JP2003322658A - Flow velocity sensor - Google Patents

Flow velocity sensor

Info

Publication number
JP2003322658A
JP2003322658A JP2002130507A JP2002130507A JP2003322658A JP 2003322658 A JP2003322658 A JP 2003322658A JP 2002130507 A JP2002130507 A JP 2002130507A JP 2002130507 A JP2002130507 A JP 2002130507A JP 2003322658 A JP2003322658 A JP 2003322658A
Authority
JP
Japan
Prior art keywords
temperature
flow velocity
temperature measuring
measuring resistance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002130507A
Other languages
Japanese (ja)
Other versions
JP3802443B2 (en
Inventor
Taro Nakada
太郎 中田
Shoji Jounten
昭司 上運天
Masashi Nakano
正志 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2002130507A priority Critical patent/JP3802443B2/en
Priority to CNB038099942A priority patent/CN100405066C/en
Priority to PCT/JP2003/005473 priority patent/WO2003093838A1/en
Publication of JP2003322658A publication Critical patent/JP2003322658A/en
Application granted granted Critical
Publication of JP3802443B2 publication Critical patent/JP3802443B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • G01F1/699Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters by control of a separate heating or cooling element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-speed-response flow velocity sensor capable of measuring a wide range of flow velocity. <P>SOLUTION: A bridge circuit 21 comprises both a serial circuit of a resistor R1 and temperature measuring resistance elements A and B and a serial circuit of a resistor R2, a resistor R3, and an ambient temperature measuring resistance element C as component elements. An operational amplifier A1 amplifies the difference value between the potential of a connecting point of the resistor R2 and the resistor R3 and the potential of a connecting point of the resistor R1 and the temperature measuring resistance element A and impresses a output voltage of the result of the amplification on the connection point of the resistor R1 and the resistor R2. The output circuit 23 measures the flow velocity of a fluid on the basis of the difference between the resistance value of the temperature measuring resistance element A and that of the temperature measuring resistance element B. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、気体や液体等の流
体の流速測定に用いられる流速センサに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow velocity sensor used for measuring the flow velocity of a fluid such as gas or liquid.

【0002】[0002]

【従来の技術】出願人は、特開平2−259527号公
報で、高精度かつ高速応答を実現する半導体微細加工構
成の流速センサを提案した。図1は本発明の代表的な流
速センサの平面図及び断面図であるが、従来の流速セン
サもその基本構成は同様であるので、図1を用いて特開
平2−259527号公報の流速センサの構成を説明す
る。
2. Description of the Related Art The applicant proposed in Japanese Patent Application Laid-Open No. 2-259527 a flow velocity sensor having a semiconductor microfabrication structure which realizes high precision and high speed response. FIG. 1 is a plan view and a cross-sectional view of a typical flow velocity sensor of the present invention. Since the conventional flow velocity sensor has the same basic structure, the flow velocity sensor disclosed in JP-A-2-259527 will be described with reference to FIG. The configuration of will be described.

【0003】流速センサは、単結晶シリコンなどからな
る基台1上に形成され、この基台1の中央部には空隙部
2が形成されている。また、基台1上には、空隙部2に
よって基台1から空間的に隔離された薄膜層3が形成さ
れている。薄膜層3には、空隙部2を介して連通する対
をなすスリット4a,4bが互いに所定の間隔をおいて
設けられている。さらに、これらのスリット4a,4b
の間には、スリット4a,4bの間を結ぶ直線と直交す
る方向に延びるスリット5が設けられており、このスリ
ット5により、スリット4a,4bの間に2つの配設部
6a,6bが形成されている。配設部6a,6bは、ス
リット5により互いに熱的に絶縁されている。
The flow velocity sensor is formed on a base 1 made of single crystal silicon or the like, and a void 2 is formed in the center of the base 1. Further, on the base 1, a thin film layer 3 is formed which is spatially separated from the base 1 by a void 2. The thin film layer 3 is provided with a pair of slits 4a and 4b which communicate with each other via the void portion 2 at a predetermined interval. Furthermore, these slits 4a, 4b
Between them, a slit 5 extending in a direction orthogonal to a straight line connecting the slits 4a and 4b is provided, and the slit 5 forms two disposing portions 6a and 6b between the slits 4a and 4b. Has been done. The arrangement portions 6a and 6b are thermally insulated from each other by the slit 5.

【0004】配設部6aには、発熱体兼温度センサとし
て機能する測温抵抗エレメントAが形成され、同様に、
配設部6bには、発熱体兼温度センサとして機能する測
温抵抗エレメントBが形成されている。また、薄膜層3
と基台1とが熱的に接する部分、すなわち空隙部2が設
けられていない部分には、周囲温度により抵抗値が変化
する周囲温度測温抵抗エレメントCが形成されている。
A temperature measuring resistance element A which functions as a heating element and a temperature sensor is formed in the disposing portion 6a.
A temperature measuring resistance element B, which functions as a heating element and a temperature sensor, is formed in the arrangement portion 6b. Also, the thin film layer 3
At a portion where the base 1 and the base 1 are in thermal contact with each other, that is, a portion where the void 2 is not provided, an ambient temperature temperature measuring resistance element C whose resistance value changes according to the ambient temperature is formed.

【0005】図6は特開平2−259527号公報で提
案した流速センサの電気回路図である。流速センサの電
気回路は、基台1上を移動する気体の流速を測定するた
めのものであり、温度差検出回路100と、定電流回路
200と、スイッチング回路300とで構成されてい
る。温度差検出回路100は、測温抵抗エレメントA,
Bとそれより大きな抵抗値を持つ抵抗R101,R10
2とで構成されるブリッジ回路と、このブリッジ回路の
出力電圧を増幅する増幅器A101,A102と、この
増幅器A101,A102の出力電圧の差分値を出力す
る差分増幅器A103とで構成されている。ブリッジ回
路は、周囲温度測温抵抗エレメントCとトランジスタT
R201,TR202と抵抗R201で構成される定電
流回路200から定電流を供給されるとともに、トラン
ジスタTR301と抵抗R301とで構成されるスイッ
チング回路300により間欠的に駆動されることにな
る。
FIG. 6 is an electric circuit diagram of a flow velocity sensor proposed in Japanese Patent Laid-Open No. 2-259527. The electric circuit of the flow velocity sensor is for measuring the flow velocity of the gas moving on the base 1, and is composed of a temperature difference detection circuit 100, a constant current circuit 200, and a switching circuit 300. The temperature difference detection circuit 100 includes a temperature measuring resistance element A,
B and resistors R101 and R10 having a larger resistance value
2 includes a bridge circuit, amplifiers A101 and A102 for amplifying the output voltage of the bridge circuit, and a difference amplifier A103 for outputting a difference value of the output voltages of the amplifiers A101 and A102. The bridge circuit includes an ambient temperature measuring resistance element C and a transistor T.
A constant current is supplied from a constant current circuit 200 composed of R201 and TR202 and a resistor R201, and is driven intermittently by a switching circuit 300 composed of a transistor TR301 and a resistor R301.

【0006】ここで、周囲温度測温抵抗エレメントC
は、周囲温度の変化を補償するために設けられている。
測温抵抗エレメントA,Bは、定電流回路200から供
給される定電流によって発熱する。ここで、抵抗R10
1,R102は、測温抵抗エレメントA,Bに比べてか
なり大きな抵抗値を有することから、測温抵抗エレメン
トA,Bは一定電流で駆動されるものと見なすことがで
きる。
Here, the ambient temperature measuring resistance element C
Are provided to compensate for changes in ambient temperature.
The temperature measuring resistance elements A and B generate heat by the constant current supplied from the constant current circuit 200. Here, the resistor R10
Since 1 and R 102 have resistance values considerably larger than those of the temperature measuring resistance elements A and B, it can be considered that the temperature measuring resistance elements A and B are driven by a constant current.

【0007】流速センサの表面で気体が流れると、その
上流側に位置する測温抵抗エレメントAは、その下流側
に位置する測温抵抗エレメントBに比べて、より強く冷
やされる。これにより、2つの測温抵抗エレメントA,
B間に温度差が現れ、この温度差は抵抗変化となり、前
記ブリッジ回路はその平衡を失って、差分増幅器A10
3はその温度差に応じた電圧を出力する。
When the gas flows on the surface of the flow velocity sensor, the temperature measuring resistance element A located upstream thereof is cooled more strongly than the temperature measuring resistance element B located downstream thereof. As a result, the two temperature measuring resistance elements A,
A temperature difference appears between B and this temperature difference causes a resistance change, the bridge circuit loses its balance, and the difference amplifier A10
3 outputs a voltage according to the temperature difference.

