JP3570659B2 - Thermal flow sensor - Google Patents

Thermal flow sensor Download PDF

Info

Publication number
JP3570659B2
JP3570659B2 JP21494997A JP21494997A JP3570659B2 JP 3570659 B2 JP3570659 B2 JP 3570659B2 JP 21494997 A JP21494997 A JP 21494997A JP 21494997 A JP21494997 A JP 21494997A JP 3570659 B2 JP3570659 B2 JP 3570659B2
Authority
JP
Japan
Prior art keywords
thermocouple
temperature
voltage
heat
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21494997A
Other languages
Japanese (ja)
Other versions
JPH1151952A (en
Inventor
清志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP21494997A priority Critical patent/JP3570659B2/en
Publication of JPH1151952A publication Critical patent/JPH1151952A/en
Application granted granted Critical
Publication of JP3570659B2 publication Critical patent/JP3570659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は熱式流速センサに関し、特に流体の流れる通路に発熱体及び熱電対を設け、発熱体により加熱された流体により熱電対が加熱されたときに熱電対から発生する電圧を検出することにより流体の流速を測定するようになされた熱式流速センサに適用し得る。
【0002】
【従来の技術】
従来、この種の熱式流速センサとして、図2に示すような構成のものがある。熱式流速センサ1は基台2上に発熱部3及び温度検出部4が設けられている。ここで発熱部3は測定しようとする流体の流れる方向aに対して温度検出部4よりも上流側に配設されている。
【0003】
発熱部3は発熱体としての抵抗5と、抵抗5の両端から導出された電極パット6A,6Bとにより構成され、電極パット6A,6Bに図示しない電源から電圧を印加することにより抵抗5に電流を流して抵抗5を発熱させるようになっている。
【0004】
温度検出部4はサーモパイル構成からなる。その他に、測温抵抗体や焦電体を用いてもよい。温度検出部4はSiO薄膜からなるダイヤフラム構成となっている感温部材7を有し、この感温部材7上には複数の熱電対8が互いに直列接続されたサーモパイルが形成されている。これら複数の熱電対8は、その感温接点9を感温部材7上に配設し、その冷接点10を感温部材7の外側に配設した構成となっている。
【0005】
また直列に接続された複数の熱電対8の両端の接点9、10は、それぞれ電極パット12A及び12Bに電気的に接続されている。そして電極パット12A,12B間の電圧が図示しない電圧計で計測される。
【0006】
なお抵抗5の周囲には断熱部13が形成されていると共に、感温部材7の発熱部3に対向する一辺位置には断熱部14が形成され、これにより発熱部3で発生した熱が基台2を伝導して感温部材7に到達することを防止するようになっている。
【0007】
かかる構成において、熱式流速センサ1では、上流部の発熱部3で温められた流体が下流の温度検出部4で感知されるまでの時間Δt、すなわち温度検出部4の電極パット12A、12B間の電圧がある値以上となるまでの時間を測定し、この時間Δtを使って演算部(図示せず)で流速v=Δl/Δtを求める。但し、前式におけるΔlは発熱部5から温度検出部4までの距離とする。
【0008】
【発明が解決しようとする課題】
ところが、感温部材7に伝わる熱量は流速によって変化するため、実際には上述の計測時間Δtの逆数(1/Δt)は流速に比例しない。そこで通常この構成の流速センサは感温部材7の温度上昇ΔTをサーモパイルの起電力(または測温抵抗体の抵抗変化)で計測した値と流速との相関を利用して流速を計測している。しかしながら、この相関関係も、図3に示すように、非線形型である。なお図3のグラフは流速とセンサ出力との相関の一例を示す。
【0009】
また従来の熱式流速センサにおいては、発熱部の抵抗値などが温度特性を有するため、環境温度が変化するとこれに応じて発生する熱量も変化する。例えば環境温度が高いほど発熱抵抗体の抵抗値は高くなり、定電圧で駆動している場合、発生熱量は少なくなる。この結果、ΔTの測定を行った場合でも若しくはΔtの測定を行った場合でも、流体の流速が同じであっても環境温度が高いほど実際の流速よりも流速が遅いといった誤った計測値を得てしまう。
