JPH09243423A - Flow rate measuring apparatus - Google Patents

Flow rate measuring apparatus

Info

Publication number
JPH09243423A
JPH09243423A JP8054489A JP5448996A JPH09243423A JP H09243423 A JPH09243423 A JP H09243423A JP 8054489 A JP8054489 A JP 8054489A JP 5448996 A JP5448996 A JP 5448996A JP H09243423 A JPH09243423 A JP H09243423A
Authority
JP
Japan
Prior art keywords
temperature sensor
fluid
flow rate
temperature
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8054489A
Other languages
Japanese (ja)
Inventor
Hiroyuki Horiguchi
浩幸 堀口
Mitsuteru Kimura
光照 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Seiki Co Ltd
Ricoh Elemex Corp
Ricoh Co Ltd
Original Assignee
Ricoh Seiki Co Ltd
Ricoh Elemex Corp
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Seiki Co Ltd, Ricoh Elemex Corp, Ricoh Co Ltd filed Critical Ricoh Seiki Co Ltd
Priority to JP8054489A priority Critical patent/JPH09243423A/en
Publication of JPH09243423A publication Critical patent/JPH09243423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow rate measuring apparatus wherein characteristics of flow rate measurement of fluid exhibit linearity. SOLUTION: A first temperature sensor 8, a second temperature sensor 9 and a heat-generating resistor 1 are sequentially positioned in a flowing direction of fluid, the heat-generating resistor 7 is drive-controlled to a higher temperature than the fluid by a predetermined temperature, and a flow rate of the fluid is measured from difference between detected temperatures by the first temperature sensor 8 and the second temperature sensor 9. The first and second temperature sensors 8, 9 are similarly heated by the heat-generating resistor 7 and similarly cooled by the fluid, but since a degree of the cooling differs due to arrangement and this is linearly proportional to the flow rate of the fluid, the flow rate of the fluid can be correctly measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流量を測定
する流量測定装置に関する。
TECHNICAL FIELD The present invention relates to a flow rate measuring device for measuring a flow rate of a fluid.

【0002】[0002]

【従来の技術】現在、流体の流動を阻害することなく流
量を正確に検出する流量測定装置が実用化されており、
ガスメータやエアーコンディショナーの風量センサ等に
利用されている。このような流量測定装置としては、感
熱式フローセンサと呼称されるものがあり、これは特公
平03-38545号公報や特公平06-43906号公報等に記載され
ている。
2. Description of the Related Art At present, a flow rate measuring device for accurately detecting a flow rate without impeding the flow of fluid has been put into practical use.
It is used for gas meters and air conditioner air flow sensors. As such a flow rate measuring device, there is one called a heat-sensitive flow sensor, which is described in Japanese Patent Publication No. 03-38545 and Japanese Patent Publication No. 06-43906.

【0003】特公平03-38545号公報に記載された流量測
定装置では、発熱抵抗体を流体より一定温度だけ高温と
なるよう発熱駆動することにより、流体の流量に対応し
て発熱抵抗体の駆動電力を変化させ、この電力変化から
流体の流量を測定する。
In the flow rate measuring device disclosed in Japanese Examined Patent Publication No. 03-38545, the heat generating resistor is driven to generate heat so that the temperature of the heat generating resistor is higher than the fluid by a constant temperature, so that the heat generating resistor is driven according to the flow rate of the fluid. The electric power is changed, and the flow rate of the fluid is measured from the electric power change.

【0004】また、特公平06-43906号公報等に記載され
た流量測定装置では、発熱抵抗体の上流と下流とに温度
センサを配置し、これらの温度センサの検出温度の差分
から流体の流量を測定する。つまり、発熱抵抗体の熱量
が流体により両側の温度センサに伝達されると考える
と、発熱抵抗体の下流に位置する温度センサは流体の流
量に対応して加熱され、発熱抵抗体の上流に位置する温
度センサは流体の流量に対応して冷却されることにな
る。一方、流体自体の温度は二つの温度センサに同様に
影響するので、二つの温度センサの検出温度の差分に流
体の温度は影響しないと考えられる。このため、上述の
ような構造で二つの温度センサの検出温度の差分を検出
すれば、これから流体の流量を測定することができる。
Further, in the flow rate measuring device described in Japanese Patent Publication No. 06-43906, temperature sensors are arranged upstream and downstream of the heating resistor, and the flow rate of the fluid is calculated from the difference between the temperatures detected by these temperature sensors. To measure. In other words, considering that the heat quantity of the heating resistor is transferred to the temperature sensors on both sides by the fluid, the temperature sensor located downstream of the heating resistor is heated according to the flow rate of the fluid, and is placed upstream of the heating resistor. The temperature sensor is cooled according to the flow rate of the fluid. On the other hand, since the temperature of the fluid itself affects the two temperature sensors similarly, it is considered that the temperature of the fluid does not affect the difference between the temperatures detected by the two temperature sensors. Therefore, if the difference between the temperatures detected by the two temperature sensors is detected by the structure as described above, the flow rate of the fluid can be measured from this.

【0005】なお、特公平06-43906号公報や特公平03-5
2028号公報には、シリコン基板の異方性エッチングによ
り架橋構造を形成し、ここに発熱抵抗体や温度センサを
形成することも記載されている。このような構造では、
発熱抵抗体や温度センサの熱容量が低減されるので、そ
の感度や応答性が向上することになる。
Japanese Patent Publication No. 06-43906 and Japanese Patent Publication No. 03-5
2028 discloses that a crosslinked structure is formed by anisotropic etching of a silicon substrate, and a heating resistor and a temperature sensor are formed therein. In such a structure,
Since the heat capacity of the heating resistor and the temperature sensor is reduced, its sensitivity and responsiveness are improved.