【0008】[0008]

【発明が解決しようとする課題】特開平2−25952
7号公報で提案した流速センサは、測温抵抗エレメント
A,Bを熱絶縁した薄膜層3上に形成していることか
ら、流体の流速を高精度に検出できるという特徴を有し
ている。しかしながら、この流速センサでは、流速が増
加すると、下流側の測温抵抗エレメントBから奪われる
熱エネルギーが増大して温度が低下し、上流側と下流側
の測温抵抗エレメントA,Bの抵抗値の差が減少する。
このため、特開平2−259527号公報で提案した流
速センサでは、流速が増加すると、感度が低下し、高流
速における測定が困難になるという問題点があった。ま
た、この流速センサでは、測温抵抗エレメントA,Bを
定電流駆動しているため、流速によって測温抵抗エレメ
ントA,Bおよびその近傍の薄膜層3の平均温度が変化
する。つまり、測温抵抗エレメントA,Bの直列抵抗が
変化する。この温度、つまり測温抵抗エレメントA,B
の直列抵抗が変化すると、測温抵抗エレメントA,Bお
よびその近傍の薄膜層3が持つ熱容量のための熱的遅れ
とともに測温抵抗エレメントA,Bでの発熱量変化によ
る温度変化がこれと干渉することによる遅れが生じ、結
果として応答速度が遅くなるという問題点があった。本
発明は、上記課題を解決するためになされたもので、広
範囲な流速を測定することができる高速応答の流速セン
サを提供することを目的とする。
[Patent Document 1] Japanese Patent Laid-Open No. 25952/1990
The flow velocity sensor proposed in Japanese Patent Publication No. 7 has a feature that the flow velocity of the fluid can be detected with high accuracy because the temperature measuring resistance elements A and B are formed on the thermally insulated thin film layer 3. However, in this flow velocity sensor, when the flow velocity increases, the thermal energy taken from the temperature measuring resistance element B on the downstream side increases and the temperature decreases, and the resistance values of the temperature measuring resistance elements A and B on the upstream side and the downstream side decrease. The difference between is reduced.
Therefore, the flow velocity sensor proposed in Japanese Patent Application Laid-Open No. 2-259527 has a problem that when the flow velocity increases, the sensitivity decreases and measurement at high flow velocity becomes difficult. Further, in this flow velocity sensor, since the temperature measuring resistance elements A and B are driven with a constant current, the average temperature of the temperature measuring resistance elements A and B and the thin film layer 3 in the vicinity thereof changes. That is, the series resistance of the temperature measuring resistance elements A and B changes. This temperature, that is, the temperature measuring resistance elements A and B
If the series resistance of the temperature-measuring resistance elements A and B and the thin film layer 3 in the vicinity of the temperature-measuring resistance elements A and B is delayed, the temperature change due to the change in the calorific value of the temperature-measuring resistance elements A and B interferes with this. However, there is a problem that a delay occurs due to this, and as a result, the response speed becomes slow. The present invention has been made to solve the above problems, and an object of the present invention is to provide a high-speed response flow velocity sensor capable of measuring a wide range of flow velocity.

【0009】[0009]

【課題を解決するための手段】本発明は、流体の流れ方
向に並べて配置された発熱体と温度センサとにより、そ
の流体の流れに起因する熱移動を求めることによって流
体の流速を測定する流速センサにおいて、前記発熱体お
よび温度センサを共用する第1の測温抵抗エレメントお
よび第2の測温抵抗エレメントを直列に接続し、この第
1および第2の測温抵抗エレメントに流される電流をそ
れらの平均温度が周囲温度より常に一定温度だけ高くな
るように制御する制御回路を有し、前記第1および第2
の測温抵抗エレメントの温度差に基づいて流速を求める
ようにしたものである。また、本発明の流速センサは、
前記温度センサである第1の測温抵抗エレメントおよび
第2の測温抵抗エレメントを直列に接続すると共に、こ
れら各測温抵抗エレメントのそれぞれの近傍に前記発熱
体を配置し、前記第1および第2の測温抵抗エレメント
の平均温度が周囲温度より常に一定温度だけ高くなるよ
うに前記発熱体への電流を制御する制御回路を有し、前
記第1および第2の測温抵抗エレメントの温度差に基づ
いて流速を求めるようにしたものである。
SUMMARY OF THE INVENTION According to the present invention, a flow velocity for measuring the flow velocity of a fluid is obtained by determining heat transfer due to the flow of the fluid by a heating element and a temperature sensor which are arranged side by side in the flow direction of the fluid. In the sensor, a first resistance temperature element and a second resistance temperature element, which share the heating element and the temperature sensor, are connected in series, and the currents flowing through the first resistance resistance element and the second resistance temperature element are connected to each other. Has a control circuit for controlling so that the average temperature of the above is always higher than the ambient temperature by a constant temperature.
The flow velocity is obtained based on the temperature difference between the temperature measuring resistance elements. Further, the flow velocity sensor of the present invention,
The first temperature measuring resistance element and the second temperature measuring resistance element, which are the temperature sensors, are connected in series, and the heating element is arranged in the vicinity of each of the temperature measuring resistance elements. A temperature difference between the first and second temperature measuring resistance elements, the control circuit controlling the current to the heating element so that the average temperature of the second temperature measuring resistance element is always higher than the ambient temperature by a constant temperature. The flow velocity is calculated based on

【0010】また、本発明の流速センサの1構成例は、
前記直列に接続された第1および第2の測温抵抗エレメ
ントとを一辺とするブリッジ回路を構成し、この一辺以
外の他の一辺に流体の流れに影響されない周囲温度を測
定する周囲温度センサを含ませ、前記ブリッジ回路の各
中点の電圧差を一定にするように前記発熱体に流す電流
を制御する差動増幅回路を設けたものである。また、本
発明の流速センサの1構成例は、前記直列に接続された
第1および第2の測温抵抗エレメントの両端電圧を少な
くとも1つのボルテージフォロア回路で受け、前記両端
電圧の分圧と前記第1および第2の測温抵抗エレメント
の接続点の電圧とを比較して流速を求めるようにしたも
のである。
Further, one configuration example of the flow velocity sensor of the present invention is as follows:
A bridge circuit having one side of the first and second temperature measuring resistance elements connected in series is formed, and an ambient temperature sensor for measuring an ambient temperature which is not affected by a fluid flow is provided on one side other than the one side. In addition, a differential amplifier circuit for controlling the current flowing through the heating element is provided so that the voltage difference between the respective middle points of the bridge circuit becomes constant. Further, in one configuration example of the flow velocity sensor of the present invention, at least one voltage follower circuit receives the voltage across the first and second temperature measuring resistance elements connected in series, and the voltage division between the voltage across the both ends is performed. The flow velocity is obtained by comparing the voltage at the connection point of the first and second temperature measuring resistance elements.

【0011】[0011]

【発明の実施の形態】[第1の実施の形態]以下、本発
明の実施の形態について図面を参照して詳細に説明す
る。図1(a)は本発明の第1の実施の形態となる流速
センサの平面図、図1(b)は図1(a)のI−I線断
面図、図2は図1(a),(b)の流速センサの電気回
路図である。
BEST MODE FOR CARRYING OUT THE INVENTION [First Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1A is a plan view of a flow velocity sensor according to a first embodiment of the present invention, FIG. 1B is a sectional view taken along the line I-I of FIG. 1A, and FIG. 2 is FIG. , (B) are electrical circuit diagrams of the flow velocity sensor.

【0012】本実施の形態の流速センサは、単結晶シリ
コンなどからなる基台1上に形成され、この基台1の中
央部には、例えば異方性エッチング等によって空隙部2
が形成されている。また、基台1上には、空隙部2によ
って基台1から空間的に隔離された薄膜層(ダイアフラ
ム部材)3が形成されている。ガス等の流体は、この薄
膜層3上を通過する。
The flow velocity sensor of this embodiment is formed on a base 1 made of single crystal silicon or the like, and a void 2 is formed in the center of the base 1 by anisotropic etching or the like.
Are formed. A thin film layer (diaphragm member) 3 spatially separated from the base 1 by a void 2 is formed on the base 1. A fluid such as gas passes over the thin film layer 3.