【0010】
従来これを回避する方法として、定電力駆動回路によって発熱体を制御するなどの対策がとられてきた。しかしながら、定電力駆動回路は定電圧や定電流の駆動回路に比べて回路規模が非常に大きく、消費電流もかなり大きくなるという欠点があった。また環境温度をモニタし、発熱体や測定値にフィードバックをかける対策も考えられるが、この場合明らかに回路規模も消費電流も大きくなる欠点がある。
【0011】
また従来の熱式流速センサは、発熱部で発生した熱はセンサ内の伝熱により温度検出部に伝わり、この結果検出される電圧値がその分だけ上昇してしまうことになる。これを避けるために、発熱体から発生する熱を温度検出部に回り込む前に基台で冷却する構成にするとよいが、発熱体で消費される電流値をできるだけ小さくすることを考慮すると、発熱体と基台の熱抵抗はあまり小さくできない。そこで図2について述べたように、発熱体3と温度検出部4の間に断熱13、14を設ける方法がとられている。しかしながらセンサの強度上断熱にも限界がある。
【0012】
そこで、発熱部の上流側に発熱体を中心にして対称に温度検出部と同じ構成のリファレンス温度検出部を配置したものがある。これによれば、温度検出部とリファレンス温度検出部の電圧差を計測値とすることで、伝熱によるオフセット電圧をなくすことができる。しかしながら、この構成では、センサが大きくなり、また左右対称のセンサを作製する難しさによる器差や歩留まりの低下を引き起こす欠点があった。
【0013】
本発明は以上の点を考慮してなされたもので、かかる従来の課題を一挙に解決して、環境温度の変化による測定誤差が少ない簡易な構成の熱式流速センサを提案しようとするものである。
【0014】
【課題を解決するための手段】
かかる課題を解決するため本発明により成された請求項1に記載の熱式流速センサは、図1に示すように、流体の流れる通路に発熱体及び接点間の温度差に応じた起電力を発生する熱電対を設け、前記発熱体により加熱された前記流体により前記熱電対が加熱されたときに前記熱電対から発生する電圧を検出することにより前記流体の流速を測定するようになされた熱式流速センサにおいて、
前記流体の流れる方向に対して前記発熱体の下流側に、前記流体の流れる方向に対してほぼ平行となるように前記熱電対を配設して前記熱電対に上流側の接点と下流側の接点との温度差に応じた電圧を発生させ、
前記発熱体が発熱を開始した時点又は発熱を停止した時点から前記熱電対の電圧が正負逆転するまでの時間に基づいて前記流速を求めるようにした。
【0015】
以上の構成において、熱電対の2つの接点は流体の流れる方向に対して上流側及び下流側に位置するようになることにより、熱電対からは加熱された流体の流れに応じて変化する上流側の接点と下流側の接点の温度差に応じた電圧が発生する。
【0016】
ここで発熱体によって温められた流体は先ず熱電対の2つの接点のうち上流側の接点に到達する。このとき上流側の接点の方が下流側の接点よりも温度が高いことにより熱電対からは正の電圧値が出力される。次に温められた流体が下流側の接点に到達すると、上流側の接点の温度よりも下流側の接点の温度が高くなることにより熱電対からは負の電圧値が出力される。
【0017】
この電圧値の正負が切り替わる時点Δtは簡単に検出でき、明らかに、発熱体からの発熱量が変化してもその時点Δtは変化しない。またサーモパイルの温度特性の影響も受けない。従って、本発明の熱式流速センサが配置された環境温度が変化してもその影響を受けずに安定(すなわち直線性の向上した)した出力を得ることができる。
【0018】
かくして、発熱体が発熱を開始した時点又は発熱を停止した時点から熱電対の電圧が正負逆転するまでの時間に基づいて流速を求めるようにすれば、熱伝導や環境温度の変化に起因する測定誤差の少ない良好な測定結果を簡単に得ることができるようになる。
【0019】
【発明の実施の形態】
以下、図面に基づき本発明の一実施形態を説明する。
【0020】
図2との対応部分に同一符号を付して示す図1は、本発明による熱式流速センサを示す。熱式流速センサ20は、感温部材22上に、流体の流れる方向aに対してほぼ平行となるように複数の熱電対21が配設されている。これにより各熱電対21は上流側の接点23と下流側の接点24の間で温度差が生じると、当該温度差に応じた電圧を発生するようになされている。
【0021】
感温部材22はSiO薄膜からなるダイヤフラム構成となっている。また感温部材22のSiO薄膜上には、半導体プロセスにより、P−SiとAlでなる電路21A及びAlでなる電路21Bが、気流に対して上流側の接点23と気流に対して下流側の接点24で互いに接合するように形成されている。これにより感熱部材22及び熱電対21はサーモパイルを構成する。
【0022】
このように熱式流速センサ20においては、複数の熱電対21を直列接続していることにより、最終的に検出される熱電対21からの電圧は各熱電対の電圧の総和となることにより、1つの熱電対からの電圧に基づいて流速を求める場合に比して感度を向上させることができる。