【0006】[0006]

【発明が解決しようとする課題】特公平06-43906号公報
等に記載された流量測定装置では、発熱抵抗体の上流と
下流とに配置した温度センサの検出温度の差分から流体
の流量を測定することができる。
In the flow rate measuring device described in Japanese Patent Publication No. 06-43906, the flow rate of the fluid is measured from the difference in the temperature detected by the temperature sensors arranged upstream and downstream of the heating resistor. can do.

【0007】しかし、図6(a)に示すように、実際に
は発熱抵抗体の下流に位置する温度センサの検出温度は
流体の流量に対応しないので、図6(b)に示すよう
に、二つの温度センサの検出温度の差分は流体の流量に
線形に比例しない。つまり、発熱抵抗体の下流に位置す
る温度センサは、流体の流量が増加すると最初は加熱さ
れるが、この加熱は一定の流量で飽和し、以後は流体の
流量に対応して冷却されてしまう。
However, as shown in FIG. 6 (a), the temperature detected by the temperature sensor located downstream of the heating resistor does not actually correspond to the flow rate of the fluid. Therefore, as shown in FIG. 6 (b), The difference between the temperatures detected by the two temperature sensors is not linearly proportional to the flow rate of the fluid. In other words, the temperature sensor located downstream of the heating resistor is initially heated when the flow rate of the fluid increases, but this heating saturates at a constant flow rate, and thereafter it is cooled corresponding to the flow rate of the fluid. .

【0008】このため、二つの温度センサの検出温度の
差分が流体の流量に線形に比例しないので、流体の流量
を正確に検出することが困難である。特に、実際には流
体の温度が流量の測定結果に影響するので、流量の測定
結果を温度に対応して補償しているが、上述のように流
量の測定特性が線形でないと、これを温度に対応して補
償することも困難である。
Therefore, since the difference between the temperatures detected by the two temperature sensors is not linearly proportional to the flow rate of the fluid, it is difficult to accurately detect the flow rate of the fluid. In particular, since the temperature of the fluid actually affects the flow rate measurement result, the flow rate measurement result is compensated according to the temperature.However, if the flow rate measurement characteristic is not linear as described above, this is It is also difficult to compensate for.

【0009】また、上述のような流量測定装置は、流体
の流量に関係なく発熱抵抗体を流体より一定温度だけ高
温に発熱させる必要がある。このため、例えば、流体の
温度に対応して抵抗値が変化する専用の流体温度センサ
を設け、この流体温度センサと発熱抵抗体とでブリッジ
回路を形成し、発熱抵抗体の駆動電力をフィードバック
制御している。しかし、発熱抵抗体も発熱温度により抵
抗値が変化するため、上述のような構造の駆動回路では
発熱抵抗体を適正な温度に正確に制御することが困難で
あり、駆動回路の熱時定数も長くなって消費電力が大き
い。
Further, in the flow rate measuring device as described above, it is necessary to heat the heating resistor to a temperature higher than the fluid by a constant temperature regardless of the flow rate of the fluid. For this reason, for example, a dedicated fluid temperature sensor whose resistance value changes according to the temperature of the fluid is provided, and a bridge circuit is formed by this fluid temperature sensor and the heating resistor to feedback control the driving power of the heating resistor. are doing. However, since the resistance value of the heating resistor also changes depending on the heating temperature, it is difficult to accurately control the heating resistor to an appropriate temperature with the drive circuit having the above-described structure, and the thermal time constant of the driving circuit is also high. It becomes longer and consumes more power.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明は、
流体が流動する位置に配置される発熱抵抗体と、この発
熱抵抗体の上流に配置された第一温度センサと、この第
一温度センサと前記発熱抵抗体との間隙に配置された第
二温度センサと、前記発熱抵抗体を流体より所定温度だ
け高温に駆動制御する発熱制御回路と、前記第一温度セ
ンサと前記第二温度センサとの検出温度の差分から流体
の流量を測定する流量測定回路とを有する。従って、第
一温度センサと第二温度センサとは、流体が流動しない
と発熱抵抗体により流体を介して同様に加熱され、流体
が流動すると流速に対応して冷却される。このとき、発
熱抵抗体から離反した第一温度センサは近接した第二温
度センサより流体の流動による冷却の度合が大きいの
で、第一温度センサと第二温度センサとの検出温度の差
分は流体の流量に線形に比例する。なお、本発明で云う
流量は、流体の一定時間の流量を意味しているので、こ
れは流速と同義である。
According to the first aspect of the present invention,
A heating resistor arranged at a position where a fluid flows, a first temperature sensor arranged upstream of the heating resistor, and a second temperature arranged in a gap between the first temperature sensor and the heating resistor. A sensor, a heat generation control circuit that drives and controls the heat generation resistor to a temperature higher than the fluid by a predetermined temperature, and a flow rate measurement circuit that measures the flow rate of the fluid from the difference between the detected temperatures of the first temperature sensor and the second temperature sensor. Have and. Therefore, the first temperature sensor and the second temperature sensor are similarly heated by the heating resistor via the fluid when the fluid does not flow, and are cooled corresponding to the flow velocity when the fluid flows. At this time, the first temperature sensor separated from the heating resistor has a greater degree of cooling due to the flow of the fluid than the adjacent second temperature sensor, and therefore the difference between the detected temperatures of the first temperature sensor and the second temperature sensor is Linearly proportional to flow rate. Note that the flow rate in the present invention means the flow rate of the fluid for a certain period of time, and therefore has the same meaning as the flow velocity.