【0013】薄膜層3には、空隙部2を介して連通する
対をなすスリット4a,4bが互いに所定の間隔をおい
て設けられている。さらに、これらのスリット4a,4
bの間には、スリット4a,4bの間を結ぶ直線と直交
する方向に延びるスリット5が設けられており、このス
リット5により、図1に示す流体の流れる方向に沿って
スリット4a,4bの間に2つの配設部6a,6bが形
成されている。配設部6a,6bは、スリット5により
互いに熱的に絶縁されている。
The thin film layer 3 is provided with a pair of slits 4a and 4b which communicate with each other through the void portion 2 at a predetermined interval. Furthermore, these slits 4a, 4
Between b, a slit 5 extending in a direction orthogonal to a straight line connecting the slits 4a and 4b is provided, and by this slit 5, the slits 4a and 4b are formed along the fluid flow direction shown in FIG. Two arrangement portions 6a and 6b are formed between them. The arrangement portions 6a and 6b are thermally insulated from each other by the slit 5.

【0014】配設部6aには、発熱体兼温度センサとし
て機能する測温抵抗エレメントAが薄膜形成技術により
形成され、同様に、配設部6bには、発熱体兼温度セン
サとして機能する測温抵抗エレメントBが薄膜形成技術
により形成されている。また、薄膜層3と基台1とが熱
的に接する部分、すなわち空隙部2が設けられていない
部分には、周囲温度(流体の温度)により抵抗値が変化
する周囲温度測温抵抗エレメントCが薄膜形成技術によ
り形成されている。
A temperature measuring resistance element A which functions as a heating element and a temperature sensor is formed in the arranging portion 6a by a thin film forming technique, and similarly, a temperature measuring resistance element which functions as a heating element and a temperature sensor is formed in the arranging portion 6b. The temperature resistance element B is formed by a thin film forming technique. Further, in a portion where the thin film layer 3 and the base 1 are in thermal contact, that is, in a portion where the void 2 is not provided, an ambient temperature temperature measuring resistance element C whose resistance value changes according to ambient temperature (fluid temperature) Are formed by a thin film forming technique.

【0015】7,8は測温抵抗エレメントAの両端を外
部の電気回路と接続するためのパッド、9,10は測温
抵抗エレメントBの両端を電気回路と接続するためのパ
ッド、11,12は周囲温度測温抵抗エレメントCの両
端を電気回路と接続するためのパッドである。
Reference numerals 7 and 8 are pads for connecting both ends of the temperature measuring resistance element A to an external electric circuit. Reference numerals 9 and 10 are pads for connecting both ends of the temperature measuring resistance element B to the electric circuit. Are pads for connecting both ends of the ambient temperature measuring resistance element C to an electric circuit.

【0016】次に、本実施の形態の流速センサの電気回
路を図2を用いて説明する。本実施の形態の流速センサ
の電気回路は、基台1上を移動する流体の流速を測定す
るためのものであり、ブリッジ回路21と、差動増幅回
路22と、出力回路23とを有している。ブリッジ回路
21は、抵抗R1と測温抵抗エレメントAと測温抵抗エ
レメントBとを直列に接続した第1の直列回路と、抵抗
R2と抵抗R3と周囲温度測温抵抗エレメントCとを直
列に接続した第2の直列回路とからなり、第1の直列回
路と第2の直列回路とを並列に接続することで構成され
ている。
Next, an electric circuit of the flow velocity sensor of this embodiment will be described with reference to FIG. The electric circuit of the flow velocity sensor of this embodiment is for measuring the flow velocity of the fluid moving on the base 1, and has a bridge circuit 21, a differential amplifier circuit 22, and an output circuit 23. ing. The bridge circuit 21 includes a first series circuit in which a resistor R1, a temperature measuring resistance element A, and a temperature measuring resistance element B are connected in series, and a resistor R2, a resistor R3, and an ambient temperature temperature measuring resistance element C are connected in series. And the second series circuit described above, and is configured by connecting the first series circuit and the second series circuit in parallel.

【0017】差動増幅回路22は、反転入力端子が抵抗
R1と測温抵抗エレメントAの接続点に接続され、非反
転入力端子が抵抗R2と抵抗R3の接続点に接続され、
出力端子が抵抗R1と抵抗R2の接続点に接続された演
算増幅器A1から構成される。
In the differential amplifier circuit 22, the inverting input terminal is connected to the connection point of the resistance R1 and the temperature measuring resistance element A, and the non-inverting input terminal is connected to the connection point of the resistance R2 and the resistance R3.
The output terminal is composed of an operational amplifier A1 connected to the connection point of the resistors R1 and R2.

【0018】このような構成により、差動増幅回路22
は、抵抗R2と抵抗R3の接続点の電位V1と、抵抗R
1と測温抵抗エレメントAの接続点の電位V2との差分
値を増幅した出力電圧Voをブリッジ回路21の抵抗R
1と抵抗R2の接続点に印加する。
With such a configuration, the differential amplifier circuit 22
Is the potential V1 at the connection point of the resistor R2 and the resistor R3, and the resistor R
1 and the output voltage Vo obtained by amplifying the difference value between the potential V2 at the connection point of the temperature measuring resistance element A and the resistance R of the bridge circuit 21.
1 is applied to the connection point of the resistor R2.

【0019】出力回路23は、非反転入力端子が抵抗R
1と測温抵抗エレメントAの接続点に接続され、反転入
力端子と出力端子とが接続された演算増幅器A2と、一
端が演算増幅器A2の出力端子に接続された抵抗R5
と、一端が抵抗R5の他端と接続され、他端が接地され
た抵抗R6と、非反転入力端子が測温抵抗エレメントA
と測温抵抗エレメントBの接続点に接続され、反転入力
端子が抵抗R5と抵抗R6の接続点に接続された演算増
幅器A3とから構成される。
In the output circuit 23, the non-inverting input terminal has a resistor R.
1 is connected to the connection point of the temperature measuring resistance element A, and an operational amplifier A2 having an inverting input terminal and an output terminal connected thereto, and a resistor R5 having one end connected to the output terminal of the operational amplifier A2
And a resistor R6 having one end connected to the other end of the resistor R5 and the other end grounded, and the non-inverting input terminal of the temperature measuring resistor element A.
And an operational amplifier A3 connected to the connection point of the temperature measuring resistance element B and having an inverting input terminal connected to the connection point of the resistors R5 and R6.

【0020】ブリッジ回路21の平衡条件は、抵抗R1
の抵抗値/(測温抵抗エレメントAの抵抗値+測温抵抗
エレメントBの抵抗値)=抵抗R2の抵抗値/(抵抗R
3の抵抗値+周囲温度測温抵抗エレメントCの抵抗値)
である。なお、本実施の形態では、室温などの基準とな
る周囲温度において抵抗R2の抵抗値=抵抗R3の抵抗
値+周囲温度測温抵抗エレメントCの抵抗値となるよう
に、また抵抗R1の抵抗値=(測温抵抗エレメントAの
抵抗値+測温抵抗エレメントBの抵抗値)の設定温度に
おける抵抗値となるように設定されている。抵抗R3
は、測温抵抗エレメントA,Bの平均温度と周囲温度測
温抵抗エレメントCの温度差を維持するための調整用抵
抗である。なお、流速センサの温度特性を補正する目的
のため、上記温度差を一定とせずに、例えば周囲温度が
高くなるほどこの差を大きくするというように変化させ
てもよい。
The balance condition of the bridge circuit 21 is that the resistance R1
Resistance value / (resistance value of resistance temperature element A + resistance value of resistance temperature element B) = resistance value of resistance R2 / (resistance R
(Resistance value of 3 + resistance value of ambient temperature measuring resistance element C)
Is. In the present embodiment, the resistance value of the resistor R2 = the resistance value of the resistor R3 + the resistance value of the ambient temperature resistance measuring element C at the reference ambient temperature such as room temperature, and the resistance value of the resistor R1. = (Resistance value of resistance temperature element A + resistance value of resistance temperature element B) at the set temperature. Resistance R3
Is an adjusting resistor for maintaining the temperature difference between the average temperature of the temperature measuring resistance elements A and B and the ambient temperature measuring resistance element C. For the purpose of correcting the temperature characteristic of the flow velocity sensor, the temperature difference may not be constant, but may be changed such that the higher the ambient temperature is, the larger the difference becomes.