【0023】
ここで熱式流速センサ20では、制御部31からの制御信号S1に応じて電圧印加回路26が駆動されて抵抗5に電流が流れ抵抗5が発熱する。また電極パット25A及び25B間の電圧は電圧計27により検出され、この結果得られた電圧値信号S2が演算部28に送出される。演算部28は制御部31からの制御信号S1と電圧値信号S2とを用いて所定の演算を行うことにより流体速度を求める。
【0024】
以上の構成において、発熱部3によって温められた流体は先ず熱電対21の上流側の接点23に到達する。このとき上流側の接点23の温度の方が下流側の接点24の温度よりも高くなるので電圧計27では正の電圧値が検出される。次に温められた流体が熱電対21の下流側の接点24に到達すると、下流側の接点24の温度の方が上流側の接点23の温度よりも高くなるので電圧計27では負の電圧値が検出されるようになる。
【0025】
なおこの実施形態では、温められた流体が同じ時間に接点23と接点24の両方をまたがないようにするために、発熱部3の発熱は非常に短い時間だけ行われる(すなわちオンされた後すぐにオフされる)ようになっている。
【0026】
演算部28は発熱部3により発熱が開始されたときから電圧計27の検出電圧が正から負へと変化するまでの時間(すなわち検出電圧値が±0となるまでの時間)Δtを監視し、この時間Δtから流速vを算出する。
【0027】
このようにしたことで、感温部材22に環境温度による温度特性があっても、検出電圧値が±0となるときの接点23と接点24との温度差は常に零なので、感温部材22の温度特性は無視できるようになる。
【0028】
また環境温度等の違いにより発熱部3の発熱量が多少変動しても、発熱時間が一定であれば、求められる流速の測定値はほとんど変動しないため、発熱部3の温度特性による測定誤差が軽減されるようになる。
【0029】
またこのように熱式流速センサ20の応答性はその熱的な構造設計によらないので、ほとんど即時的(温度感知時間Δtの2倍程度で)流速測定を行うことができるようになり、その応答速度を十ミリ秒以下とすることも可能となる。
【0030】
因みに、図2に示すような従来の熱式流速センサ1では、応答速度をあまり速くすることができない欠点があった。すなわち感温部材7と基台2との熱抵抗を大きくすればするほど感温部材7の温度上昇速度を速くすることができるが、冷却までに時間がかかるようになり次の測定までの間隔が長くなってしまう。これに対して感温部材7と基台2との熱抵抗を小さくすると、感温部材7の温度上昇が遅くなってしまう。このため熱式流速センサ1の応答速度は実際上数十ミリ秒が限界であった。
【0031】
以上の構成によれば、熱電対21を流体の流れる方向aに対して平行となるように配設し、電圧値の正負が逆転する時点に基づいて流速を求めるようにしたことにより、発熱部3の熱が基台2を介して感温部材22に伝導した場合や熱式流速センサが配置された環境温度が変化した場合でも、電圧値の正負が逆転する時点はそれらによってはほとんど変化しないので、環境温度による誤差の少ない測定結果を得ることができる。
【0032】
なお上述の実施形態においては、発熱部3が発熱した時点から熱電対21の両端の電圧が正負逆転するまでの時間に基づいて流速を求めるようにした場合について述べたが、これとは逆に発熱部3が発熱を停止した時点から熱電対21の両端の電圧が負から正へと逆転するまでの時間に基づいて流速を求めるようにした場合でも上述の実施形態と同様の効果を得ることができる。
【0033】
また上述の実施形態においては、複数の熱電対21から得られた電圧の変化に基づいて流速を求めるようにした場合について述べたが、本発明はこれに限らず、当然1つの熱電対から得られた電圧の変化に基づいて流速を求めるようにしてもよい。
【0034】
【発明の効果】
上述したように請求項1の発明によれば、流体の流れる方向に対して発熱体の下流側に、流体の流れる方向に対してほぼ平行となるように熱電対を配設し、発熱体が発熱を開始した時点又は発熱を停止した時点から熱電対の電圧が正負逆転するまでの時間に基づいて流速を求めるようにしたことにより、環境温度の変化による測定誤差が少ない簡易な構成の熱式流速センサを実現できる。
【0035】
また発熱体を定電力駆動でなく定電圧(または定電流)駆動しても正確な測定値を得ることができるため、消費電流を低減することができる。
【図面の簡単な説明】
【図1】実施の形態による熱式流速センサの構成を示す略線図である。
【図2】従来の熱式流速センサの構成を示す平面図である。
【符号の説明】
5 発熱体(抵抗)
20 熱式流速センサ
21 熱電対
23,24 接点