【0011】請求項2記載の発明は、流体が流動する位
置に配置される発熱抵抗体と、この発熱抵抗体の上流に
配置された第一温度センサと、前記発熱抵抗体の表面に
配置された第二温度センサと、前記発熱抵抗体に影響さ
れない位置に配置されて流体の温度を検出する流体温度
センサと、この流体温度センサと前記第二温度センサと
の検出温度の差分が所定温度となるよう前記発熱抵抗体
を駆動制御する発熱制御回路と、前記第一温度センサと
前記第二温度センサとの検出温度の差分から流体の流量
を測定する流量測定回路とを有する。従って、第一温度
センサは発熱抵抗体により流体を介して加熱されるが、
第二温度センサは発熱抵抗体により直接に加熱される。
流体が流動すると第一温度センサは流速に対応して冷却
されるが、第二温度センサは発熱抵抗体により一定の温
度に維持されるので、第一温度センサと第二温度センサ
との検出温度の差分は流体の流量に対応する。発熱抵抗
体の発熱温度が第二温度センサにより直接に検出され、
流体の温度が流体温度センサにより直接に検出され、こ
れらの検出温度に基づいて発熱制御回路により発熱抵抗
体が駆動制御されるので、この発熱抵抗体は適正な温度
に正確に制御される。
According to a second aspect of the present invention, a heating resistor arranged at a position where a fluid flows, a first temperature sensor arranged upstream of the heating resistor, and a surface of the heating resistor are arranged. A second temperature sensor, a fluid temperature sensor that is arranged at a position not affected by the heating resistor to detect the temperature of the fluid, and a difference between the temperature detected by the fluid temperature sensor and the second temperature sensor is a predetermined temperature. And a flow rate measuring circuit for measuring the flow rate of the fluid from the difference between the detected temperatures of the first temperature sensor and the second temperature sensor. Therefore, the first temperature sensor is heated by the heating resistor through the fluid,
The second temperature sensor is directly heated by the heating resistor.
When the fluid flows, the first temperature sensor is cooled according to the flow velocity, but since the second temperature sensor is maintained at a constant temperature by the heating resistor, the temperature detected by the first temperature sensor and the second temperature sensor. The difference of corresponds to the flow rate of the fluid. The heating temperature of the heating resistor is directly detected by the second temperature sensor,
The temperature of the fluid is directly detected by the fluid temperature sensor, and the heating resistor is driven and controlled by the heating control circuit based on these detected temperatures, so that the heating resistor is accurately controlled to an appropriate temperature.

【0012】請求項3記載の発明は、流体が流動する位
置に配置される発熱抵抗体と、この発熱抵抗体の上流に
配置された第一温度センサと、前記発熱抵抗体の表面に
配置された第二温度センサと、前記発熱抵抗体に影響さ
れない位置に配置されて流体の温度を検出する流体温度
センサと、この流体温度センサと前記第二温度センサと
の検出温度の差分が所定温度となるよう前記発熱抵抗体
を駆動制御する発熱制御回路と、前記第一温度センサの
検出温度に基づいて流体の流量を測定する流量測定回路
とを有する。従って、第一温度センサは発熱抵抗体によ
り流体を介して加熱されるが、第二温度センサは発熱抵
抗体により直接に加熱される。流体が流動すると第一温
度センサは流速に対応して冷却されるので、第一温度セ
ンサの検出温度は流体の流量に対応する。発熱抵抗体の
発熱温度が第二温度センサにより直接に検出され、流体
の温度が流体温度センサにより直接に検出され、これら
の検出温度に基づいて発熱制御回路により発熱抵抗体が
駆動制御されるので、この発熱抵抗体は適正な温度に正
確に制御される。
According to a third aspect of the present invention, a heating resistor arranged at a position where a fluid flows, a first temperature sensor arranged upstream of the heating resistor, and a surface of the heating resistor are arranged. A second temperature sensor, a fluid temperature sensor that is arranged at a position not affected by the heating resistor to detect the temperature of the fluid, and a difference between the temperature detected by the fluid temperature sensor and the second temperature sensor is a predetermined temperature. And a flow rate measuring circuit for measuring the flow rate of the fluid based on the temperature detected by the first temperature sensor. Therefore, the first temperature sensor is heated by the heating resistor via the fluid, while the second temperature sensor is directly heated by the heating resistor. When the fluid flows, the first temperature sensor is cooled corresponding to the flow velocity, so the temperature detected by the first temperature sensor corresponds to the flow rate of the fluid. The heating temperature of the heating resistor is directly detected by the second temperature sensor, the temperature of the fluid is directly detected by the fluid temperature sensor, and the heating control circuit drives and controls the heating resistor based on these detected temperatures. , This heating resistor is accurately controlled to a proper temperature.

【0013】請求項4記載の発明では、請求項1,2ま
たは3記載の発明において、基板に空洞を形成して架橋
構造の支持部を形成し、この支持部の表面に第一温度セ
ンサと第二温度センサと発熱抵抗体とを形成した。従っ
て、第一温度センサと第二温度センサと発熱抵抗体と
が、熱容量が小さく流体により良好に冷却される形状に
形成される。
According to a fourth aspect of the present invention, in the first, second or third aspect of the present invention, a cavity is formed in the substrate to form a support portion having a crosslinked structure, and the first temperature sensor and the first temperature sensor are formed on the surface of the support portion. A second temperature sensor and a heating resistor were formed. Therefore, the first temperature sensor, the second temperature sensor, and the heating resistor are formed in a shape having a small heat capacity and being well cooled by the fluid.

【0014】[0014]

【発明の実施の形態】本発明の実施の第一の形態を図1
ないし図3に基づいて以下に説明する。まず、本実施の
形態の流量測定装置1は、フローセンサ2と発熱制御回
路3と流量測定回路(図示せず)とを有している。
FIG. 1 shows a first embodiment of the present invention.
1 to 3 will be described below. First, the flow rate measurement device 1 of the present embodiment has a flow sensor 2, a heat generation control circuit 3, and a flow rate measurement circuit (not shown).

【0015】前記フローセンサ2は、図1に示すよう
に、単結晶シリコン等からなる一個の基板4を有してお
り、この基板4にはトンネル状の空洞5が形成されてい
るので、この空洞5上に架橋構造の支持部6が形成され
ている。前記空洞5の開通方向は流体(図示せず)の流
動方向と平行であるため、前記支持部6の橋架方向は流
体の流動方向と直角である。
As shown in FIG. 1, the flow sensor 2 has one substrate 4 made of single crystal silicon or the like, and a tunnel-shaped cavity 5 is formed in this substrate 4, so that A support portion 6 having a crosslinked structure is formed on the cavity 5. Since the opening direction of the cavity 5 is parallel to the flow direction of the fluid (not shown), the bridging direction of the support portion 6 is perpendicular to the flow direction of the fluid.

【0016】この支持部6の表面には、発熱抵抗体7と
第一温度センサ8と第二温度センサ9とが設けられてお
り、これらは流体の流動に直交する細長い形状に各々形
成されている。前記発熱抵抗体7の上流に前記第一温度
センサ8が配置され、この第一温度センサ8と前記発熱
抵抗体7との間隙に前記第二温度センサ9が配置されて
いる。前記空洞5より上流となる前記基板4の表面は、
流体温度センサ10が設けられており、これらの温度セ
ンサ8〜10は、抵抗温度係数が大きい薄膜抵抗体によ
り形成されている。
A heating resistor 7, a first temperature sensor 8 and a second temperature sensor 9 are provided on the surface of the support portion 6, and these are formed in an elongated shape orthogonal to the fluid flow. There is. The first temperature sensor 8 is arranged upstream of the heating resistor 7, and the second temperature sensor 9 is arranged in a gap between the first temperature sensor 8 and the heating resistor 7. The surface of the substrate 4 upstream of the cavity 5 is
A fluid temperature sensor 10 is provided, and these temperature sensors 8 to 10 are formed of thin film resistors having a large resistance temperature coefficient.

【0017】前記発熱制御回路3は、図2に示すよう
に、ブリッジ回路11を有しており、このブリッジ回路
11は、前記第二温度センサ9、前記流体温度センサ1
0、電流制御用の固定抵抗12,13、温度設定用の固
定抵抗14、を有している。このブリッジ回路11に
は、直流電源15と差動増幅器16とが接続されてお
り、この差動増幅器16には制御トランジスタ17が接
続されている。この制御トランジスタ17を介して前記
直流電源15が前記発熱抵抗体7に接続されているの
で、この発熱抵抗体7は前記発熱制御回路3により流体
より所定温度だけ高温に駆動制御される。
As shown in FIG. 2, the heat generation control circuit 3 has a bridge circuit 11, and the bridge circuit 11 includes the second temperature sensor 9 and the fluid temperature sensor 1.
0, fixed resistors 12 and 13 for current control, and fixed resistor 14 for temperature setting. A direct current power supply 15 and a differential amplifier 16 are connected to the bridge circuit 11, and a control transistor 17 is connected to the differential amplifier 16. Since the DC power supply 15 is connected to the heating resistor 7 via the control transistor 17, the heating resistor 7 is driven and controlled to a temperature higher than the fluid by a predetermined temperature by the heating control circuit 3.

【0018】また、前記流量測定回路は、例えば、前記
第一温度センサ8と前記第二温度センサとを一部とした
ブリッジ回路、差動増幅器、A/DC(Analog/Digita
l Convertor)、演算処理回路、を有している。前記第一
温度センサ8と前記第二温度センサ9との検出温度の差
分を、前記差動増幅器により前記ブリッジ回路11等か
ら出力させ、これを前記A/DCによりA/D変換して
から演算処理回路により流体の流量に変換する。なお、
この演算処理回路は、前記流体温度センサ10も接続さ
れており、流体の流量の測定結果を温度の測定結果に対
応して補償する。
Further, the flow rate measuring circuit is, for example, a bridge circuit including the first temperature sensor 8 and the second temperature sensor as a part, a differential amplifier, an A / DC (Analog / Digita).
l Convertor), arithmetic processing circuit. The difference between the temperatures detected by the first temperature sensor 8 and the second temperature sensor 9 is output from the bridge circuit 11 or the like by the differential amplifier, and the difference is A / D converted by the A / DC before calculation. It is converted into the flow rate of the fluid by the processing circuit. In addition,
The arithmetic processing circuit is also connected to the fluid temperature sensor 10, and compensates the measurement result of the fluid flow rate in accordance with the measurement result of the temperature.

【0019】このような構成において、本実施の形態の
流量測定装置1は、ガスメータ等に利用され、流体の流
量を測定する。その場合、発熱制御回路3により流体よ
り所定温度だけ高温に発熱抵抗体7が駆動制御されるの
で、流体が流動しないと第一温度センサ8と第二温度セ
ンサ9とは発熱抵抗体7により流体を介して同様に加熱
される。この場合、第一温度センサ8と第二温度センサ
9との検出温度は同一となるので、その差分“0”によ
り流量測定回路は流体が停止していることを正確に検出
する。
In such a structure, the flow rate measuring device 1 of this embodiment is used for a gas meter or the like and measures the flow rate of a fluid. In that case, the heat generation control circuit 3 drives and controls the heat generation resistor 7 to a temperature higher than the fluid by a predetermined temperature. Therefore, if the fluid does not flow, the first temperature sensor 8 and the second temperature sensor 9 are fluidized by the heat generation resistor 7. Is similarly heated through. In this case, since the temperatures detected by the first temperature sensor 8 and the second temperature sensor 9 are the same, the difference "0" allows the flow rate measurement circuit to accurately detect that the fluid is stopped.

【0020】このような状態から流体が流動すると、発
熱抵抗体7の上流に位置する第一・第二温度センサ8,
9が両方とも冷却されるが、図3(a)に示すように、
発熱抵抗体7から離反した第一温度センサ8は近接した
第二温度センサ9より流体の流動による冷却の度合が大
きい。つまり、第一・第二温度センサ8,9は、発熱抵
抗体7により同様に加熱され、流体により同様に冷却さ
れるが、この冷却の度合が配列のために相違しており、
その差分は流体の流量に比例する。
When the fluid flows from such a state, the first and second temperature sensors 8 located upstream of the heating resistor 7,
Both 9 are cooled, but as shown in FIG.
The first temperature sensor 8 separated from the heating resistor 7 has a greater degree of cooling due to the fluid flow than the second temperature sensor 9 adjacent thereto. In other words, the first and second temperature sensors 8 and 9 are similarly heated by the heating resistor 7 and similarly cooled by the fluid, but the degree of this cooling is different due to the arrangement,
The difference is proportional to the fluid flow rate.

【0021】このため、図3(b)に示すように、第一
温度センサ8と第二温度センサ9との検出温度の差分は
流体の流量に線形に比例することになり、これを流量測
定回路が検出するので流体の流量が正確に測定される。
なお、流体の温度が変化すると発熱抵抗体7や温度セン
サ8,9の特性も変化するので、流量測定回路は、実際
には流体温度センサ10により検出される流体の温度に
対応して流量の測定結果を補償するよう設定されている
が、この補償も流量の測定特性が線形なので容易であ
る。
Therefore, as shown in FIG. 3 (b), the difference between the temperatures detected by the first temperature sensor 8 and the second temperature sensor 9 is linearly proportional to the flow rate of the fluid. Since the circuit detects, the flow rate of the fluid is accurately measured.
Since the characteristics of the heating resistor 7 and the temperature sensors 8 and 9 also change when the temperature of the fluid changes, the flow rate measurement circuit actually changes the flow rate according to the temperature of the fluid detected by the fluid temperature sensor 10. Although it is set to compensate the measurement result, this compensation is also easy because the flow rate measurement characteristic is linear.

【0022】本発明は上記形態に限定されるものではな
く、各種の変形を許容する。例えば、ここでは発熱抵抗
体7に近接した第二温度センサ9を発熱制御回路3に利
用することを例示したが、この発熱制御回路に第一温度
センサを利用することも可能であり、図4に示すよう
に、発熱抵抗体7をブリッジ回路18の一部としてフィ
ードバックループにより発熱制御装置19を形成するこ
とも可能である。
The present invention is not limited to the above-mentioned form, and allows various modifications. For example, although the second temperature sensor 9 close to the heating resistor 7 is used for the heat generation control circuit 3 here, the first temperature sensor may be used for this heat generation control circuit. It is also possible to form the heat generation control device 19 by a feedback loop with the heat generation resistor 7 as a part of the bridge circuit 18, as shown in FIG.

【0023】つぎに、本発明の実施の第二の形態を図5
に基づいて以下に説明する。なお、本実施の形態の流量
測定装置21に関し、上述した流量測定装置1と同一の
部分は、同一の名称および符号を利用して詳細な説明は
省略する。本実施の形態の流量測定装置21も、フロー
センサ22と発熱制御回路3と流量測定回路とを有して
おり、発熱制御回路3に第二温度センサ9が利用されて
いるが、この第二温度センサ9が発熱抵抗体7の表面に
形成されている。なお、実際には第二温度センサ9は絶
縁膜(図示せず)を介して発熱抵抗体7の表面に成膜さ
れており、このような絶縁膜としては、シリコンナイト
ライド、SiO2、Ta25 等が利用される。
Next, a second embodiment of the present invention will be described with reference to FIG.
This will be described below based on Regarding the flow rate measuring device 21 of the present embodiment, the same parts as those of the flow rate measuring device 1 described above are denoted by the same names and reference numerals, and detailed description thereof will be omitted. The flow rate measuring device 21 of the present embodiment also has a flow sensor 22, a heat generation control circuit 3, and a flow rate measurement circuit, and the second temperature sensor 9 is used in the heat generation control circuit 3, but this second temperature sensor 9 is used. A temperature sensor 9 is formed on the surface of the heating resistor 7. Actually, the second temperature sensor 9 is formed on the surface of the heating resistor 7 through an insulating film (not shown). Such insulating films include silicon nitride, SiO 2 , Ta. 2 O 5 etc. are used.

【0024】このような構成において、本実施の形態の
流量測定装置21では、第一温度センサ8は発熱抵抗体
7により流体を介して加熱されるが、第二温度センサ9
は発熱抵抗体7により直接に加熱される。流体が流動す
ると第一温度センサ8は流速に対応して冷却されるが、
第二温度センサ9は発熱抵抗体7により一定の温度に維
持される。このような第一温度センサ8と第二温度セン
サ9との検出温度の差分は流体の流量に対応するので、
これに基づいて流量測定回路が流体の流量を測定する。
In the flow rate measuring device 21 of the present embodiment having such a configuration, the first temperature sensor 8 is heated by the heating resistor 7 via the fluid, but the second temperature sensor 9 is used.
Is directly heated by the heating resistor 7. When the fluid flows, the first temperature sensor 8 is cooled according to the flow velocity,
The second temperature sensor 9 is maintained at a constant temperature by the heating resistor 7. Since the difference between the temperatures detected by the first temperature sensor 8 and the second temperature sensor 9 corresponds to the flow rate of the fluid,
Based on this, the flow rate measuring circuit measures the flow rate of the fluid.

【0025】第二温度センサ9の検出温度は流体の温度
に対応するだけで流量に対応しないので、上述のような
流量の測定結果は第一温度センサ8の検出温度に対応す
ることになる。この場合、流体の流量と温度とに対応し
た第一温度センサ8の検出特性は判明しており、流体の
温度も流体温度センサ10により正確に検出されるの
で、流量測定回路は流体の流量を正確に測定することが
可能である。
Since the temperature detected by the second temperature sensor 9 corresponds only to the temperature of the fluid and does not correspond to the flow rate, the above-described flow rate measurement result corresponds to the temperature detected by the first temperature sensor 8. In this case, the detection characteristics of the first temperature sensor 8 corresponding to the flow rate and the temperature of the fluid are known, and the temperature of the fluid is also accurately detected by the fluid temperature sensor 10. Therefore, the flow rate measurement circuit determines the flow rate of the fluid. It is possible to measure accurately.

【0026】本実施の形態の流量測定装置21では、発
熱抵抗体7の発熱温度が第二温度センサ9により直接に
検出され、流体の温度が流体温度センサ10により直接
に検出され、これらの検出温度に基づいて発熱制御回路
3により発熱抵抗体7が駆動制御されるので、この発熱
抵抗体7を適正な温度に正確に制御することができる。
特に、第二温度センサ9が発熱抵抗体7の表面に位置す
るので、発熱制御回路3は、熱時定数が小さく消費電力
が低減されている。
In the flow rate measuring device 21 of the present embodiment, the heat generation temperature of the heat generating resistor 7 is directly detected by the second temperature sensor 9, and the fluid temperature is directly detected by the fluid temperature sensor 10. Since the heating resistor 7 is driven and controlled by the heating control circuit 3 based on the temperature, the heating resistor 7 can be accurately controlled to an appropriate temperature.
In particular, since the second temperature sensor 9 is located on the surface of the heating resistor 7, the heating control circuit 3 has a small thermal time constant and reduced power consumption.

【0027】なお、本実施の形態の流量測定装置21で
は、第一・第二温度センサ8,9の検出温度の差分によ
り流体の流量を測定しているが、前述のように第二温度
センサ9の検出温度は流体の温度に対応するだけで流量
に対応しないので、第一温度センサ8の検出温度のみで
流体の流量を測定することも可能である。ただし、第一
・第二温度センサ8,9の検出温度の差分により流体の
流量を測定すれば、例えば、外乱により第一・第二温度
センサ8,9に同様に発生したノイズを相殺させるよう
なことが可能である。
In the flow rate measuring device 21 of this embodiment, the flow rate of the fluid is measured by the difference between the temperatures detected by the first and second temperature sensors 8 and 9, but as described above, the second temperature sensor is used. Since the temperature detected by 9 corresponds only to the temperature of the fluid and does not correspond to the flow rate, it is also possible to measure the flow rate of the fluid only by the temperature detected by the first temperature sensor 8. However, if the flow rate of the fluid is measured by the difference between the temperatures detected by the first and second temperature sensors 8 and 9, for example, the noise similarly generated in the first and second temperature sensors 8 and 9 due to disturbance may be offset. It is possible.

【0028】[0028]

【発明の効果】請求項1記載の発明は、流体が流動する
位置に配置される発熱抵抗体と、この発熱抵抗体の上流
に配置された第一温度センサと、この第一温度センサと
発熱抵抗体との間隙に配置された第二温度センサと、発
熱抵抗体を流体より所定温度だけ高温に駆動制御する発
熱制御回路と、第一温度センサと第二温度センサとの検
出温度の差分から流体の流量を測定する流量測定回路と
を有することにより、第一温度センサと第二温度センサ
との検出温度の差分は流体の流量に線形に比例するの
で、流体の流量を正確に測定することができ、この測定
結果を流体温度に対応して補償することも容易である。
According to the first aspect of the present invention, a heating resistor arranged at a position where a fluid flows, a first temperature sensor arranged upstream of the heating resistor, and the first temperature sensor and heat generation From the difference between the second temperature sensor arranged in the gap with the resistor, the heat generation control circuit that drives and controls the heat generating resistor to a temperature higher than the fluid by a predetermined temperature, and the difference between the detected temperatures of the first temperature sensor and the second temperature sensor. By having a flow rate measuring circuit that measures the flow rate of the fluid, the difference in the detected temperature between the first temperature sensor and the second temperature sensor is linearly proportional to the flow rate of the fluid, so that the flow rate of the fluid can be accurately measured. Therefore, it is easy to compensate the measurement result corresponding to the fluid temperature.

【0029】請求項2記載の発明は、流体が流動する位
置に配置される発熱抵抗体と、この発熱抵抗体の上流に
配置された第一温度センサと、発熱抵抗体の表面に配置
された第二温度センサと、発熱抵抗体に影響されない位
置に配置されて流体の温度を検出する流体温度センサ
と、この流体温度センサと第二温度センサとの検出温度
の差分が所定温度となるよう発熱抵抗体を駆動制御する
発熱制御回路と、第一温度センサと第二温度センサとの
検出温度の差分から流体の流量を測定する流量測定回路
とを有することにより、発熱抵抗体の温度が第二温度セ
ンサにより直接に検出され、流体の温度が流体温度セン
サにより直接に検出され、これらの検出温度に基づいて
発熱制御回路により発熱抵抗体が駆動制御されるので、
この発熱抵抗体を適正な温度に正確に制御することがで
き、第二温度センサが発熱抵抗体の表面に位置するの
で、発熱制御回路の熱時定数が小さく消費電力を低減す
ることができる。
According to the second aspect of the present invention, the heating resistor arranged at the position where the fluid flows, the first temperature sensor arranged upstream of the heating resistor, and the surface of the heating resistor are arranged. The second temperature sensor, the fluid temperature sensor which is arranged at a position not affected by the heating resistor to detect the temperature of the fluid, and heats so that the difference between the temperature detected by the fluid temperature sensor and the second temperature sensor becomes a predetermined temperature. By having a heat generation control circuit that drives and controls the resistor and a flow rate measurement circuit that measures the flow rate of the fluid from the difference between the detected temperatures of the first temperature sensor and the second temperature sensor, The temperature of the fluid is directly detected by the temperature sensor, the temperature of the fluid is directly detected by the fluid temperature sensor, and the heating resistor is driven and controlled by the heating control circuit based on these detected temperatures.
This heating resistor can be controlled accurately to an appropriate temperature, and since the second temperature sensor is located on the surface of the heating resistor, the thermal time constant of the heating control circuit is small and power consumption can be reduced.

【0030】請求項3記載の発明は、流体が流動する位
置に配置される発熱抵抗体と、この発熱抵抗体の上流に
配置された第一温度センサと、発熱抵抗体の表面に配置
された第二温度センサと、発熱抵抗体に影響されない位
置に配置されて流体の温度を検出する流体温度センサ
と、この流体温度センサと第二温度センサとの検出温度
の差分が所定温度となるよう発熱抵抗体を駆動制御する
発熱制御回路と、第一温度センサの検出温度に基づいて
流体の流量を測定する流量測定回路とを有することによ
り、発熱抵抗体の温度が第二温度センサにより直接に検
出され、流体の温度が流体温度センサにより直接に検出
され、これらの検出温度に基づいて発熱制御回路により
発熱抵抗体が駆動制御されるので、この発熱抵抗体を適
正な温度に正確に制御することができ、第二温度センサ
が発熱抵抗体の表面に位置するので、発熱制御回路の熱
時定数が小さく消費電力を低減することができる。
According to the third aspect of the present invention, the heating resistor arranged at a position where the fluid flows, the first temperature sensor arranged upstream of the heating resistor, and the surface of the heating resistor are arranged. The second temperature sensor, the fluid temperature sensor which is arranged at a position not affected by the heating resistor to detect the temperature of the fluid, and heats so that the difference between the temperature detected by the fluid temperature sensor and the second temperature sensor becomes a predetermined temperature. The temperature of the heating resistor is directly detected by the second temperature sensor by having the heat generation control circuit for driving and controlling the resistor and the flow rate measurement circuit for measuring the flow rate of the fluid based on the temperature detected by the first temperature sensor. The temperature of the fluid is directly detected by the fluid temperature sensor, and the heating resistor is driven and controlled by the heating control circuit based on these detected temperatures, so that the heating resistor is accurately controlled to an appropriate temperature. It can be, because the second temperature sensor located on the surface of the heating resistor can be thermal time constant of the heating control circuit to reduce the power consumption reduced.

【0031】請求項4記載の発明では、基板に空洞を形
成して架橋構造の支持部を形成し、この支持部の表面に
第一温度センサと第二温度センサと発熱抵抗体とを形成
したことにより、第一温度センサと第二温度センサと発
熱抵抗体とを、熱容量が小さく流体により良好に冷却さ
れる形状に形成することができるので、その感度や応答
性を向上させることができる。
According to the fourth aspect of the invention, a cavity is formed in the substrate to form a support portion having a bridge structure, and the first temperature sensor, the second temperature sensor, and the heating resistor are formed on the surface of the support portion. As a result, the first temperature sensor, the second temperature sensor, and the heating resistor can be formed in a shape having a small heat capacity and being favorably cooled by the fluid, so that the sensitivity and responsiveness can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の第一の形態の流量測定装置のフ
ローセンサを示す平面図である。
FIG. 1 is a plan view showing a flow sensor of a flow rate measuring device according to a first embodiment of the present invention.

【図2】発熱制御回路を示す回路図である。FIG. 2 is a circuit diagram showing a heat generation control circuit.

【図3】(a)は第一温度センサと第二温度センサとの
検出温度を示す特性図、(b)は流体の流量の測定結果
を示す特性図である。
FIG. 3A is a characteristic diagram showing detected temperatures of a first temperature sensor and a second temperature sensor, and FIG. 3B is a characteristic diagram showing a measurement result of a fluid flow rate.

【図4】一変形例の発熱制御回路を示す回路図である。FIG. 4 is a circuit diagram showing a heat generation control circuit of a modified example.

【図5】本発明の実施の第二の形態の流量測定装置のフ
ローセンサを示す平面図である。
FIG. 5 is a plan view showing a flow sensor of a flow rate measuring device according to a second embodiment of the present invention.

【図6】(a)は一従来例の流量測定装置の第一温度セ
ンサと第二温度センサとの検出温度を示す特性図、
(b)は流体の流量の測定結果を示す特性図である。
FIG. 6A is a characteristic diagram showing detected temperatures of a first temperature sensor and a second temperature sensor of a flow rate measuring device of a conventional example,
(B) is a characteristic diagram showing the measurement result of the flow rate of the fluid.

【符号の説明】[Explanation of symbols]

1,21 流量測定装置 3,19 発熱制御回路 4 基板 5 空洞 6 支持部 7 発熱抵抗体 8 第一温度センサ 9 第二温度センサ 10 流体温度センサ 1, 21 Flow rate measuring device 3, 19 Heat generation control circuit 4 Substrate 5 Cavity 6 Support part 7 Heating resistor 8 First temperature sensor 9 Second temperature sensor 10 Fluid temperature sensor

───────────────────────────────────────────────────── フロントページの続き (71)出願人 391025741 木村 光照 宮城県宮城郡七ケ浜町汐見台3丁目2番地 の56 (72)発明者 堀口 浩幸 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 木村 光照 宮城県宮城郡七ケ浜町汐見台3丁目2番地 の56 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 391025741 Mitsuteru Kimura 56, 3-2 Shiomidai, Shichigahama-cho, Miyagi-gun, Miyagi Prefecture 56 (72) Inventor Hiroyuki Horiguchi 1-3-6 Nakamagome, Ota-ku, Tokyo Ricoh Company, Ltd. (72) Inventor Mitsuteru Kimura 56, 3-2 Shiomidai, Shichigahama-cho, Miyagi-gun, Miyagi Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体が流動する位置に配置される発熱抵
抗体と、この発熱抵抗体の上流に配置された第一温度セ
ンサと、この第一温度センサと前記発熱抵抗体との間隙
に配置された第二温度センサと、前記発熱抵抗体を流体
より所定温度だけ高温に駆動制御する発熱制御回路と、
前記第一温度センサと前記第二温度センサとの検出温度
の差分から流体の流量を測定する流量測定回路と、を有
することを特徴とする流量測定装置。
1. A heating resistor disposed at a position where a fluid flows, a first temperature sensor disposed upstream of the heating resistor, and a gap disposed between the first temperature sensor and the heating resistor. Second temperature sensor, and a heat generation control circuit for driving and controlling the heat generation resistor to a temperature higher than the fluid by a predetermined temperature,
A flow rate measuring device, comprising: a flow rate measuring circuit that measures a flow rate of a fluid based on a difference between detection temperatures of the first temperature sensor and the second temperature sensor.
【請求項2】 流体が流動する位置に配置される発熱抵
抗体と、この発熱抵抗体の上流に配置された第一温度セ
ンサと、前記発熱抵抗体の表面に配置された第二温度セ
ンサと、前記発熱抵抗体に影響されない位置に配置され
て流体の温度を検出する流体温度センサと、この流体温
度センサと前記第二温度センサとの検出温度の差分が所
定温度となるよう前記発熱抵抗体を駆動制御する発熱制
御回路と、前記第一温度センサと前記第二温度センサと
の検出温度の差分から流体の流量を測定する流量測定回
路と、を有することを特徴とする流量測定装置。
2. A heating resistor arranged at a position where a fluid flows, a first temperature sensor arranged upstream of the heating resistor, and a second temperature sensor arranged on the surface of the heating resistor. , A fluid temperature sensor arranged at a position not affected by the heating resistor to detect the temperature of the fluid, and the heating resistor so that the difference between the temperature detected by the fluid temperature sensor and the second temperature sensor becomes a predetermined temperature. And a flow rate measuring circuit for measuring the flow rate of the fluid from the difference between the temperatures detected by the first temperature sensor and the second temperature sensor.
【請求項3】 流体が流動する位置に配置される発熱抵
抗体と、この発熱抵抗体の上流に配置された第一温度セ
ンサと、前記発熱抵抗体の表面に配置された第二温度セ
ンサと、前記発熱抵抗体に影響されない位置に配置され
て流体の温度を検出する流体温度センサと、この流体温
度センサと前記第二温度センサとの検出温度の差分が所
定温度となるよう前記発熱抵抗体を駆動制御する発熱制
御回路と、前記第一温度センサの検出温度に基づいて流
体の流量を測定する流量測定回路と、を有することを特
徴とする流量測定装置。
3. A heating resistor arranged at a position where a fluid flows, a first temperature sensor arranged upstream of the heating resistor, and a second temperature sensor arranged on the surface of the heating resistor. , A fluid temperature sensor arranged at a position not affected by the heating resistor to detect the temperature of the fluid, and the heating resistor so that the difference between the temperature detected by the fluid temperature sensor and the second temperature sensor becomes a predetermined temperature. And a flow rate measurement circuit for measuring the flow rate of the fluid based on the temperature detected by the first temperature sensor.
【請求項4】 基板に空洞を形成して架橋構造の支持部
を形成し、この支持部の表面に第一温度センサと第二温
度センサと発熱抵抗体とを形成したことを特徴とする請
求項1,2または3記載の流量測定装置。
4. A substrate is provided with a cavity to form a support portion having a cross-linking structure, and a first temperature sensor, a second temperature sensor and a heating resistor are formed on the surface of the support portion. Item 1, 2 or 3 of the flow rate measuring device.
JP8054489A 1996-03-12 1996-03-12 Flow rate measuring apparatus Pending JPH09243423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8054489A JPH09243423A (en) 1996-03-12 1996-03-12 Flow rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8054489A JPH09243423A (en) 1996-03-12 1996-03-12 Flow rate measuring apparatus

Publications (1)

Publication Number Publication Date
JPH09243423A true JPH09243423A (en) 1997-09-19

Family

ID=12972067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8054489A Pending JPH09243423A (en) 1996-03-12 1996-03-12 Flow rate measuring apparatus

Country Status (1)

Country Link
JP (1) JPH09243423A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798194A1 (en) * 1999-09-03 2001-03-09 Denso Corp FLOW SENSOR AND METHOD FOR MANUFACTURING SAME
US6450025B1 (en) 1998-03-20 2002-09-17 Denso Corporation Micro-heater and airflow sensor using the same
US6840102B2 (en) 2002-02-19 2005-01-11 Denso Corporation Flow amount measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6450025B1 (en) 1998-03-20 2002-09-17 Denso Corporation Micro-heater and airflow sensor using the same
FR2798194A1 (en) * 1999-09-03 2001-03-09 Denso Corp FLOW SENSOR AND METHOD FOR MANUFACTURING SAME
US6626037B1 (en) 1999-09-03 2003-09-30 Denso Corporation Thermal flow sensor having improved sensing range
US6840102B2 (en) 2002-02-19 2005-01-11 Denso Corporation Flow amount measuring apparatus
DE10306805B4 (en) * 2002-02-19 2013-10-31 Denso Corporation Flow-measuring device

Similar Documents

Publication Publication Date Title
US5703288A (en) Thermally-sensitive type flow meter having a high accuracy
JP2704048B2 (en) Current difference type thermal mass flow transducer
US7287424B2 (en) Thermal type flow measurement apparatus having asymmetrical passage for flow rate measurement
US20050150310A1 (en) Anemometer circuit
JPH01150817A (en) Mass flow meter
WO2003093838A1 (en) Flow velocity sensor
JPH09243423A (en) Flow rate measuring apparatus
JP3293469B2 (en) Thermal flow sensor
US7712347B2 (en) Self diagnostic measurement method to detect microbridge null drift and performance
JP3706283B2 (en) Flow sensor circuit
JP3454265B2 (en) Thermal flow sensor
JPH11148944A (en) Flow velocity sensor and flow velocity-measuring apparatus
JPH11148945A (en) Flow velocity sensor and flow velocity-measuring apparatus
JP2952438B2 (en) Thermal flow meter
JPH07174600A (en) Flow-velocity sensor and flow-velocity measuring apparatus
JP3577902B2 (en) Thermal flow sensor
JPH0449893B2 (en)
JP3373981B2 (en) Thermal flow meter
JP2879256B2 (en) Thermal flow meter
JP3570659B2 (en) Thermal flow sensor
JP3523105B2 (en) Flow sensor heater control device
JP4435351B2 (en) Thermal flow meter
JP3766601B2 (en) Flow sensor and flow measurement device
JPH10142249A (en) Flow sensor
JP3019009U (en) Mass flow meter