【0021】差動増幅回路22の演算増幅器A1からブ
リッジ回路21の抵抗R1,R2に電圧が印加される
と、測温抵抗エレメントA,Bに電流が流れてこれらが
発熱し、その結果、測温抵抗エレメントA,Bの抵抗値
が増加して、前記平衡条件が成立するところでバランス
する。
When a voltage is applied from the operational amplifier A1 of the differential amplifier circuit 22 to the resistors R1 and R2 of the bridge circuit 21, a current flows through the temperature measuring resistance elements A and B, which generate heat, resulting in the measurement. The resistance values of the temperature resistance elements A and B are increased and balanced when the equilibrium condition is satisfied.

【0022】ここで、周囲温度が上昇して周囲温度測温
抵抗エレメントCの抵抗値が増加すると、ブリッジ回路
21の平衡が失われ、抵抗R2と抵抗R3の接続点の電
位V1が上昇するので、差動増幅回路22は、ブリッジ
回路21を再度平衡にさせるべく、ブリッジ回路21へ
の印加電圧Voを上昇させる。これにより、測温抵抗エ
レメントA,Bに供給される電流が増加するので、測温
抵抗エレメントA,Bの発熱量が増大し、測温抵抗エレ
メントA,Bの抵抗値が増加して、前記平衡条件が成立
するところでバランスする。
When the ambient temperature rises and the resistance value of the ambient temperature measuring resistance element C increases, the balance of the bridge circuit 21 is lost and the potential V1 at the connection point of the resistors R2 and R3 rises. The differential amplifier circuit 22 raises the applied voltage Vo to the bridge circuit 21 in order to rebalance the bridge circuit 21. As a result, the current supplied to the temperature measuring resistance elements A and B increases, so that the calorific value of the temperature measuring resistance elements A and B increases, and the resistance value of the temperature measuring resistance elements A and B increases, and Balance when the equilibrium condition is satisfied.

【0023】周囲温度が低下して周囲温度測温抵抗エレ
メントCの抵抗値が減少すると、抵抗R2と抵抗R3の
接続点の電位V1が低下するので、差動増幅回路22
は、ブリッジ回路21への印加電圧Voを低下させる。
これにより、測温抵抗エレメントA,Bの発熱量が減少
し、測温抵抗エレメントA,Bの抵抗値が減少して、前
記平衡条件が成立するところでバランスする。
When the ambient temperature decreases and the resistance value of the ambient temperature measuring resistance element C decreases, the potential V1 at the connection point of the resistors R2 and R3 decreases, so the differential amplifier circuit 22
Reduces the voltage Vo applied to the bridge circuit 21.
As a result, the calorific value of the temperature measuring resistance elements A and B is reduced, the resistance values of the temperature measuring resistance elements A and B are reduced, and balance is achieved when the equilibrium condition is satisfied.

【0024】一方、流体に流速が生じると、測温抵抗エ
レメントA,Bが冷やされ、測温抵抗エレメントA,B
の抵抗値が下がり、抵抗R1と測温抵抗エレメントAの
接続点の電位V2が低下するので、差動増幅回路22
は、ブリッジ回路21への印加電圧Voを上昇させる。
これにより、測温抵抗エレメントA,Bの発熱量が増大
し、測温抵抗エレメントA,Bの抵抗値が増加して、前
記平衡条件が成立するところでバランスする。
On the other hand, when the flow velocity is generated in the fluid, the temperature measuring resistance elements A and B are cooled, and the temperature measuring resistance elements A and B are cooled.
The resistance value of the differential amplifier circuit 22 decreases, and the potential V2 of the connection point between the resistance R1 and the temperature measuring resistance element A decreases.
Raises the voltage Vo applied to the bridge circuit 21.
As a result, the calorific value of the temperature measuring resistance elements A and B is increased, the resistance values of the temperature measuring resistance elements A and B are increased, and balance is achieved when the equilibrium condition is satisfied.

【0025】また、流速が減少して、測温抵抗エレメン
トA,Bの抵抗値が上昇すると、抵抗R1と測温抵抗エ
レメントAの接続点の電位V2が上昇するので、差動増
幅回路22は、ブリッジ回路21への印加電圧Voを低
下させる。これにより、測温抵抗エレメントA,Bの発
熱量が減少し、測温抵抗エレメントA,Bの抵抗値が減
少して、前記平衡条件が成立するところでバランスす
る。
When the flow velocity decreases and the resistance values of the temperature measuring resistance elements A and B increase, the potential V2 at the connection point between the resistance R1 and the temperature measuring resistance element A increases, so that the differential amplifier circuit 22 , The voltage Vo applied to the bridge circuit 21 is reduced. As a result, the calorific value of the temperature measuring resistance elements A and B is reduced, the resistance values of the temperature measuring resistance elements A and B are reduced, and balance is achieved when the equilibrium condition is satisfied.

【0026】以上のように、差動増幅回路22は、測温
抵抗エレメントA,Bで検出される温度(エレメント
A,Bで検出される温度の平均値)が周囲温度測温抵抗
エレメントCで検出される周囲温度よりも常に一定温度
高くなるように、測温抵抗エレメントA,Bを発熱させ
る。
As described above, in the differential amplifier circuit 22, the temperature detected by the temperature measuring resistance elements A and B (the average value of the temperatures detected by the elements A and B) is the ambient temperature measuring resistance element C. The temperature measuring resistance elements A and B are caused to generate heat so that the temperature is always higher than the detected ambient temperature.

【0027】次に、演算増幅器A2はボルテージフォロ
アを構成している。抵抗R5,R6からなる直列回路
は、このボルテージフォロアA2を介して測温抵抗エレ
メントA,Bからなる直列回路に接続されている。ボル
テージフォロアを用いることにより、ブリッジ回路21
内を流れる電流が抵抗R5,R6に流出しないようにし
ている。
Next, the operational amplifier A2 constitutes a voltage follower. The series circuit composed of the resistors R5 and R6 is connected to the series circuit composed of the temperature measuring resistance elements A and B via the voltage follower A2. By using the voltage follower, the bridge circuit 21
The current flowing inside is prevented from flowing out to the resistors R5 and R6.

【0028】抵抗R5,R6は、一般的には流速が0の
とき、抵抗R5の抵抗値/抵抗R6の抵抗値=測温抵抗
エレメントAの抵抗値/測温抵抗エレメントBの抵抗値
が成立するように設定されている。したがって、流速が
0のとき、測温抵抗エレメントAと測温抵抗エレメント
Bの接続点の電位V3と、抵抗R5と抵抗R6の接続点
の電位V4が同電位となるので、演算増幅器A3の出力
電圧は0となる。なお、上記のように設定せずに、流速
が0のときの出力電圧を流速0の出力電圧として校正し
たり、オフセットをもたせて流速0のとき任意の電圧値
になるように設定してもよい。
Generally, when the flow velocity is 0, the resistances of the resistors R5 and R6 are such that the resistance value of the resistance R5 / the resistance value of the resistance R6 = the resistance value of the temperature measuring resistance element A / the resistance value of the temperature measuring resistance element B. Is set to. Therefore, when the flow velocity is 0, the potential V3 at the connection point between the temperature measurement resistance element A and the temperature measurement resistance element B and the potential V4 at the connection point between the resistance R5 and the resistance R6 become the same potential, so the output of the operational amplifier A3. The voltage becomes 0. It should be noted that, instead of the above setting, the output voltage when the flow velocity is 0 may be calibrated as the output voltage of the flow velocity 0, or may be set to have an arbitrary voltage value when the flow velocity is 0 by providing an offset. Good.

【0029】前述のように、流体に流速が生じると、測
温抵抗エレメントA,Bが冷やされる。このとき、上流
側に位置する測温抵抗エレメントAは、下流側に位置す
る測温抵抗エレメントBに比べてより強く冷やされるの
で、測温抵抗エレメントAの抵抗値が測温抵抗エレメン
トBの抵抗値よりも小さくなる。その結果、測温抵抗エ
レメントAと測温抵抗エレメントBの接続点の電位V3
が上昇するので、電位V3と、抵抗R5と抵抗R6の接
続点の電位V4とに差が生じる。演算増幅器A3は、流
速に応じた出力電圧、すなわち(V3−V4)に比例し
た電圧を出力する。
As described above, when the flow velocity is generated in the fluid, the temperature measuring resistance elements A and B are cooled. At this time, since the temperature measuring resistance element A located on the upstream side is cooled more strongly than the temperature measuring resistance element B located on the downstream side, the resistance value of the temperature measuring resistance element A is the resistance of the temperature measuring resistance element B. It is smaller than the value. As a result, the potential V3 at the connection point between the temperature measuring resistance element A and the temperature measuring resistance element B
Rises, a difference occurs between the potential V3 and the potential V4 at the connection point of the resistors R5 and R6. The operational amplifier A3 outputs an output voltage according to the flow velocity, that is, a voltage proportional to (V3-V4).