29,30 断熱部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal type flow rate sensor, in particular, by providing a heating element and a thermocouple in a passage through which a fluid flows, and by detecting a voltage generated from the thermocouple when the thermocouple is heated by a fluid heated by the heating element. The present invention can be applied to a thermal flow sensor adapted to measure the flow velocity of a fluid.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as this type of thermal flow sensor, there is one having a configuration as shown in FIG. The thermal flow sensor 1 includes a heat generating unit 3 and a temperature detecting unit 4 provided on a base 2. Here, the heat generating unit 3 is disposed upstream of the temperature detecting unit 4 with respect to the flowing direction a of the fluid to be measured.
[0003]
The heating section 3 is composed of a resistor 5 as a heating element and electrode pads 6A and 6B led out from both ends of the resistor 5, and a current is applied to the resistor 5 by applying a voltage from a power source (not shown) to the electrode pads 6A and 6B. To cause the resistor 5 to generate heat.
[0004]
The temperature detector 4 has a thermopile configuration. Alternatively, a resistance temperature detector or a pyroelectric element may be used. The temperature detecting section 4 has a temperature-sensitive member 7 having a diaphragm configuration made of a SiO 2 thin film. On the temperature-sensitive member 7, a thermopile in which a plurality of thermocouples 8 are connected in series with each other is formed. The plurality of thermocouples 8 have a configuration in which the temperature-sensitive contact 9 is disposed on the temperature-sensitive member 7 and the cold junction 10 is disposed outside the temperature-sensitive member 7.
[0005]
The contacts 9, 10 at both ends of the plurality of thermocouples 8 connected in series are electrically connected to the electrode pads 12A and 12B, respectively. The voltage between the electrode pads 12A and 12B is measured by a voltmeter (not shown).
[0006]
A heat insulating portion 13 is formed around the resistor 5, and a heat insulating portion 14 is formed at one side of the temperature sensing member 7 opposite to the heat generating portion 3. The conduction through the base 2 is prevented from reaching the temperature-sensitive member 7.
[0007]
In such a configuration, in the thermal type flow sensor 1, the time Δt until the fluid heated by the upstream heat generating unit 3 is detected by the downstream temperature detecting unit 4, that is, between the electrode pads 12 </ b> A and 12 </ b> B of the temperature detecting unit 4. Is measured until the voltage becomes a certain value or more, and a flow rate v = Δl / Δt is obtained by an arithmetic unit (not shown) using the time Δt. Here, Δl in the above equation is the distance from the heat generating section 5 to the temperature detecting section 4.
[0008]
[Problems to be solved by the invention]
However, since the amount of heat transmitted to the temperature-sensitive member 7 varies depending on the flow velocity, the reciprocal (1 / Δt) of the measurement time Δt is not actually proportional to the flow velocity. Therefore, usually, the flow rate sensor of this configuration measures the flow rate using the correlation between the flow rate and the value obtained by measuring the temperature rise ΔT of the temperature sensing member 7 by the electromotive force of the thermopile (or the resistance change of the resistance temperature detector). . However, this correlation is also non-linear, as shown in FIG. The graph in FIG. 3 shows an example of the correlation between the flow rate and the sensor output.
[0009]
Further, in the conventional thermal flow sensor, since the resistance value of the heat generating portion has a temperature characteristic, when the environmental temperature changes, the amount of generated heat also changes. For example, the higher the environmental temperature is, the higher the resistance value of the heat generating resistor is, and when driving at a constant voltage, the amount of generated heat is small. As a result, even when the measurement of ΔT or the measurement of Δt is performed, even if the flow velocity of the fluid is the same, an erroneous measurement value that the flow velocity is lower than the actual flow velocity as the environmental temperature is higher than the actual flow velocity is obtained. Would.
[0010]
Conventionally, as a method of avoiding this, countermeasures such as controlling the heating element by a constant power drive circuit have been taken. However, the constant power drive circuit has a disadvantage that the circuit scale is very large and the current consumption is considerably large as compared with a constant voltage or constant current drive circuit. In addition, a measure to monitor the environmental temperature and feed back the heating element and the measured value can be considered, but in this case, there is a disadvantage that the circuit scale and the current consumption are obviously increased.
[0011]
In the conventional thermal flow sensor, heat generated in the heat generating portion is transmitted to the temperature detecting portion by heat transfer in the sensor, and as a result, the detected voltage value increases accordingly. In order to avoid this, it is good to adopt a configuration in which the heat generated from the heating element is cooled by the base before flowing to the temperature detection unit.However, in consideration of minimizing the current value consumed by the heating element, And the thermal resistance of the base cannot be reduced too much. Therefore, as described with reference to FIG. 2, a method of providing heat insulation 13 and 14 between the heating element 3 and the temperature detection unit 4 is adopted. However, there is a limit to heat insulation due to the strength of the sensor.
[0012]
Therefore, there is a configuration in which a reference temperature detection unit having the same configuration as the temperature detection unit is arranged symmetrically with respect to the heating element on the upstream side of the heating unit. According to this, the offset voltage due to the heat transfer can be eliminated by using the voltage difference between the temperature detection unit and the reference temperature detection unit as the measured value. However, this configuration has disadvantages in that the sensor becomes large, and that the difficulty in manufacturing a symmetrical sensor causes an instrumental difference and a decrease in yield.
[0013]
The present invention has been made in consideration of the above points, and aims to propose a thermal flow sensor having a simple configuration with a small measurement error due to a change in environmental temperature by solving the conventional problems at once. is there.
[0014]
[Means for Solving the Problems]
In order to solve such a problem, a thermal flow sensor according to the present invention is provided with an electromotive force corresponding to a temperature difference between a heating element and a contact point in a passage through which a fluid flows, as shown in FIG. A thermocouple that generates heat, and detects the voltage generated from the thermocouple when the thermocouple is heated by the fluid heated by the heating element, thereby measuring the flow velocity of the fluid. In the flow velocity sensor,
On the downstream side of the heating element with respect to the direction in which the fluid flows, the thermocouple is disposed so as to be substantially parallel to the direction in which the fluid flows, and the upstream contact and the downstream side of the thermocouple are connected to the thermocouple. Generates a voltage corresponding to the temperature difference with the contacts,
The flow rate is determined based on the time from when the heating element starts heating or when heating stops, to when the voltage of the thermocouple reverses.
[0015]
In the above configuration, the two contacts of the thermocouple are located on the upstream side and the downstream side with respect to the direction in which the fluid flows, so that the upstream side changes in accordance with the flow of the heated fluid from the thermocouple. A voltage is generated according to the temperature difference between the contact on the downstream side and the contact on the downstream side.
[0016]
Here, the fluid warmed by the heating element first reaches the upstream contact of the two contacts of the thermocouple. At this time, since the temperature of the upstream contact is higher than that of the downstream contact, a positive voltage value is output from the thermocouple. Next, when the heated fluid reaches the downstream contact, the temperature of the downstream contact becomes higher than the temperature of the upstream contact, so that a negative voltage value is output from the thermocouple.
[0017]
The time point Δt at which the voltage value switches between positive and negative can be easily detected, and obviously, the time point Δt does not change even if the amount of heat generated from the heating element changes. Also, it is not affected by the temperature characteristics of the thermopile. Therefore, even if the environmental temperature at which the thermal flow sensor of the present invention is arranged changes, a stable (ie, improved linearity) output can be obtained without being affected by the change.
[0018]
Thus, if the flow rate is determined based on the time from when the heating element starts heating or stops heating until the voltage of the thermocouple reverses, measurement due to changes in heat conduction and environmental temperature can be performed. Good measurement results with little error can be easily obtained.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0020]
FIG. 1, in which parts corresponding to those in FIG. 2 are assigned the same reference numerals, shows a thermal flow sensor according to the present invention. In the thermal type flow sensor 20, a plurality of thermocouples 21 are arranged on a temperature sensing member 22 so as to be substantially parallel to a direction a in which a fluid flows. Accordingly, when a temperature difference occurs between the upstream contact 23 and the downstream contact 24, each thermocouple 21 generates a voltage corresponding to the temperature difference.
[0021]
The temperature sensing member 22 has a diaphragm configuration made of a SiO 2 thin film. In addition, on the SiO 2 thin film of the temperature sensing member 22, an electric circuit 21 A made of P + -Si and Al and an electric circuit 21 B made of Al are formed by a semiconductor process, and a contact 23 on the upstream side with respect to the airflow and a downstream with respect to the airflow. It is formed so as to be joined to each other at the contact 24 on the side. Thus, the thermosensitive member 22 and the thermocouple 21 constitute a thermopile.
[0022]
As described above, in the thermal type flow velocity sensor 20, since the plurality of thermocouples 21 are connected in series, the finally detected voltage from the thermocouples 21 is the sum of the voltages of the respective thermocouples. Sensitivity can be improved as compared with the case where the flow velocity is obtained based on the voltage from one thermocouple.
[0023]
Here, in the thermal type flow velocity sensor 20, the voltage application circuit 26 is driven according to the control signal S1 from the control unit 31, and current flows through the resistor 5 to generate heat. Further, the voltage between the electrode pads 25A and 25B is detected by the voltmeter 27, and the voltage value signal S2 obtained as a result is sent to the arithmetic unit 28. The calculation unit 28 obtains the fluid velocity by performing a predetermined calculation using the control signal S1 and the voltage value signal S2 from the control unit 31.
[0024]
In the above configuration, the fluid warmed by the heat generating section 3 first reaches the contact 23 on the upstream side of the thermocouple 21. At this time, the temperature of the contact 23 on the upstream side is higher than the temperature of the contact 24 on the downstream side, so that the voltmeter 27 detects a positive voltage value. Next, when the warmed fluid reaches the downstream contact 24 of the thermocouple 21, the temperature of the downstream contact 24 becomes higher than the temperature of the upstream contact 23. Will be detected.
[0025]
In this embodiment, in order to prevent the heated fluid from straddling both the contact 23 and the contact 24 at the same time, the heat generation of the heat generating unit 3 is performed only for a very short time (that is, after the heat is turned on). Will be turned off immediately).
[0026]
The arithmetic unit 28 monitors the time Δt from when the heat is generated by the heat generating unit 3 until the detected voltage of the voltmeter 27 changes from positive to negative (that is, the time until the detected voltage value becomes ± 0) Δt. The flow velocity v is calculated from the time Δt.
[0027]
By doing so, even if the temperature-sensitive member 22 has a temperature characteristic due to the environmental temperature, the temperature difference between the contact points 23 and 24 when the detected voltage value is ± 0 is always zero. Becomes negligible.
[0028]
Even if the amount of heat generated by the heat generating portion 3 slightly fluctuates due to a difference in environmental temperature or the like, if the heat generation time is constant, the measured value of the required flow velocity hardly changes. Will be reduced.
[0029]
In addition, since the responsiveness of the thermal type flow sensor 20 does not depend on its thermal structure design, the flow rate can be measured almost immediately (about twice the temperature sensing time Δt). The response speed can be reduced to 10 milliseconds or less.
[0030]
Incidentally, the conventional thermal flow velocity sensor 1 as shown in FIG. 2 has a disadvantage that the response speed cannot be made too high. That is, as the thermal resistance between the temperature-sensitive member 7 and the base 2 is increased, the temperature rising speed of the temperature-sensitive member 7 can be increased, but it takes a longer time to cool down, and the interval between the next measurements is increased. Becomes longer. On the other hand, if the thermal resistance between the temperature-sensitive member 7 and the base 2 is reduced, the temperature rise of the temperature-sensitive member 7 becomes slow. For this reason, the response speed of the thermal flow sensor 1 has been practically limited to several tens of milliseconds.
[0031]
According to the above configuration, the thermocouple 21 is disposed so as to be parallel to the direction a in which the fluid flows, and the flow velocity is obtained based on the point in time when the polarity of the voltage value reverses. Even when the heat of No. 3 is conducted to the temperature sensing member 22 via the base 2 or when the environmental temperature at which the thermal type flow velocity sensor is arranged changes, the time when the polarity of the voltage value reverses hardly changes. Therefore, it is possible to obtain a measurement result with less error due to the environmental temperature.
[0032]
In the above-described embodiment, a case has been described in which the flow velocity is obtained based on the time from when the heat generating portion 3 generates heat to when the voltage across the thermocouple 21 reverses in the positive and negative directions. Even when the flow rate is obtained based on the time from when the heat generating unit 3 stops generating heat to when the voltage across the thermocouple 21 reverses from negative to positive, the same effect as in the above embodiment can be obtained. Can be.
[0033]
Further, in the above-described embodiment, a case has been described in which the flow velocity is obtained based on the change in the voltage obtained from the plurality of thermocouples 21. However, the present invention is not limited to this, and it is obvious that the flow rate is obtained from one thermocouple. The flow velocity may be obtained based on the change in the applied voltage.
[0034]
【The invention's effect】
As described above, according to the first aspect of the present invention, a thermocouple is disposed downstream of the heating element with respect to the direction in which the fluid flows, so as to be substantially parallel to the direction in which the fluid flows. A thermal formula with a simple configuration that reduces the measurement error due to changes in environmental temperature by calculating the flow velocity based on the time from when heat generation starts or when heat generation stops or when the voltage of the thermocouple reverses the polarity. A flow sensor can be realized.
[0035]
Even if the heating element is driven at a constant voltage (or a constant current) instead of a constant power drive, an accurate measured value can be obtained, so that the current consumption can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a configuration of a thermal flow sensor according to an embodiment.
FIG. 2 is a plan view showing a configuration of a conventional thermal flow sensor.
[Explanation of symbols]
5 Heating element (resistance)
Reference Signs List 20 thermal flow sensor 21 thermocouples 23, 24 contacts 29, 30 heat insulating member

Claims (1)

流体の流れる通路に発熱体及び接点間の温度差に応じた起電力を発生する熱電対を設け、前記発熱体により加熱された前記流体により前記熱電対が加熱されたときに前記熱電対から発生する電圧を検出することにより前記流体の流速を測定するようになされた熱式流速センサにおいて、
前記流体の流れる方向に対して前記発熱体の下流側に、前記流体の流れる方向に対してほぼ平行となるように前記熱電対を配設して前記熱電対に上流側の接点と下流側の接点との温度差に応じた電圧を発生させ、
前記発熱体が発熱を開始した時点又は発熱を停止した時点から前記熱電対の電圧が正負逆転するまでの時間に基づいて前記流速を求めるようにした
ことを特徴とする熱式流速センサ。
A thermocouple for generating an electromotive force according to a temperature difference between a heating element and a contact point is provided in a passage in which a fluid flows, and the thermocouple is generated from the thermocouple when the thermocouple is heated by the fluid heated by the heating element. A thermal flow rate sensor adapted to measure the flow rate of the fluid by detecting a voltage
On the downstream side of the heating element with respect to the direction in which the fluid flows, the thermocouple is disposed so as to be substantially parallel to the direction in which the fluid flows, and the upstream contact and the downstream side of the thermocouple are connected to the thermocouple. Generates a voltage according to the temperature difference with the contact,
A thermal type flow velocity sensor, wherein the flow velocity is obtained based on a time from when the heat generating element starts generating heat or when heat generation is stopped to when the voltage of the thermocouple reverses the polarity.
JP21494997A 1997-08-08 1997-08-08 Thermal flow sensor Expired - Fee Related JP3570659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21494997A JP3570659B2 (en) 1997-08-08 1997-08-08 Thermal flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21494997A JP3570659B2 (en) 1997-08-08 1997-08-08 Thermal flow sensor

Publications (2)

Publication Number Publication Date
JPH1151952A JPH1151952A (en) 1999-02-26
JP3570659B2 true JP3570659B2 (en) 2004-09-29

Family

ID=16664238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21494997A Expired - Fee Related JP3570659B2 (en) 1997-08-08 1997-08-08 Thermal flow sensor

Country Status (1)

Country Link
JP (1) JP3570659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148532A (en) * 2018-02-28 2019-09-05 マツダ株式会社 Flow rate measurement method and device thereof

Also Published As

Publication number Publication date
JPH1151952A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
KR100488213B1 (en) Thermal Air Flow Meter
US6370950B1 (en) Medium flow meter
US5703288A (en) Thermally-sensitive type flow meter having a high accuracy
JP4157034B2 (en) Thermal flow meter
JP5076235B2 (en) Thermocouple heater and temperature measurement device using the same
JP2004361271A (en) Thermal type air flowmeter
JP3470881B2 (en) Micro flow sensor
JP3570659B2 (en) Thermal flow sensor
JP3193872B2 (en) Thermal air flow meter
JPH0625684B2 (en) Fluid flow rate detection sensor
JP2889910B2 (en) Atmosphere detector
JP3381831B2 (en) Flow velocity sensor and flow velocity measurement method
JP3331070B2 (en) Atmosphere detector
JP4995617B2 (en) Thermal conductivity sensor and thermal conductivity measurement device using the same
JP3527657B2 (en) Flow sensor failure determination apparatus and method
JPH11148944A (en) Flow velocity sensor and flow velocity-measuring apparatus
JPH09318412A (en) Thermal flow velocity sensor
JPH0472523A (en) Flow sensor
JPH11148945A (en) Flow velocity sensor and flow velocity-measuring apparatus
JPH1019626A (en) Flow velocity detector
EP1992918B1 (en) Heat signal writer
JP2879256B2 (en) Thermal flow meter
JPH09243423A (en) Flow rate measuring apparatus
JPH0643906B2 (en) Flow sensor
JPH04116464A (en) Fluid velocity sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040618

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees