistor R1 and the resistance temperature measuring element A '. Amplify and output the difference voltage V 1 -V2 from 2.
これにより、 発熱抵抗エレメント D, Eに電流が流れてこれらが発熱し、 その 結果、 発熱抵抗エレメント D, Eの近傍に配置された測温抵抗エレメント A' , B' の温度が上昇して、 測温抵抗エレメント A' , B' の抵抗値が増加し、 前記 平衡条件が成立するところでバランスする。  As a result, a current flows through the heating resistance elements D and E to generate heat. As a result, the temperature of the temperature measuring resistance elements A ′ and B ′ arranged near the heating resistance elements D and E rises. The resistance values of the temperature measurement resistance elements A ′ and B ′ increase and balance occurs where the equilibrium condition is satisfied.
ここで、 周囲温度が上昇して周囲温度測温抵抗エレメント Cの抵抗値が増加す ると、 抵抗 R 2と抵抗 R 3の接続点の電位 VIが上昇するので、 演算増幅器 A4 は、 出力電圧を上昇させる。 これにより、 発熱抵抗エレメント D, Eに供給され る電流が増加するので、 発熱抵抗エレメント D, Eの発熱量が増大し、 測温抵抗 エレメント A' , B' の抵抗値が増加して、 前記平衡条件が成立するところでバ ランスする。  Here, when the ambient temperature rises and the resistance value of the ambient temperature measuring resistance element C increases, the potential VI at the connection point between the resistors R2 and R3 rises, and the operational amplifier A4 outputs the output voltage To rise. As a result, the current supplied to the heating resistor elements D and E increases, so that the amount of heat generated by the heating resistor elements D and E increases, and the resistance values of the temperature measuring resistor elements A ′ and B ′ increase. Balance when the equilibrium condition is satisfied.
周囲温度が低下して周囲温度測温抵抗ェレメント Cの抵抗値が減少すると、 抵 抗 R 2と抵抗 R 3の接続点の電位 VIが低下するので、 演算増幅器 A 4は、 出力 電圧を低下させる。 これにより、 発熱抵抗エレメント D, Eの発熱量が減少し、 測温抵抗エレメント A' , B' の抵抗値が減少して、 前記平衡条件が成立すると ころでバランスする。  When the ambient temperature decreases and the resistance value of the ambient temperature measurement resistance element C decreases, the potential VI at the connection point between the resistor R2 and the resistor R3 decreases, and the operational amplifier A4 decreases the output voltage. . As a result, the amount of heat generated by the heating resistance elements D and E decreases, and the resistance values of the temperature measurement resistance elements A ′ and B ′ decrease, and the balance is established when the above-mentioned equilibrium condition is satisfied.
一方、 流体に流速が生じると、 測温抵抗エレメント A' , B' の抵抗値が下が り、 抵抗 R 1と測温抵抗エレメント A' の接続点の電位 V 2が低下するので、 演 算増幅器 A 4は、 出力電圧を上昇させる。 これにより、 発熱抵抗エレメント D , Eの発熱量が増大し、 測温抵抗エレメント A ' , B ' の抵抗値が増加して、 前記 平衡条件が成立するところでバランスする。 On the other hand, when a flow velocity occurs in the fluid, the resistance values of the resistance elements A 'and B' decrease, and the potential V2 at the connection point between the resistance R1 and the resistance element A 'decreases. The operational amplifier A4 increases the output voltage. As a result, the amount of heat generated by the heat generating resistance elements D and E increases, and the resistance values of the temperature measuring resistance elements A ′ and B ′ increase.
また、 流速が減少して、 測温抵抗エレメント A ' , B ' の抵抗値が上昇すると、 抵抗 1と測温抵抗エレメン卜 Aの接続点の電位 V 2が上昇するので、 演算増幅 器 A 4は、 出力電圧を低下させる。 これにより、 発熱抵抗エレメント D, Eの発 熱量が減少し、 測温抵抗エレメント A ' , B ' の抵抗値が減少して、 前記平衡条 件が成立するところでバランスする。  When the flow velocity decreases and the resistance values of the resistance temperature elements A 'and B' increase, the potential V2 at the connection point between the resistance element 1 and the resistance element A increases, so that the operational amplifier A4 Reduces the output voltage. As a result, the amount of heat generated by the heating resistance elements D and E decreases, the resistance values of the resistance temperature elements A ′ and B ′ decrease, and the balance is established where the equilibrium condition is satisfied.
以上のようにして、 第 1の実施例と同様の効果を得ることができる。 なお、 出 力回路 2 3 aの構成とその動作は、 第 1の実施例と全く同じである。  As described above, the same effects as in the first embodiment can be obtained. Note that the configuration and operation of the output circuit 23a are exactly the same as in the first embodiment.
なお、 第 1、 第 2の実施例において、 抵抗 R 3を削除して抵抗 R 2と周囲温度 測温抵抗エレメント Cを直結し、 その代わりに、 測温抵抗エレメント A, B (A ' , B ' ) からなる直列回路と並列に抵抗を追加することにより、 測温抵抗エレ メント A ' , B ' と周囲温度測温抵抗エレメント Cとの温度差を維持するための 調整をしてもよい。 また、 第 1、 第 2の実施例では、 単結晶シリコンからなる基 台 1ひ 1を用いているが、 ステンレス、 セラミック、 サファイア等からなる基台 を用いてもよい。  In the first and second embodiments, the resistance R3 is deleted and the resistance R2 is directly connected to the ambient temperature resistance element C. Instead, the resistance elements A and B (A ', B By adding a resistor in parallel with the series circuit consisting of '), adjustment may be made to maintain the temperature difference between the RTD elements A' and B 'and the ambient temperature RTD element C. In the first and second embodiments, the base 1 made of single-crystal silicon is used. However, a base made of stainless steel, ceramic, sapphire, or the like may be used.
また、 第 1、 第 2の実施例では、 ブリッジ回路と差動増幅回路を用いて直列に 接続された 2つの測温抵抗エレメントの平均温度を周囲温度測温抵抗エレメント で測定された周囲温度よりもある一定温度高くなるようにする実施例について説 明したが、 マイコンなどを用いて周囲温度よりも直列に接続された 2つの測温抵 抗エレメントの平均温度がある一定温度高くなるように電流または電圧を制御し てもよい。 つまり、 直列に接続された 2つの測温抵抗エレメントの設定目標とす る平均温度における直列抵抗値を温度と抵抗値の関係式から求め、 その抵抗値に なるように印加する電流または電圧を制御してもよい。 なお、 この場合は周囲温 度の計測に外付けの一般的な温度センサを使用してもよい。 さらに、 図 1、 図 3 において、 スリット 1 0 5をなくしてもよく、 1つの測温抵抗体の中点から配線 を取り出すようにして、 実質上 2つの測温抵抗体として使用してもよい。  In the first and second embodiments, the average temperature of the two resistance temperature elements connected in series using the bridge circuit and the differential amplifier circuit is calculated from the ambient temperature measured by the ambient temperature resistance element. Although the embodiment in which the temperature is raised by a certain constant has been described, the current is controlled using a microcomputer or the like so that the average temperature of the two temperature measuring resistance elements connected in series is higher than the ambient temperature by a certain temperature. Alternatively, the voltage may be controlled. In other words, the series resistance at the average temperature, which is the setting target of the two temperature measuring resistance elements connected in series, is obtained from the relational expression between temperature and resistance, and the current or voltage applied to achieve the resistance is controlled. May be. In this case, a general external temperature sensor may be used for measuring the ambient temperature. In addition, in FIGS. 1 and 3, the slit 105 may be omitted, and the wiring may be taken out from the middle point of one RTD, so that it may be used as substantially two RTDs. .
[第 3の実施例] 図 5は本発明の第 3の実施例となる流速センサの断面図であり、 図 1、 図 2と 同一の構成には同一の符号を付す。 第 1、 第 2の実施例では、 流体の流れの中に エレメント A, B , Cを設けたが、 本実施例は、 基台 1 3 2に形成された薄肉部 (ダイァフラム部) 1 3 3の流路側と反対側の被測定流体に直接接しない面にェ レメント A, B , Cを設けたものである。 [Third embodiment] FIG. 5 is a sectional view of a flow rate sensor according to a third embodiment of the present invention, and the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals. In the first and second embodiments, the elements A, B, and C are provided in the flow of the fluid. However, in the present embodiment, the thin portion (diaphragm portion) 13 3 Elements A, B, and C are provided on the opposite side of the flow path side and not directly in contact with the fluid to be measured.
図 5において、 1 3 1はステンレスからなる流路形成部材、 1 3 2は流路形成 部材 1 3 1上に設置された、 ステンレスからなる基台、 1 3 3は基台 1 3 2に形 成された薄肉部 (ダイァフラム部) 、 1 3 4は基台 1 3 2上に形成された酸化シ リコン、 窒化シリコン、 アルミナあるいはポリイミド等の電気絶縁膜である。 流 路形成部材 1 3 1は流体の流路 1 3 6を形成する 2つの貫通孔 1 3 7 , 1 3 8を 有する。 基台 1 3 2の下面中央に長円状の凹部 1 3 5が形成されることにより、 この凹部 1 3 5が形成されている表面側が薄肉部 (ダイァフラム部) 1 3 3を形 成する。 凹部 1 3 5は、 その両端部において貫通孔 1 3 7, 1 3 8と連通する。 なお、 凹部 1 3 5は、 流体の流れをスムーズに流すために長円状が好ましいが、 これに限らず矩形状や円形状でもよい。  In FIG. 5, 13 1 is a flow path forming member made of stainless steel, 13 2 is a stainless steel base installed on the flow path forming member 13 1, and 13 3 is a base 13 2 The thin part (diaphragm part) 134 formed on the base 132 is an electrical insulating film such as silicon oxide, silicon nitride, alumina or polyimide. The flow path forming member 13 1 has two through holes 13 7 and 13 8 which form a flow path 13 6 of the fluid. An oval concave portion 135 is formed in the center of the lower surface of the base 132, so that the surface side where the concave portion 135 is formed forms a thin portion (diaphragm portion) 133. The concave portion 135 communicates with the through holes 133 and 138 at both ends. The recesses 135 are preferably oval in order to smoothly flow the fluid, but are not limited to this, and may be rectangular or circular.
基台 1 3 2の上面には、 電気絶縁膜 1 3 4が全面にわたって形成されており、 この電気絶縁膜 1 3 4の表面に測温抵抗エレメント A, Bや周囲温度測温抵抗ェ レメント(:、 パッド 1 0 7〜 1 1 2が第 1の実施例と同様に形成される。 電気回 路は、.図 2に示したとおりである。 また、 上記とは逆に凹部 1 3 5の底面に電気 絶縁膜を全面にわたって形成し、 この電気絶縁膜の表面に測温抵抗エレメント A, Bとパッドを同様に形成し、 周囲温度測温抵抗エレメント Cは、 基台 1 3 2の厚 肉部に電気絶縁膜を介してパッドと共に同様に形成し、 その反対側の面に流体を 流してもよい。  On the upper surface of the base 1 32, an electric insulating film 1 34 is formed over the entire surface, and the surface of the electric insulating film 1 34 has temperature-measuring resistance elements A and B and an ambient temperature temperature-measuring resistance element ( : The pads 107 to 112 are formed in the same manner as in the first embodiment.The electric circuit is as shown in Fig. 2. In contrast to the above, the recesses 135 are formed. An electric insulating film is formed on the entire bottom surface, and the temperature measuring resistance elements A and B and the pad are formed in the same manner on the surface of the electric insulating film. It may be formed in the same manner together with the pad via the electric insulating film in the portion, and the fluid may flow on the opposite surface.
なお、 第 1の実施例の測温抵抗エレメント A, Bや周囲温度測温抵抗エレメン ト C、 パッド 1 0 7〜 1 1 2の代わりに、 第 2の実施例の測温抵抗エレメント A ' , B ' や周囲温度測温抵抗エレメント C、 発熱抵抗エレメント D, E、 パッド 1 0 7〜1 1 6を形成してもよいことは言うまでもない。 この場合の電気回路は、 図 3に示したとおりである。 なお、 本発明の第 1〜第 3の実施例におけるエレメ ント A, B , C, Α, , . Β ' , D, Εはすべて白金薄膜などで形成するのが好ま しいが、 これに限らない。 Instead of the temperature-measuring resistance elements A and B, the temperature-measuring resistance element C and the pads 107 to 112 of the first embodiment, the temperature-measuring resistance elements A ′ and A ′ of the second embodiment are used. Needless to say, B ′, the ambient temperature resistance element C, the heating resistance elements D and E, and the pads 107 to 116 may be formed. The electric circuit in this case is as shown in FIG. The elements A, B, C, Α,., Β ′, D, に お け る in the first to third embodiments of the present invention are all preferably formed of a platinum thin film or the like. It is not limited to this.
上述した実施例によれば、 第 1の測温抵抗エレメントと第 2の測温抵抗エレメ ントとの平均の温度 (第 1、 第 2の測温抵抗エレメントで検出される温度の平均 値) が周囲温度よりも常に一定温度高くなるよう第 1の測温抵抗エレメントと第 2の測温抵抗エレメントとに印加する電圧を制御するので、 流速が増加しても、 感度の低下が少なくなる。 その結果、 低速から高速までの広い範囲の流速の測定 が可能となる。 また、 本発明では、 第 1、 第 2の測温抵抗エレメントの温度を一 定にすることができるため、 従来よりも応答速度を速くすることができる。 また、 出力回路を、 第 3の直列回路と差分増幅器とから構成することにより、 流体の流速に応じた値を取り出すことができる。  According to the above-described embodiment, the average temperature of the first resistance temperature element and the second temperature resistance element (the average value of the temperatures detected by the first and second resistance temperature elements) is Since the voltage applied to the first resistance temperature element and the second resistance temperature element is controlled such that the temperature is always higher than the ambient temperature by a certain amount, the decrease in sensitivity is reduced even if the flow velocity increases. As a result, a wide range of flow velocities from low to high can be measured. Further, according to the present invention, since the temperatures of the first and second resistance temperature measuring elements can be kept constant, the response speed can be made faster than before. Further, by forming the output circuit from the third series circuit and the differential amplifier, it is possible to extract a value corresponding to the flow velocity of the fluid.
また、 第 1の直列回路と第 3の直列回路とを接続する少なくとも 1つのポルテ —ジフォロアを設けることにより、 プリッジ回路内を流れる電流が第 4の抵抗と 第 5の抵抗に流出しないようにすることができる。  Also, by providing at least one port-difollower connecting the first series circuit and the third series circuit, current flowing in the bridge circuit is prevented from flowing out to the fourth resistor and the fifth resistor. be able to.
以上のように、 本発明にかかる流量センサは、 広範囲な流速、 特に高流速を高 速に測定するのに適している。  As described above, the flow sensor according to the present invention is suitable for measuring a wide range of flow velocities, particularly high flow velocities.

Claims

請 求 の 範 囲 The scope of the claims
1 . 空隙部を有する基台と、 1. a base having an air gap;
この基台上の前記空隙部が形成された側の面上に形成された薄膜層と、 前記薄膜層上に形成され、 直列に接続された第 1の測温抵抗エレメントおよび 第 2の測温抵抗エレメントと、  A thin film layer formed on a surface of the base on which the gap is formed, a first resistance temperature element and a second temperature measurement element formed on the thin film layer and connected in series; A resistance element;
前記第 1および第 2の測温抵抗エレメントの温度差に基づいて、 流体の流速を 求める流速演算手段と、  Flow velocity calculating means for determining a flow velocity of a fluid based on a temperature difference between the first and second temperature measuring resistance elements;
前記第 1および第 2の測温抵抗エレメントの平均温度が周囲温度より常に一定 温度だけ高くなるように制御する制御手段と  Control means for controlling the average temperature of the first and second temperature measuring resistance elements to be always higher than the ambient temperature by a constant temperature;
を備えることを特徴とする流速センサ。 A flow rate sensor comprising:
2 . 請求項 1に記載の流速センサにおいて、 2. The flow sensor according to claim 1,
前記第 1及び第 2測温抵抗エレメントは、 発熱体および温度センサとしての機 能を有し、  The first and second temperature measuring resistance elements have functions as a heating element and a temperature sensor,
前記制御手段は、 前記第 1および第 2の測温抵抗エレメントに流される電流を 制御することを特徵とする流速センサ。  The flow rate sensor, wherein the control means controls a current flowing through the first and second resistance temperature measuring elements.
3 . 請求項 1に記載の流速センサにおいて、  3. The flow sensor according to claim 1,
温度センサとしての機能を有する前記第 1及び第 2測温抵抗エレメントの近傍 に配置された発熱手段  Heating means arranged near the first and second resistance temperature elements having a function as a temperature sensor
をさらに備え、 Further comprising
前記制御手段は、 前記発熱手段へ供給する電流を制御することを特徴とする流 速センサ。  The control device controls a current supplied to the heat generating device.
4. 請求項 2に記載の流速センサにおいて、  4. In the flow rate sensor according to claim 2,
流体の流れに影響されない周囲温度を測定する周囲温度センサをさらに備え、 前記第 1および第 2の測温抵抗エレメント、 前記周囲温度センサは、 それぞれ プリッジ回路の一辺を構成し、  Further comprising an ambient temperature sensor for measuring an ambient temperature unaffected by the flow of the fluid, the first and second resistance temperature measuring elements, each of the ambient temperature sensors constituting one side of a bridge circuit;
前記制御手段は、 ブリッジ回路の各中点の電圧差を一定にするように、 前記第 The control means may control the voltage difference at each midpoint of the bridge circuit to be constant.
1および第 2の測温抵抗エレメントに流される電流を制御することを特徴とする 流速センサ。 Controlling the current flowing through the first and second resistance temperature measuring elements Flow rate sensor.
5 . 請求項 3に記載の流速センサにおいて、  5. The flow sensor according to claim 3,
流体の流れに影響されない周囲温度を測定する周囲温度センサをさらに備え、 前記第 1および第 2の測温抵抗エレメント、 前記周囲温度センサは、 それぞれ ブリッジ回路の一辺を構成し、  Further comprising an ambient temperature sensor for measuring an ambient temperature unaffected by the flow of the fluid, wherein the first and second temperature measuring resistance elements each constitute one side of a bridge circuit;
前記制御手段は、 ブリッジ回路の各中点の電圧差を一定にするように、 前記発 熱手段に流す電流を制御することを特徴とする流速センサ。  The flow rate sensor according to claim 1, wherein said control means controls a current flowing through said heat generating means so as to keep a voltage difference at each middle point of said bridge circuit constant.
6 . 請求項 2に記載の流速センサにおいて、  6. The flow sensor according to claim 2,
前記第 1および第 2の測温抵抗エレメントの両端と接続された少なくとも 1つ のボルテージフォロア回路  At least one voltage follower circuit connected to both ends of the first and second resistance temperature elements
をさらに備え、 Further comprising
前記流速演算手段は、 直列に接続された前記第 1および第 2の測温抵抗エレメ ントの両端電圧の分圧と前記第 1および第 2の測温抵抗エレメントの接続点の電 圧とを比較して流速を求めることを特徴とする流速センサ。  The flow velocity calculating means compares a partial voltage of a voltage between both ends of the first and second resistance temperature elements connected in series with a voltage at a connection point of the first and second resistance temperature elements. A flow velocity sensor characterized by determining a flow velocity.
7 . 請求項 3に記載の流速センサにおいて、 7. The flow sensor according to claim 3,
前記第 1および第 2の測温抵抗エレメントの両端と接続された少なくとも 1つ のボルテージフォロア回路  At least one voltage follower circuit connected to both ends of the first and second resistance temperature elements
をさらに備え、 Further comprising
前記流速演算手段は、 直列に接続された前記第 1および第 2の測温抵抗エレメ ントの両端電圧の分圧と前記第 1および第 2の測温抵抗エレメントの接続点の電 圧とを比較して流速を求めることを特徴とする流速センサ。  The flow velocity calculating means compares a partial voltage of a voltage between both ends of the first and second resistance temperature elements connected in series with a voltage at a connection point of the first and second resistance temperature elements. A flow velocity sensor characterized by determining a flow velocity.
8 . 請求項 1に記載の流速センサにおいて、  8. The flow velocity sensor according to claim 1,
前記第 1および第 2測温抵抗エレメントは、 前記薄膜層の流体の流れる方向に 互いに所定の間隔をおいて並設され、 流れる電流によって発熱することを特徴と する流速センサ。  The flow rate sensor, wherein the first and second resistance temperature elements are arranged in parallel at a predetermined interval in a flowing direction of the fluid in the thin film layer, and generate heat by a flowing current.
9 . 請求項 1に記載の流速センサにおいて、  9. The flow velocity sensor according to claim 1,
前記第 1及び第 2測温抵抗エレメント間の前記薄膜層に形成され、 前記第 1及 び第 2測温抵抗エレメントを互いに熱的に絶縁するスリット  A slit formed in the thin film layer between the first and second resistance temperature elements to thermally insulate the first and second resistance temperature elements from each other
をさらに備えることを特徵とする流速センサ。 A flow sensor characterized by further comprising:
1 0 . 請求項 1に記載の流速センサにおいて、 10. The flow velocity sensor according to claim 1,
前記薄膜層に、 互いに所定の間隔をおいて形成されたスリットをさらに備える ことを特徴とする流速センサ。  The flow rate sensor according to claim 1, further comprising a slit formed in the thin film layer at a predetermined interval.
1 1 . 請求項 1に記載の流速センサにおいて、  1 1. The flow velocity sensor according to claim 1,
前記基台は、 ダイヤフラム部を備え、  The base includes a diaphragm,
前記第 1及び第 2測温抵抗ェレメントは、 前記ダイヤフラム部の流路側とは反 対側の面上に形成され、  The first and second temperature measurement resistance elements are formed on a surface of the diaphragm opposite to the flow path side,
前記流速演算手段は前記ダイヤフラム部の前記第 1および第 2測温抵抗エレメ ントが形成された側と反対側を移動する気体の流速を測定することを特徴とする 流速センサ。  The flow velocity sensor, wherein the flow velocity calculation means measures a flow velocity of a gas moving on a side of the diaphragm opposite to a side on which the first and second resistance temperature elements are formed.
1 2 . 請求項 1 1に記載の流速センサにおいて、  1 2. In the flow rate sensor according to claim 11,
前記基台とともに流路を形成する貫通孔を有する流路形成部材  A flow path forming member having a through hole that forms a flow path with the base
をさらに備えることを特徴とする流速センサ。 A flow rate sensor, further comprising:
1 3 . 請求項 1に記載の流速センサにおいて、  1 3. The flow rate sensor according to claim 1,
前記流速演算手段は、 ブリッジ回路と、 差動増幅回路と、 出力回路とを備え、 前記ブリッジ回路は、  The flow velocity calculating means includes a bridge circuit, a differential amplifier circuit, and an output circuit.
抵抗と前記第 1測温抵抗ェレメン卜と前記第 2測温抵抗ェレメン卜とを直列に 接続した第 1の直列回路と、  A first series circuit in which a resistance, the first resistance temperature element, and the second resistance element are connected in series;
抵抗と抵抗と周囲温度センサとを直列に接続した第 2の直列回路と  A second series circuit in which a resistor, a resistor, and an ambient temperature sensor are connected in series;
を備え、 With
前記差動増幅回路は、  The differential amplifier circuit,
反転入力端子が前記抵抗と前記第 1測温抵抗エレメントの接続点に接続され、 非反転入力端子が前記抵抗と前記抵抗の接続点に接続され、 出力端子が前記抵抗 と前記抵抗の接続点に接続された演算増幅器 A 1を備え、  An inverting input terminal is connected to a connection point between the resistor and the first resistance temperature element, a non-inverting input terminal is connected to a connection point between the resistor and the resistor, and an output terminal is connected to a connection point between the resistor and the resistor. With connected operational amplifier A1,
前記出力回路は、  The output circuit includes:
非反転入力端子が前記抵抗と前記第 1測温抵抗エレメントの接続点に接続され、 反転入力端子と出力端子とが接続された演算増幅器と、  An operational amplifier having a non-inverting input terminal connected to a connection point between the resistor and the first resistance temperature element, and having an inverting input terminal and an output terminal connected thereto;
一端が前記演算増幅器の出力端子に接続された抵抗と、 一端が抵抗の他端と接 続され、 他端が接地された抵抗と、 非反転入力端子が前記第 1測温抵抗エレメン トと前記第 2測温抵抗エレメントの接続点に接続され、 反転入力端子が前記抵抗 と前記抵抗の接続点に接続された演算増幅器を備えることを特徴とする流速セン サ。 A resistor having one end connected to the output terminal of the operational amplifier, one end connected to the other end of the resistor, the other end grounded, and a non-inverting input terminal connected to the first temperature-measuring resistance element. A flow rate sensor comprising: an operational amplifier connected to a connection point between the resistor and the second resistance temperature element, and an inverting input terminal connected to a connection point between the resistance and the resistance.
1 4 . 空隙部を有する基台と、  14. A base having a void portion,
この基台上の前記空隙部が形成された側の面上に形成された薄膜層と、 前記薄膜層上に形成され、 直列に接続された発熱体および温度センサとしての 機能を有する第 1の測温抵抗エレメントおよび第 2の測温抵抗エレメントと、 前記第 1および第 2の測温抵抗エレメントの温度差に基づいて、 流体の流速を 求める流速演算手段と、  A first thin film layer formed on the surface of the base on which the gap is formed, and a first heating element formed on the thin film layer and having a function as a heating element and a temperature sensor connected in series; A temperature measuring resistance element and a second temperature measuring resistance element; and a flow velocity calculating means for determining a flow velocity of the fluid based on a temperature difference between the first and second temperature measuring resistance elements;
前記第 1および第 2の測温抵抗エレメントの平均温度が周囲温度より常に一定 温度だけ高くなるように、 前記第 1および第 2の測温抵抗エレメントに流される 電流を制御する制御手段と  Control means for controlling currents flowing through the first and second resistance temperature elements so that the average temperature of the first and second resistance temperature elements is always higher than the ambient temperature by a constant temperature; and
を備えることを特徴とする流速センサ。 A flow rate sensor comprising:
1 5 . 空隙部を有する基台と、  15. A base having a void portion,
この基台上の前記空隙部が形成された側の面上に形成された薄膜層と、 前記薄膜層上に形成され、 直列に接続された温度センサとしての機能を有する 第 1の測温抵抗ェレメントおよび第 2の測温抵抗ェレメン卜と、  A thin film layer formed on a surface of the base on which the gap is formed, a first temperature measuring resistor formed on the thin film layer and having a function as a temperature sensor connected in series; An element and a second resistance temperature element;
前記第 1及び第 2測温抵抗ェレメントの近傍に配置された発熱手段と、 Heating means arranged in the vicinity of the first and second temperature measuring resistance elements;
前記第 1および第 2の測温抵抗エレメントの温度差に基づいて、 流体の流速を 求める流速演算手段と、  Flow velocity calculating means for determining a flow velocity of a fluid based on a temperature difference between the first and second temperature measuring resistance elements;
前記第 1および第 2の測温抵抗エレメントの平均温度が周囲温度より常に一定 温度だけ高くなるように前記発熱手段へ供給する電流を制御制御する制御手段と を備えることを特徴とする流速センサ。  Control means for controlling the current supplied to the heat generating means so that the average temperature of the first and second resistance temperature elements is always higher than the ambient temperature by a constant temperature.
PCT/JP2003/005473 2002-05-02 2003-04-28 Flow velocity sensor WO2003093838A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002130507A JP3802443B2 (en) 2002-05-02 2002-05-02 Flow rate sensor
JP2002-130507 2002-05-02

Publications (1)

Publication Number Publication Date
WO2003093838A1 true WO2003093838A1 (en) 2003-11-13

Family

ID=29397329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005473 WO2003093838A1 (en) 2002-05-02 2003-04-28 Flow velocity sensor

Country Status (3)

Country Link
JP (1) JP3802443B2 (en)
CN (1) CN100405066C (en)
WO (1) WO2003093838A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8166814B2 (en) 2007-09-20 2012-05-01 Yamatake Corporation Flow sensor and manufacturing method therefor
WO2017122090A1 (en) * 2016-01-13 2017-07-20 Analog Devices Global Air flow sensor for fan cooled systems

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082105B (en) * 2010-12-06 2012-05-30 东南大学 Thermal wind sensor based on anodic bonding technology and preparation method thereof
JP6322052B2 (en) * 2013-10-28 2018-05-09 日本電産サンキョー株式会社 Sensor device
KR101581134B1 (en) * 2013-10-28 2015-12-29 니혼 덴산 산쿄 가부시키가이샤 Sensor device
CN107228692A (en) * 2017-06-30 2017-10-03 深圳龙电电气股份有限公司 The metering method and its device of a kind of water flow
CN107328449B (en) * 2017-07-06 2019-08-30 中国科学院上海微系统与信息技术研究所 A kind of thermoelectric pile formula gas flow sensor and preparation method thereof
CN107345826B (en) * 2017-07-06 2020-12-18 中国科学院上海微系统与信息技术研究所 Thermal gas flow sensor and preparation method thereof
JP6867909B2 (en) * 2017-08-02 2021-05-12 アズビル株式会社 Thermal flow meter
CN110945364B (en) * 2017-08-05 2021-08-03 株式会社村田制作所 Wind speed measuring device and wind speed measuring device
JP6940441B2 (en) * 2018-03-27 2021-09-29 アズビル株式会社 Thermal flow sensor device and flow rate correction method
CN109211342B (en) * 2018-09-05 2020-03-20 四方光电股份有限公司 Airflow flowmeter, MEMS silicon-based temperature-sensitive chip and preparation method thereof
CN111220224B (en) * 2018-11-26 2021-07-13 苏州原位芯片科技有限责任公司 MEMS flow sensor chip

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208717A (en) * 1987-02-25 1988-08-30 Fuji Electric Co Ltd Mass flow meter
JPH02259527A (en) * 1989-03-31 1990-10-22 Yamatake Honeywell Co Ltd Flow rate detection sensor for fluid
JPH07243888A (en) * 1994-03-02 1995-09-19 Stec Kk Flow rate sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342481C2 (en) * 1993-12-13 1996-09-05 Siemens Ag Method of measuring the intake air mass
JPH11351936A (en) * 1998-06-05 1999-12-24 Mitsubishi Electric Corp Thermal flow-rate sensor and thermal flow-rate detection circuit
JP3825242B2 (en) * 2000-10-17 2006-09-27 株式会社山武 Flow sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208717A (en) * 1987-02-25 1988-08-30 Fuji Electric Co Ltd Mass flow meter
JPH02259527A (en) * 1989-03-31 1990-10-22 Yamatake Honeywell Co Ltd Flow rate detection sensor for fluid
JPH07243888A (en) * 1994-03-02 1995-09-19 Stec Kk Flow rate sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8166814B2 (en) 2007-09-20 2012-05-01 Yamatake Corporation Flow sensor and manufacturing method therefor
WO2017122090A1 (en) * 2016-01-13 2017-07-20 Analog Devices Global Air flow sensor for fan cooled systems

Also Published As

Publication number Publication date
CN100405066C (en) 2008-07-23
JP3802443B2 (en) 2006-07-26
JP2003322658A (en) 2003-11-14
CN1650175A (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP2704048B2 (en) Current difference type thermal mass flow transducer
EP1541974B1 (en) Heating resistor type flow-measuring device
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
US7392703B2 (en) Z-axis thermal accelerometer
US7287424B2 (en) Thermal type flow measurement apparatus having asymmetrical passage for flow rate measurement
US5703288A (en) Thermally-sensitive type flow meter having a high accuracy
US6935172B2 (en) Thermal type flow measuring device
WO2003093838A1 (en) Flow velocity sensor
KR100486141B1 (en) Thermosensitive flow rate detecting device
JP4470743B2 (en) Flow sensor
JP3969167B2 (en) Fluid flow measuring device
EP0164885A1 (en) Fluid flow sensor
JPH0625684B2 (en) Fluid flow rate detection sensor
JP3293469B2 (en) Thermal flow sensor
JP3454265B2 (en) Thermal flow sensor
JPH11148944A (en) Flow velocity sensor and flow velocity-measuring apparatus
JPH11148945A (en) Flow velocity sensor and flow velocity-measuring apparatus
JP3577902B2 (en) Thermal flow sensor
JP2002310762A (en) Flow sensor
JPH05231896A (en) Sensor device
JPH11351936A (en) Thermal flow-rate sensor and thermal flow-rate detection circuit
JPH09243423A (en) Flow rate measuring apparatus
JPH11287685A (en) Flow sensor
JPS63252224A (en) Flow speed sensor
JPH10142249A (en) Flow sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20038099942

Country of ref document: CN

122 Ep: pct application non-entry in european phase