【0030】以上のように、本実施の形態では、周囲温
度や流速に関係なく、測温抵抗エレメントA,Bで検出
する温度の平均値が周囲温度よりも常に一定温度高くな
るように測温抵抗エレメントA,Bを発熱させるので、
流速が増加したときに、測温抵抗エレメントA,Bの抵
抗値の差が減少して感度が低下することがなくなる。
As described above, in the present embodiment, the temperature is measured such that the average value of the temperatures detected by the temperature measuring resistance elements A and B is always higher than the ambient temperature by a constant temperature regardless of the ambient temperature and the flow velocity. Since the resistance elements A and B generate heat,
When the flow velocity increases, the difference between the resistance values of the temperature measuring resistance elements A and B decreases and the sensitivity does not decrease.

【0031】また、本実施の形態では、測温抵抗エレメ
ントA,Bからなる直列回路と、抵抗R5,R6からな
る直列回路とを並列に接続している。したがって、周囲
温度又は流速の変化により、ブリッジ回路21への印加
電圧Voが変化して、電圧V2が変化しても、これに応
じて抵抗R5の端子電圧(ボルテージフォロアA2の出
力電圧)も電圧V2と同じ値に変化するので、測温抵抗
エレメントA,Bのリファレンス電位(電位V4)は、
電圧V2に所定比R6/(R5+R6)をかけた値に常
に調整される。その結果、電位差V3−V4は、流速の
みを反映した値となり、流速の増大に伴ってほぼ直線的
に増加する特性が得られる。
Further, in the present embodiment, the series circuit composed of the temperature measuring resistance elements A and B and the series circuit composed of the resistors R5 and R6 are connected in parallel. Therefore, even if the applied voltage Vo to the bridge circuit 21 changes due to the change of the ambient temperature or the flow velocity and the voltage V2 changes, the terminal voltage of the resistor R5 (the output voltage of the voltage follower A2) also changes accordingly. Since it changes to the same value as V2, the reference potential (potential V4) of the temperature measuring resistance elements A and B is
It is constantly adjusted to a value obtained by multiplying the voltage V2 by a predetermined ratio R6 / (R5 + R6). As a result, the potential difference V3-V4 becomes a value that reflects only the flow velocity, and a characteristic that increases almost linearly with the increase of the flow velocity is obtained.

【0032】[第2の実施の形態]図3は本発明の第2
の実施の形態となる流速センサの平面図、図4は図3の
流速センサの電気回路図であり、図1、図2と同一の構
成には同一の符号を付してある。本実施の形態では、配
設部6aに、温度センサとして機能する測温抵抗エレメ
ントA’と、発熱体として機能する発熱抵抗エレメント
Dとが薄膜形成技術により形成されている。同様に、配
設部6bには、温度センサとして機能する測温抵抗エレ
メントB’と、発熱体として機能する発熱抵抗エレメン
トEとが薄膜形成技術により形成されている。
[Second Embodiment] FIG. 3 shows a second embodiment of the present invention.
4 is a plan view of the flow velocity sensor according to the embodiment of the present invention, FIG. 4 is an electric circuit diagram of the flow velocity sensor of FIG. 3, and the same components as those in FIGS. 1 and 2 are designated by the same reference numerals. In the present embodiment, the temperature measuring resistance element A ′ functioning as a temperature sensor and the heat generating resistance element D functioning as a heating element are formed in the arrangement portion 6a by a thin film forming technique. Similarly, a temperature measuring resistance element B ′ functioning as a temperature sensor and a heat generating resistance element E functioning as a heating element are formed in the arrangement portion 6b by a thin film forming technique.

【0033】7,8は測温抵抗エレメントA’の両端を
電気回路と接続するためのパッド、9,10は測温抵抗
エレメントB’の両端を電気回路と接続するためのパッ
ド、13,14は発熱抵抗エレメントDの両端を外部の
電気回路と接続するためのパッド、15,16は発熱抵
抗エレメントEの両端を電気回路と接続するためのパッ
ドである。
Reference numerals 7 and 8 are pads for connecting both ends of the temperature measuring resistance element A'to an electric circuit. Reference numerals 9 and 10 are pads for connecting both ends of the temperature measuring resistance element B'to the electric circuit. Is a pad for connecting both ends of the heating resistor element D to an external electric circuit, and 15, 16 are pads for connecting both ends of the heating resistor element E to an electric circuit.

【0034】本実施の形態のブリッジ回路21aは、発
熱体兼温度センサとして機能する測温抵抗エレメント
A,Bの代わりに、温度センサとして機能する測温抵抗
エレメントA’,B’を用いている。また、本実施の形
態では、ブリッジ回路21aの抵抗R1と抵抗R2の接
続点に一定電圧Vsを印加し、非反転入力端子が抵抗R
2と抵抗R3の接続点に接続され、反転入力端子が抵抗
R1と測温抵抗エレメントA’の接続点に接続された演
算増幅器A4を用いている。演算増幅器A4の出力端子
には、発熱抵抗エレメントDと発熱抵抗エレメントEと
が直列に接続されている。
The bridge circuit 21a of the present embodiment uses temperature measuring resistance elements A'and B'which function as temperature sensors instead of the temperature measuring resistance elements A and B which also function as heating elements and temperature sensors. . In addition, in the present embodiment, a constant voltage Vs is applied to the connection point between the resistors R1 and R2 of the bridge circuit 21a, and the non-inverting input terminal has the resistor R1.
The operational amplifier A4 is used, which is connected to the connection point of the resistor R3 and the resistor R3 and whose inverting input terminal is connected to the connection point of the resistor R1 and the temperature measuring resistance element A '. A heating resistance element D and a heating resistance element E are connected in series to the output terminal of the operational amplifier A4.

【0035】ブリッジ回路21aの平衡条件は、抵抗R
1の抵抗値/(測温抵抗エレメントA’の抵抗値+測温
抵抗エレメントB’の抵抗値)=抵抗R2の抵抗値/
(抵抗R3の抵抗値+周囲温度測温抵抗エレメントCの
抵抗値)である。ブリッジ回路21aに電圧Vsが印加
されると、演算増幅器A4は、抵抗R2と抵抗R3の接
続点の電位V1と、抵抗R1と測温抵抗エレメントA’
の接続点の電位V2との差分電圧V1−V2を増幅して
出力する。
The balance condition of the bridge circuit 21a is that the resistance R
1 resistance value / (resistance value of resistance temperature element A ′ + resistance value of resistance temperature element B ′) = resistance value of resistance R2 /
(Resistance value of resistance R3 + resistance value of ambient temperature measuring resistance element C). When the voltage Vs is applied to the bridge circuit 21a, the operational amplifier A4 causes the potential V1 at the connection point of the resistors R2 and R3, the resistor R1 and the temperature measuring resistance element A '.
The differential voltage V1-V2 with respect to the potential V2 at the connection point is amplified and output.

【0036】これにより、発熱抵抗エレメントD,Eに
電流が流れてこれらが発熱し、その結果、発熱抵抗エレ
メントD,Eの近傍に配置された測温抵抗エレメント
A’,B’の温度が上昇して、測温抵抗エレメント
A’,B’の抵抗値が増加し、前記平衡条件が成立する
ところでバランスする。
As a result, a current flows through the heating resistance elements D and E to generate heat, and as a result, the temperature of the temperature measuring resistance elements A ′ and B ′ arranged near the heating resistance elements D and E rises. Then, the resistance values of the temperature measuring resistance elements A'and B'increase, and the resistance is balanced when the equilibrium condition is satisfied.

【0037】ここで、周囲温度が上昇して周囲温度測温
抵抗エレメントCの抵抗値が増加すると、抵抗R2と抵
抗R3の接続点の電位V1が上昇するので、演算増幅器
A4は、出力電圧を上昇させる。これにより、発熱抵抗
エレメントD,Eに供給される電流が増加するので、発
熱抵抗エレメントD,Eの発熱量が増大し、測温抵抗エ
レメントA’,B’の抵抗値が増加して、前記平衡条件
が成立するところでバランスする。
When the ambient temperature rises and the resistance value of the ambient temperature measuring resistance element C increases, the potential V1 at the connection point of the resistors R2 and R3 rises, so that the operational amplifier A4 outputs the output voltage. To raise. As a result, the current supplied to the heating resistance elements D and E increases, so that the heat generation amount of the heating resistance elements D and E increases, and the resistance values of the temperature measuring resistance elements A ′ and B ′ increase. Balance when the equilibrium condition is satisfied.

【0038】周囲温度が低下して周囲温度測温抵抗エレ
メントCの抵抗値が減少すると、抵抗R2と抵抗R3の
接続点の電位V1が低下するので、演算増幅器A4は、
出力電圧を低下させる。これにより、発熱抵抗エレメン
トD,Eの発熱量が減少し、測温抵抗エレメントA’,
B’の抵抗値が減少して、前記平衡条件が成立するとこ
ろでバランスする。
When the ambient temperature decreases and the resistance value of the ambient temperature measuring resistance element C decreases, the potential V1 at the connection point of the resistors R2 and R3 decreases, so that the operational amplifier A4 operates as follows.
Reduce the output voltage. As a result, the amount of heat generated by the heating resistance elements D, E is reduced, and the temperature measuring resistance elements A ',
When the resistance value of B'decreases and the equilibrium condition is satisfied, balance is achieved.

【0039】一方、流体に流速が生じると、測温抵抗エ
レメントA’,B’の抵抗値が下がり、抵抗R1と測温
抵抗エレメントA’の接続点の電位V2が低下するの
で、演算増幅器A4は、出力電圧を上昇させる。これに
より、発熱抵抗エレメントD,Eの発熱量が増大し、測
温抵抗エレメントA’,B’の抵抗値が増加して、前記
平衡条件が成立するところでバランスする。
On the other hand, when a flow velocity is generated in the fluid, the resistance values of the temperature measuring resistance elements A'and B'decrease, and the potential V2 at the connection point of the resistance R1 and the temperature measuring resistance element A'decreases. Therefore, the operational amplifier A4 Raises the output voltage. As a result, the amount of heat generated by the heating resistance elements D and E increases, the resistance values of the temperature measuring resistance elements A ′ and B ′ increase, and balance occurs when the equilibrium condition is satisfied.

【0040】また、流速が減少して、測温抵抗エレメン
トA’,B’の抵抗値が上昇すると、抵抗R1と測温抵
抗エレメントAの接続点の電位V2が上昇するので、演
算増幅器A4は、出力電圧を低下させる。これにより、
発熱抵抗エレメントD,Eの発熱量が減少し、測温抵抗
エレメントA’,B’の抵抗値が減少して、前記平衡条
件が成立するところでバランスする。以上のようにし
て、第1の実施の形態と同様の効果を得ることができ
る。なお、出力回路23の構成とその動作は、第1の実
施の形態と全く同じである。
When the flow velocity decreases and the resistance values of the temperature measuring resistance elements A'and B'increase, the potential V2 at the connection point between the resistance R1 and the temperature measuring resistance element A rises. , Reduce the output voltage. This allows
The heat generation amount of the heat generation resistance elements D and E decreases, the resistance values of the temperature measurement resistance elements A ′ and B ′ decrease, and balance is achieved when the equilibrium condition is satisfied. As described above, the same effect as that of the first embodiment can be obtained. The configuration and operation of the output circuit 23 are exactly the same as in the first embodiment.

【0041】なお、第1、第2の実施の形態において、
抵抗R3を削除して抵抗R2と周囲温度測温抵抗エレメ
ントCを直結し、その代わりに、測温抵抗エレメント
A,B(A’,B’)からなる直列回路と並列に抵抗を
追加することにより、測温抵抗エレメントA’,B’と
周囲温度測温抵抗エレメントCとの温度差を維持するた
めの調整をしてもよい。また、第1、第2の実施の形態
では、単結晶シリコンからなる基台1を用いているが、
ステンレス、セラミック、サファイア等からなる基台を
用いてもよい。
In the first and second embodiments,
The resistor R3 is deleted to directly connect the resistor R2 and the ambient temperature measuring resistance element C, and instead, a resistor is added in parallel with the series circuit including the temperature measuring resistance elements A and B (A ', B'). Therefore, adjustment may be performed to maintain the temperature difference between the temperature measuring resistance elements A ′ and B ′ and the ambient temperature measuring resistance element C. Further, in the first and second embodiments, the base 1 made of single crystal silicon is used,
A base made of stainless steel, ceramic, sapphire or the like may be used.

【0042】また、第1、第2の実施の形態では、ブリ
ッジ回路と差動増幅回路を用いて直列に接続された2つ
の測温抵抗エレメントの平均温度を周囲温度測温抵抗エ
レメントで測定された周囲温度よりもある一定温度高く
なるようにする実施の形態について説明したが、マイコ
ンなどを用いて周囲温度よりも直列に接続された2つの
測温抵抗エレメントの平均温度がある一定温度高くなる
ように電流または電圧を制御してもよい。つまり、直列
に接続された2つの測温抵抗エレメントの設定目標とす
る平均温度における直列抵抗値を温度と抵抗値の関係式
から求め、その抵抗値になるように印加する電流または
電圧を制御してもよい。なお、この場合は周囲温度の計
測に外付けの一般的な温度センサを使用してもよい。さ
らに、図1、図3において、スリット5をなくしてもよ
く、1つの測温抵抗体の中点から配線を取り出すように
して、実質上2つの測温抵抗体として使用してもよい。
In the first and second embodiments, the average temperature of two temperature measuring resistance elements connected in series by using the bridge circuit and the differential amplifier circuit is measured by the ambient temperature measuring resistance element. Although the embodiment has been described in which the temperature is higher than the ambient temperature by a certain temperature, the average temperature of two temperature measuring resistance elements connected in series is higher than the ambient temperature by a certain temperature by using a microcomputer or the like. Current or voltage may be controlled as described above. That is, the series resistance value at the average temperature that is the setting target of the two resistance temperature measuring elements connected in series is calculated from the relational expression between the temperature and the resistance value, and the applied current or voltage is controlled so that the resistance value is achieved. May be. In this case, a general external temperature sensor may be used to measure the ambient temperature. Further, in FIG. 1 and FIG. 3, the slit 5 may be omitted, and the wiring may be taken out from the midpoint of one resistance temperature detector to be used substantially as two resistance temperature detectors.

【0043】[第3の実施の形態]図5は本発明の第3
の実施の形態となる流速センサの断面図であり、図1、
図2と同一の構成には同一の符号を付してある。第1、
第2の実施の形態では、流体の流れの中にエレメント
A,B,Cを設けたが、本実施の形態は、基台32に形
成された薄肉部(ダイアフラム部)33の流路側と反対
側の被測定流体に直接接しない面にエレメントA,B,
Cを設けたものである。
[Third Embodiment] FIG. 5 shows a third embodiment of the present invention.
2 is a cross-sectional view of the flow velocity sensor according to the embodiment of FIG.
The same components as those in FIG. 2 are designated by the same reference numerals. First,
In the second embodiment, the elements A, B and C are provided in the flow of the fluid, but in the present embodiment, the flow path side of the thin portion (diaphragm portion) 33 formed on the base 32 is opposite. Element A, B, on the side not directly contacting the fluid to be measured.
C is provided.

【0044】図5において、31はステンレスからなる
流路形成部材、32は流路形成部材31上に設置され
た、ステンレスからなる基台、33は基台32に形成さ
れた薄肉部(ダイアフラム部)、34は基台32上に形
成された酸化シリコン、窒化シリコン、アルミナあるい
はポリイミド等の電気絶縁膜である。流路形成部材31
は流体の流路36を形成する2つの貫通孔37,38を
有している。基台32の下面中央に長円状の凹部35が
形成されることにより、この凹部35が形成されている
表面側が薄肉部(ダイアフラム部)33を形成してい
る。凹部35は、その両端部において貫通孔37,38
と連通する。なお、凹部35は、流体の流れをスムーズ
に流すために長円状が好ましいが、これに限らず矩形状
や円形状でもよい。
In FIG. 5, 31 is a flow passage forming member made of stainless steel, 32 is a base made of stainless steel installed on the flow passage forming member 31, and 33 is a thin wall portion (diaphragm portion) formed on the base 32. ) And 34 are electrical insulating films formed on the base 32, such as silicon oxide, silicon nitride, alumina, or polyimide. Flow path forming member 31
Has two through holes 37 and 38 forming a fluid passage 36. By forming an oval concave portion 35 in the center of the lower surface of the base 32, a thin portion (diaphragm portion) 33 is formed on the surface side where the concave portion 35 is formed. The recess 35 has through holes 37, 38 at both ends thereof.
Communicate with. The recess 35 is preferably an elliptical shape in order to smoothly flow the fluid, but the shape is not limited to this and may be a rectangular shape or a circular shape.

【0045】基台32の上面には、電気絶縁膜34が全
面にわたって形成されており、この電気絶縁膜34の表
面に測温抵抗エレメントA,Bや周囲温度測温抵抗エレ
メントC、パッド7〜12が第1の実施の形態と同様に
形成されている。電気回路は、図2に示したとおりであ
る。また、上記とは逆に凹部35の底面に電気絶縁膜を
全面にわたって形成し、この電気絶縁膜の表面に測温抵
抗エレメントA,Bとパッドを同様に形成し、周囲温度
測温抵抗エレメントCは、基台32の厚肉部に電気絶縁
膜を介してパッドと共に同様に形成し、その反対側の面
に流体を流してもよい。
An electric insulating film 34 is formed over the entire surface of the base 32, and the temperature measuring resistance elements A and B, the ambient temperature measuring resistance element C, and the pads 7 to 7 are formed on the surface of the electric insulating film 34. 12 is formed similarly to the first embodiment. The electric circuit is as shown in FIG. Contrary to the above, an electric insulating film is formed over the entire bottom surface of the concave portion 35, and the temperature measuring resistance elements A and B and the pad are similarly formed on the surface of the electric insulating film, and the ambient temperature measuring resistance element C is formed. May be formed on the thick portion of the base 32 in the same manner as the pad via the electric insulating film, and the fluid may flow to the surface on the opposite side.

【0046】なお、第1の実施の形態の測温抵抗エレメ
ントA,Bや周囲温度測温抵抗エレメントC、パッド7
〜12の代わりに、第2の実施の形態の測温抵抗エレメ
ントA’,B’や周囲温度測温抵抗エレメントC、発熱
抵抗エレメントD,E、パッド7〜16を形成してもよ
いことは言うまでもない。この場合の電気回路は、図3
に示したとおりである。なお、本発明の第1〜第3の実
施の形態におけるエレメントA,B,C,A’,B’,
D,Eはすべて白金薄膜などで形成するのが好ましい
が、これに限らない。
The temperature measuring resistance elements A and B, the ambient temperature measuring resistance element C, and the pad 7 of the first embodiment are used.
It is possible to form the temperature measuring resistance elements A ′ and B ′, the ambient temperature measuring resistance element C, the heating resistance elements D and E, and the pads 7 to 16 of the second embodiment in place of Needless to say. The electric circuit in this case is shown in FIG.
As shown in. In addition, the elements A, B, C, A ′, B ′ in the first to third embodiments of the present invention,
It is preferable that D and E are all formed of a platinum thin film or the like, but not limited to this.

【0047】[0047]

【発明の効果】本発明によれば、第1の測温抵抗エレメ
ントと第2の測温抵抗エレメントとの平均の温度(第
1、第2の測温抵抗エレメントで検出される温度の平均
値)が周囲温度よりも常に一定温度高くなるよう第1の
測温抵抗エレメントと第2の測温抵抗エレメントとに印
加する電圧を制御するので、流速が増加しても、感度の
低下が少なくなる。その結果、低速から高速までの広い
範囲の流速の測定が可能となる。また、本発明では、第
1、第2の測温抵抗エレメントの温度を一定にすること
ができるため、従来よりも応答速度を速くすることがで
きる。
According to the present invention, the average temperature of the first temperature measuring resistance element and the second temperature measuring resistance element (the average value of the temperatures detected by the first and second temperature measuring resistance elements). ) Controls the voltage applied to the first temperature measuring resistance element and the second temperature measuring resistance element so that the temperature is always higher than the ambient temperature by a constant temperature. Therefore, even if the flow velocity increases, the decrease in sensitivity is reduced. . As a result, it is possible to measure the flow velocity in a wide range from low speed to high speed. Further, in the present invention, since the temperatures of the first and second temperature measuring resistance elements can be made constant, the response speed can be made faster than in the past.

【0048】また、出力回路を、第3の直列回路と差分
増幅器とから構成することにより、流体の流速に応じた
値を取り出すことができる。
Further, by configuring the output circuit with the third series circuit and the differential amplifier, it is possible to take out a value according to the flow velocity of the fluid.

【0049】また、第1の直列回路と第3の直列回路と
を接続する少なくとも1つのボルテージフォロアを設け
ることにより、ブリッジ回路内を流れる電流が第4の抵
抗と第5の抵抗に流出しないようにすることができる。
Further, by providing at least one voltage follower for connecting the first series circuit and the third series circuit, the current flowing in the bridge circuit is prevented from flowing out to the fourth resistance and the fifth resistance. Can be

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施の形態となる流速センサ
の平面図及び断面図である。
FIG. 1 is a plan view and a sectional view of a flow velocity sensor according to a first embodiment of the present invention.

【図2】 図1の流速センサの電気回路図である。FIG. 2 is an electric circuit diagram of the flow velocity sensor shown in FIG.

【図3】 本発明の第2の実施の形態となる流速センサ
の平面図である。
FIG. 3 is a plan view of a flow velocity sensor according to a second embodiment of the present invention.

【図4】 図3の流速センサの電気回路図である。4 is an electric circuit diagram of the flow velocity sensor of FIG.

【図5】 本発明の第3の実施の形態となる流速センサ
の断面図である。
FIG. 5 is a sectional view of a flow velocity sensor according to a third embodiment of the present invention.

【図6】 従来の流速センサの電気回路図である。FIG. 6 is an electric circuit diagram of a conventional flow velocity sensor.

【符号の説明】[Explanation of symbols]

1、32…基台、2…空隙部、3…薄膜層、4a、4
b、5…スリット、6a、6b…配設部、7〜16…パ
ッド、21、21a…ブリッジ回路、22…差動増幅回
路、23…出力回路、31…流路形成部材、33…薄肉
部(ダイアフラム部)、34…電気絶縁膜、A、B、
A’、B’…測温抵抗エレメント、C…周囲温度測温抵
抗エレメント、D、E…発熱抵抗エレメント、A1〜A
4…演算増幅器、R1〜R3、R5、R6…抵抗。
1, 32 ... Base, 2 ... Void, 3 ... Thin film layer, 4a, 4
b, 5 ... Slits, 6a, 6b ... Arrangement part, 7-16 ... Pads, 21, 21a ... Bridge circuit, 22 ... Differential amplifier circuit, 23 ... Output circuit, 31 ... Flow path forming member, 33 ... Thin part (Diaphragm portion), 34 ... Electrical insulating film, A, B,
A ', B' ... temperature measurement resistance element, C ... ambient temperature temperature measurement resistance element, D, E ... heat generation resistance element, A1-A
4 ... Operational amplifier, R1 to R3, R5, R6 ... Resistors.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 正志 東京都渋谷区渋谷2丁目12番19号 株式会 社山武内 Fターム(参考) 2F035 EA04 EA05 EA08 EA09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masashi Nakano             2-12-19 Shibuya, Shibuya-ku, Tokyo Stock market             Takeyama F term (reference) 2F035 EA04 EA05 EA08 EA09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体の流れ方向に並べて配置された発熱
体と温度センサとにより、その流体の流れに起因する熱
移動を求めることによって流体の流速を測定する流速セ
ンサにおいて、 前記発熱体および温度センサを共用する第1の測温抵抗
エレメントおよび第2の測温抵抗エレメントを直列に接
続し、この第1および第2の測温抵抗エレメントに流さ
れる電流をそれらの平均温度が周囲温度より常に一定温
度だけ高くなるように制御する制御回路を有し、前記第
1および第2の測温抵抗エレメントの温度差に基づいて
流速を求めるようにしたことを特徴とする流速センサ。
1. A flow velocity sensor for measuring a flow velocity of a fluid by determining heat transfer caused by the flow of the fluid by a heating element and a temperature sensor which are arranged side by side in the flow direction of the fluid, wherein the heating element and the temperature. A first resistance temperature element and a second resistance temperature element that share a sensor are connected in series, and the currents flowing through the first resistance resistance element and the second resistance temperature element are such that their average temperature is always higher than the ambient temperature. A flow velocity sensor having a control circuit for controlling the temperature to increase by a constant temperature, and determining the flow velocity based on the temperature difference between the first and second temperature measuring resistance elements.
【請求項2】 流体の流れ方向に並べて配置された発熱
体と温度センサとにより、その流体の流れに起因する熱
移動を求めることによって流体の流速を測定する流速セ
ンサにおいて、 前記温度センサである第1の測温抵抗エレメントおよび
第2の測温抵抗エレメントを直列に接続すると共に、こ
れら各測温抵抗エレメントのそれぞれの近傍に前記発熱
体を配置し、前記第1および第2の測温抵抗エレメント
の平均温度が周囲温度より常に一定温度だけ高くなるよ
うに前記発熱体への電流を制御する制御回路を有し、前
記第1および第2の測温抵抗エレメントの温度差に基づ
いて流速を求めるようにしたことを特徴とする流速セン
サ。
2. A flow velocity sensor for measuring a flow velocity of a fluid by determining heat transfer caused by the flow of the fluid by a heating element and a temperature sensor which are arranged side by side in the flow direction of the fluid, wherein the temperature sensor. A first temperature measuring resistance element and a second temperature measuring resistance element are connected in series, and the heating element is arranged in the vicinity of each of the temperature measuring resistance elements. A control circuit is provided for controlling the current to the heating element so that the average temperature of the element is always higher than the ambient temperature by a constant temperature, and the flow velocity is determined based on the temperature difference between the first and second temperature measuring resistance elements. A flow velocity sensor characterized by being obtained.
【請求項3】 請求項1または2記載の流速センサにお
いて、 前記直列に接続された第1および第2の測温抵抗エレメ
ントとを一辺とするブリッジ回路を構成し、この一辺以
外の他の一辺に流体の流れに影響されない周囲温度を測
定する周囲温度センサを含ませ、前記ブリッジ回路の各
中点の電圧差を一定にするように前記発熱体に流す電流
を制御する差動増幅回路を設けたことを特徴とする流速
センサ。
3. The flow velocity sensor according to claim 1, wherein a bridge circuit having one side of the first and second temperature measuring resistance elements connected in series is formed, and one side other than the one side is formed. Includes an ambient temperature sensor that measures an ambient temperature that is not affected by the flow of fluid, and provides a differential amplifier circuit that controls a current flowing through the heating element so that the voltage difference at each midpoint of the bridge circuit becomes constant. A flow velocity sensor characterized in that
【請求項4】 請求項1ないし3のいずれか1項に記載
の流速センサにおいて、 前記直列に接続された第1および第2の測温抵抗エレメ
ントの両端電圧を少なくとも1つのボルテージフォロア
回路で受け、前記両端電圧の分圧と前記第1および第2
の測温抵抗エレメントの接続点の電圧とを比較して流速
を求めるようにしたことを特徴とする流速センサ。
4. The flow velocity sensor according to claim 1, wherein at least one voltage follower circuit receives the voltage across the first and second temperature measuring resistance elements connected in series. , The partial voltage of the both-end voltage and the first and second
The flow velocity sensor is characterized in that the flow velocity is obtained by comparing with the voltage at the connection point of the temperature measuring resistance element.
JP2002130507A 2002-05-02 2002-05-02 Flow rate sensor Expired - Fee Related JP3802443B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002130507A JP3802443B2 (en) 2002-05-02 2002-05-02 Flow rate sensor
CNB038099942A CN100405066C (en) 2002-05-02 2003-04-28 Flow velocity sensor
PCT/JP2003/005473 WO2003093838A1 (en) 2002-05-02 2003-04-28 Flow velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002130507A JP3802443B2 (en) 2002-05-02 2002-05-02 Flow rate sensor

Publications (2)

Publication Number Publication Date
JP2003322658A true JP2003322658A (en) 2003-11-14
JP3802443B2 JP3802443B2 (en) 2006-07-26

Family

ID=29397329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130507A Expired - Fee Related JP3802443B2 (en) 2002-05-02 2002-05-02 Flow rate sensor

Country Status (3)

Country Link
JP (1) JP3802443B2 (en)
CN (1) CN100405066C (en)
WO (1) WO2003093838A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082105A (en) * 2010-12-06 2011-06-01 东南大学 Thermal wind sensor based on anodic bonding technology and preparation method thereof
CN110307876A (en) * 2018-03-27 2019-10-08 阿自倍尔株式会社 Thermal flow rate sensor device and flow correction method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2040045B1 (en) 2007-09-20 2016-11-30 Azbil Corporation Flow sensor
JP6322052B2 (en) * 2013-10-28 2018-05-09 日本電産サンキョー株式会社 Sensor device
KR101581134B1 (en) * 2013-10-28 2015-12-29 니혼 덴산 산쿄 가부시키가이샤 Sensor device
DE112017000359T5 (en) * 2016-01-13 2018-10-04 Analog Devices Global Air flow sensor for fan-cooled systems
CN107228692A (en) * 2017-06-30 2017-10-03 深圳龙电电气股份有限公司 The metering method and its device of a kind of water flow
CN107328449B (en) * 2017-07-06 2019-08-30 中国科学院上海微系统与信息技术研究所 A kind of thermoelectric pile formula gas flow sensor and preparation method thereof
CN107345826B (en) * 2017-07-06 2020-12-18 中国科学院上海微系统与信息技术研究所 Thermal gas flow sensor and preparation method thereof
JP6867909B2 (en) * 2017-08-02 2021-05-12 アズビル株式会社 Thermal flow meter
CN110945364B (en) * 2017-08-05 2021-08-03 株式会社村田制作所 Wind speed measuring device and wind speed measuring device
CN109211342B (en) * 2018-09-05 2020-03-20 四方光电股份有限公司 Airflow flowmeter, MEMS silicon-based temperature-sensitive chip and preparation method thereof
CN111220224B (en) * 2018-11-26 2021-07-13 苏州原位芯片科技有限责任公司 MEMS flow sensor chip

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073351B2 (en) * 1987-02-25 1995-01-18 富士電機株式会社 Mass flow meter
JPH0625684B2 (en) * 1989-03-31 1994-04-06 山武ハネウエル株式会社 Fluid flow rate detection sensor
DE4342481C2 (en) * 1993-12-13 1996-09-05 Siemens Ag Method of measuring the intake air mass
JP3424974B2 (en) * 1994-03-02 2003-07-07 株式会社エステック Flow sensor
JPH11351936A (en) * 1998-06-05 1999-12-24 Mitsubishi Electric Corp Thermal flow-rate sensor and thermal flow-rate detection circuit
JP3825242B2 (en) * 2000-10-17 2006-09-27 株式会社山武 Flow sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082105A (en) * 2010-12-06 2011-06-01 东南大学 Thermal wind sensor based on anodic bonding technology and preparation method thereof
CN110307876A (en) * 2018-03-27 2019-10-08 阿自倍尔株式会社 Thermal flow rate sensor device and flow correction method

Also Published As

Publication number Publication date
JP3802443B2 (en) 2006-07-26
CN100405066C (en) 2008-07-23
CN1650175A (en) 2005-08-03
WO2003093838A1 (en) 2003-11-13

Similar Documents

Publication Publication Date Title
US8667839B2 (en) Heat conduction-type sensor for calibrating effects of temperature and type of fluid, and thermal flow sensor and thermal barometric sensor using this sensor
JP2704048B2 (en) Current difference type thermal mass flow transducer
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
US8336376B2 (en) Thermal flow meter
EP1541974B1 (en) Heating resistor type flow-measuring device
US7287424B2 (en) Thermal type flow measurement apparatus having asymmetrical passage for flow rate measurement
US6935172B2 (en) Thermal type flow measuring device
JP2003322658A (en) Flow velocity sensor
JPH0625684B2 (en) Fluid flow rate detection sensor
JP3293469B2 (en) Thermal flow sensor
JP3454265B2 (en) Thermal flow sensor
CN111323090B (en) Micro flow sensor based on thermal feedback, airflow measuring system and measuring method
JPH11148944A (en) Flow velocity sensor and flow velocity-measuring apparatus
JPH11148945A (en) Flow velocity sensor and flow velocity-measuring apparatus
JP3577902B2 (en) Thermal flow sensor
JPH11118567A (en) Flow sensor
JP2002310762A (en) Flow sensor
JP2002286520A (en) Flow sensor and flow measuring instrument
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JPH11351936A (en) Thermal flow-rate sensor and thermal flow-rate detection circuit
JPH0224567A (en) Flow velocity sensor and measuring device of flow velocity using the same
JPH11287685A (en) Flow sensor
JPH03279866A (en) Wind speed sensor
JPH07181067A (en) Current sensor
JPS63241312A (en) Flow sensor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees