JP3788869B2 - Flow sensor - Google Patents

Flow sensor Download PDF

Info

Publication number
JP3788869B2
JP3788869B2 JP24344698A JP24344698A JP3788869B2 JP 3788869 B2 JP3788869 B2 JP 3788869B2 JP 24344698 A JP24344698 A JP 24344698A JP 24344698 A JP24344698 A JP 24344698A JP 3788869 B2 JP3788869 B2 JP 3788869B2
Authority
JP
Japan
Prior art keywords
resistor
heating
operational amplifier
fluid
flow sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24344698A
Other languages
Japanese (ja)
Other versions
JP2000074714A (en
Inventor
義宣 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Ricoh Co Ltd
Original Assignee
Ricoh Elemex Corp
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp, Ricoh Co Ltd filed Critical Ricoh Elemex Corp
Priority to JP24344698A priority Critical patent/JP3788869B2/en
Publication of JP2000074714A publication Critical patent/JP2000074714A/en
Application granted granted Critical
Publication of JP3788869B2 publication Critical patent/JP3788869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、発熱抵抗体を用い、流体の流速を検出するフローセンサに関する。
【0002】
【従来の技術】
2つの発熱抵抗体を用いた定電流駆動方式のフローセンサは、例えば、特開平9−4309号公報に開示され、2つの発熱抵抗体を用いた定電圧駆動方式のフローセンサは、例えば、特表平8−509066号公報に開示されている。
【0003】
【発明が解決しようとする課題】
一般に、定電圧駆動方式の一般的な特徴は、駆動電圧が流体の流量に依存せず一定で、発熱抵抗体の抵抗値の低下は、消費電力の増加につながる成分もあるため、定電流駆動方式に比べ、流体の流速が増加しても、フローセンサの消費電力の減少が少なく、高速流域での感度の低下が少ない点にある。
【0004】
しかしながら、上流側、下流側の発熱体にバランスした等電圧を印可するのに、回路構成が煩雑で回路の安定性がとりにくいという不具合がある。
【0005】
一方、定電流駆動方式の一般的な特徴は、定電圧駆動方式に比べ、感度が高く、発熱抵抗体の抵抗値と電圧との関係が比例するので信号処理に用いやすい点にある。
【0006】
この発明の目的は、定電圧駆動方式の高流速域での感度のよさと、定電流駆動方式の高感度で信号処理がしやすい点の両方を備えたフローセンサを提供することにある。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、基板と、基板上に形成され検出対象となる流体の流れる方向の上流側と下流側とに各々配置された2つの発熱抵抗体と、前記発熱抵抗体の一方が入力抵抗として反転入力端子に接続され、他方が負帰還抵抗として接続されている第1のオペアンプと、入力抵抗である前記発熱抵抗体に一定電圧を印可する電源と、前記電源の出力電圧と前記第1のオペアンプの出力電圧とが入力され、この両電圧の差電圧を示す信号を出力する第2のオペアンプと、を備えている。
【0008】
したがって、入力抵抗となる発熱抵抗体は定電圧源により定電圧駆動方式で駆動されて、流体の流速が増加したときに発熱抵抗体の消費電力の増加による発熱量の増加があり、また、両発熱抵抗体は駆動電流が等しい定電流駆動方式の特徴も併せ持つので、流体の流速の測定範囲を拡大させることができる。
また、2つの発熱抵抗体の出力電圧を比較的入力インピーダンスの低い第2のオペアンプによる比較器で比較することができ、両発熱抵抗体の出力電圧の比較のために、従来の定電流駆動方式のフローセンサのような高インピーダンスのアンプが不要となるので、回路構成をシンプルにすることができる。
【0009】
請求項2に記載の発明は、請求項1に記載の発明において、入力抵抗である発熱抵抗体を流体の流れる方向の上流側に、負帰還抵抗である発熱抵抗体を下流側に各々配置する。
【0010】
したがって、流速(流量)に対する出力電圧特性の、高流速(流量)域での感度の低下が少なく、直線性のよい、流体の上流側に配置する発熱抵抗体を定電圧駆動するので、さらに流体の流速の測定範囲を広げることができる。
【0013】
【発明の実施の形態】
図1は、この発明の実施の一形態であるフローセンサの素子の平面図(a)と縦断面図(b)である。
【0014】
このフローセンサ素子1は、基板2に堀3と、この堀3を架橋した橋4が形成されている。橋4の上には、2つの発熱抵抗体5,6が形成されている。このフローセンサによる検出対象である流体の流れる方向は矢印7で示しているが、発熱抵抗体5は流体の上流側、発熱抵抗体6は下流側に位置している。ボンディングパッド8は、両発熱抵抗体5,6の電気信号を外部に取り出すために形成されている。
【0015】
図2は、フローセンサ素子1を駆動する駆動回路の回路図である。
【0016】
この駆動回路10は、発熱抵抗体5が入力抵抗として反転入力端子に接続され、発熱抵抗体6が負帰還抵抗として接続されているオペアンプ11を備えている。このオペアンプ11は、この発明の第1のオペアンプを実現するものである。電源12は、入力抵抗である発熱抵抗体5に一定電圧を印可する。また、オペアンプ11の非反転入力端子はグランドに接続されている。
【0017】
オペアンプ13は、非反転入力端子が電源12に接続され、反転入力端子には、オペアンプ11の出力が入力される。
【0018】
以上のような回路構成で、発熱抵抗体5は電源12で定電圧駆動され、発熱抵抗体5および6は等しい電流値で駆動される。
【0019】
この駆動回路10のオペアンプ11、発熱抵抗体5,6は基本的な反転増幅器に相当するので、その入力電圧Vinに対するオペアンプ11の出力電圧Voは、発熱抵抗体5,6の抵抗値を各々R1,R2とすれば、
Vo=−(R2/R1)×Vin …… (1)
となる。したがって、発熱抵抗体6にかかる駆動電圧は、オペアンプ11の出力電圧Voと一致する。
【0020】
流体の流速(流量)を検出するための信号は、2つの発熱抵抗体5,6の電圧降下Vhu,Vhdを測定し、この差電圧である、
Vhud=Vhu−Vhd …… (2)
または、
Vhdu=Vhd−Vhu …… (3)
を求めればよい。
【0021】
このように差をとることで、流体の流速(流量)に伴う信号の変化を捕らえられるが、流体の温度の変化に伴う出力信号の変化はなくなり、両発熱抵抗体5,6の流体の流れに伴って奪われる熱量の違いのみを検出することができる。
【0022】
発熱抵抗体5は、電源12で定電圧駆動され、流体の流速が増加すると、発熱抵抗体5は温度が低下し、抵抗値R1が低下するため、駆動電流が増加する。駆動電流の増加は、定電圧駆動方式のとき消費電力の増加になる。流体の流速が増加したときに消費電力が増加するようにすることは、高流速域でのセンサ温度の低下、つまり感度の低下を防止することになる。また、両発熱抵抗体5,6は等しい駆動電流により駆動されるという定電流駆動方式の特徴も併せ持っている。よって、流体の流速(流量)の測定範囲を拡大することができる。
【0023】
特に、流体の上流側に配置された発熱抵抗体5は、流体の下流側に配置され、発熱抵抗体5の熱をもらうことができる発熱抵抗体6より、流速と出力電圧の直線性はよくなる。つまり、流体の下流側の発熱抵抗体6は、上流側の発熱抵抗体5が発する熱をもらうため、発熱抵抗体5より先に感度が低下する。従って、フローセンサの駆動電力を適切に増加させるためには、この実施の形態の例のように、流体の下流側に配置される発熱抵抗体6より、上流側に配置される発熱抵抗体5を定電圧駆動する方が望ましい。これにより、高流速域での感度の低下をより小さくすることができるので、測定できる流体の流速(流量)域を拡大することができる。
【0024】
図3は、従来の一般的な定電流駆動方式のフローセンサの駆動回路の回路図である。この回路では、二つの発熱抵抗体21,22を、定電流源23,24で定電流により駆動し、各発熱体21,22の電圧値をアンプ25,26で増幅してから、比較器27で比較する。この回路では発熱抵抗体21,22の電圧信号の検出に使うアンプ25,26入力が高インピーダンスであるものを必要とする。
【0025】
これに対し、この実施の形態の例では、通常のオペアンプ11を使用しており、このオペアンプ11の出力インピーダンスは、発熱抵抗体6が負帰還抵抗として動作している限り十分に低インピーダンスである。また、発熱抵抗体21と22の電圧の差信号を検出するオペアンプ13も、オペアンプを用いた一般的なコンパレータ回路を構成するだけでよい。このようにすることにより、2つの発熱抵抗体5,6の出力電圧の差が、オペアンプ13から出力される。
【0026】
【発明の効果】
請求項1に記載の発明は、入力抵抗となる発熱抵抗体は定電圧源により定電圧駆動方式で駆動されて、流体の流速が増加したときに発熱抵抗体の消費電力の増加による発熱量の増加があり、また、両発熱抵抗体は駆動電流が等しい定電流駆動方式の特徴も併せ持つので、流体の流速の測定範囲を拡大させることができる。
また、2つの発熱抵抗体の出力電圧を比較的入力インピーダンスの低い第2のオペアンプによる比較器で比較することができ、両発熱抵抗体の出力電圧の比較を行なうために、従来の定電流駆動方式のフローセンサのような高インピーダンスのアンプが不要となるので、回路構成をシンプルにすることができる。
【0027】
請求項2に記載の発明は、請求項1に記載の発明において、流速(流量)に対する出力電圧特性の、高流速(流量)域での感度の低下が少なく、直線性のよい、流体の上流側に配置する発熱抵抗体を定電圧駆動するので、さらに流体の流速の測定範囲を広げることができる。
【0028】
請求項3に記載の発明は、請求項1または2の発明において、2つの発熱抵抗体の出力電圧を比較的入力インピーダンスの低い第2のオペアンプによる比較器で比較することができ、両発熱抵抗体の出力電圧の比較を行なうために、従来の定電流駆動方式のフローセンサのような高インピーダンスのアンプが不要となるので、回路構成をシンプルにすることができる。
【図面の簡単な説明】
【図1】この発明の実施の一形態にかかるフローセンサの素子の平面図(a)と、(a)のA−A切断矢視図(b)である。
【図2】この発明の実施の一形態にかかるフローセンサの駆動回路の回路図である。
【図3】定電流駆動方式である従来のフローセンサの駆動回路の回路図である。
【符号の説明】
1 フローセンサの素子
2 基板
5 発熱抵抗体
6 発熱抵抗体
10 フローセンサの駆動回路
11 第1のオペアンプ
12 第2のオペアンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flow sensor that uses a heating resistor to detect the flow velocity of a fluid.
[0002]
[Prior art]
A constant current drive type flow sensor using two heating resistors is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-4309. A constant voltage drive type flow sensor using two heating resistors is, for example, a special sensor. It is disclosed in Table No. 8-509066.
[0003]
[Problems to be solved by the invention]
In general, the general feature of the constant voltage drive method is that the drive voltage is constant without depending on the flow rate of the fluid, and a decrease in the resistance value of the heating resistor has components that lead to an increase in power consumption. Compared with the method, even if the flow velocity of the fluid increases, there is little decrease in power consumption of the flow sensor, and there is little decrease in sensitivity in the high-speed basin.
[0004]
However, in order to apply a balanced equal voltage to the heating elements on the upstream side and the downstream side, there is a problem that the circuit configuration is complicated and the stability of the circuit is difficult to take.
[0005]
On the other hand, the general characteristics of the constant current driving method are that the sensitivity is higher than that of the constant voltage driving method and the relationship between the resistance value of the heating resistor and the voltage is proportional, so that it is easy to use for signal processing.
[0006]
An object of the present invention is to provide a flow sensor having both the sensitivity in the high flow rate region of the constant voltage driving method and the high sensitivity of the constant current driving method and the easy signal processing.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a substrate, two heating resistors disposed on the upstream side and the downstream side in the direction in which the fluid to be detected formed on the substrate flows, and one of the heating resistors Is connected to the inverting input terminal as an input resistor, the other is connected as a negative feedback resistor, a power supply that applies a constant voltage to the heating resistor as an input resistor, and an output voltage of the power supply And an output voltage of the first operational amplifier, and a second operational amplifier that outputs a signal indicating a difference voltage between the two voltages .
[0008]
Therefore, the heating resistor serving as the input resistance is driven by a constant voltage drive system from a constant voltage source, and when the flow rate of the fluid increases, there is an increase in the amount of heat generated due to the increase in power consumption of the heating resistor. Since the heating resistor also has the characteristics of the constant current driving method in which the driving current is equal, the measurement range of the fluid flow velocity can be expanded.
In addition, the output voltage of the two heating resistors can be compared with a comparator using a second operational amplifier having a relatively low input impedance. For comparison of the output voltages of the two heating resistors, the conventional constant current driving method is used. Since a high impedance amplifier such as the flow sensor is not required, the circuit configuration can be simplified.
[0009]
According to a second aspect of the present invention, in the first aspect of the present invention, the heating resistor as the input resistance is arranged upstream of the fluid flow direction, and the heating resistor as the negative feedback resistor is arranged downstream. .
[0010]
Accordingly, the output voltage characteristic with respect to the flow rate (flow rate) is less susceptible to a decrease in sensitivity in the high flow rate (flow rate) region, and the heating resistor disposed on the upstream side of the fluid with good linearity is driven at a constant voltage. The measurement range of the flow rate can be expanded.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a plan view (a) and a longitudinal sectional view (b) of an element of a flow sensor according to an embodiment of the present invention.
[0014]
In the flow sensor element 1, a moat 3 and a bridge 4 that bridges the moat 3 are formed on a substrate 2. Two heating resistors 5 and 6 are formed on the bridge 4. The flow direction of the fluid to be detected by the flow sensor is indicated by an arrow 7, but the heating resistor 5 is located on the upstream side of the fluid and the heating resistor 6 is located on the downstream side. The bonding pad 8 is formed in order to take out the electrical signals of both the heating resistors 5 and 6 to the outside.
[0015]
FIG. 2 is a circuit diagram of a drive circuit that drives the flow sensor element 1.
[0016]
The drive circuit 10 includes an operational amplifier 11 in which the heating resistor 5 is connected as an input resistor to the inverting input terminal, and the heating resistor 6 is connected as a negative feedback resistor. This operational amplifier 11 realizes the first operational amplifier of the present invention. The power supply 12 applies a constant voltage to the heating resistor 5 that is an input resistance. The non-inverting input terminal of the operational amplifier 11 is connected to the ground.
[0017]
The operational amplifier 13 has a non-inverting input terminal connected to the power supply 12 and the output of the operational amplifier 11 is input to the inverting input terminal.
[0018]
With the circuit configuration as described above, the heating resistor 5 is driven at a constant voltage by the power supply 12, and the heating resistors 5 and 6 are driven at an equal current value.
[0019]
Since the operational amplifier 11 and the heating resistors 5 and 6 of the driving circuit 10 correspond to a basic inverting amplifier, the output voltage Vo of the operational amplifier 11 with respect to the input voltage Vin is the resistance value of each of the heating resistors 5 and R1. , R2
Vo = − (R2 / R1) × Vin (1)
It becomes. Therefore, the drive voltage applied to the heating resistor 6 matches the output voltage Vo of the operational amplifier 11.
[0020]
The signal for detecting the flow velocity (flow rate) of the fluid is a voltage difference Vhu and Vhd between the two heating resistors 5 and 6, and is a difference voltage between them.
Vhud = Vhu−Vhd (2)
Or
Vhdu = Vhd−Vhu (3)
You can ask for.
[0021]
By taking the difference in this way, it is possible to capture the change in the signal accompanying the flow velocity (flow rate) of the fluid, but the change in the output signal accompanying the change in the fluid temperature is eliminated, and the flow of the fluid in both the heating resistors 5 and 6 It is possible to detect only the difference in the amount of heat deprived along with.
[0022]
When the heating resistor 5 is driven at a constant voltage by the power supply 12 and the fluid flow rate increases, the temperature of the heating resistor 5 decreases and the resistance value R1 decreases, so that the drive current increases. An increase in drive current results in an increase in power consumption in the constant voltage drive method. Increasing the power consumption when the fluid flow rate increases prevents the sensor temperature from decreasing in the high flow rate region, that is, the sensitivity from decreasing. Further, both the heating resistors 5 and 6 have a feature of a constant current driving system in which they are driven by an equal driving current. Therefore, the measurement range of the fluid flow rate (flow rate) can be expanded.
[0023]
In particular, the heating resistor 5 arranged on the upstream side of the fluid is arranged on the downstream side of the fluid, and the linearity of the flow velocity and the output voltage is improved compared to the heating resistor 6 that can receive the heat of the heating resistor 5. . That is, since the heat generating resistor 6 on the downstream side of the fluid receives heat generated by the heat generating resistor 5 on the upstream side, the sensitivity is lowered before the heat generating resistor 5. Therefore, in order to appropriately increase the driving power of the flow sensor, the heating resistor 5 disposed on the upstream side of the heating resistor 6 disposed on the downstream side of the fluid as in the example of this embodiment. Is preferably driven at a constant voltage. Thereby, since the fall of the sensitivity in a high flow-velocity area | region can be made smaller, the flow velocity (flow volume) area | region of the fluid which can be measured can be expanded.
[0024]
FIG. 3 is a circuit diagram of a conventional general constant current driving type flow sensor driving circuit. In this circuit, the two heating resistors 21 and 22 are driven with constant current by the constant current sources 23 and 24, and the voltage values of the heating elements 21 and 22 are amplified by the amplifiers 25 and 26, and then the comparator 27. Compare with. This circuit requires that the inputs of the amplifiers 25 and 26 used for detecting the voltage signals of the heating resistors 21 and 22 have high impedance.
[0025]
On the other hand, in the example of this embodiment, a normal operational amplifier 11 is used, and the output impedance of the operational amplifier 11 is sufficiently low as long as the heating resistor 6 operates as a negative feedback resistor. . Further, the operational amplifier 13 that detects the difference signal between the voltages of the heating resistors 21 and 22 only needs to constitute a general comparator circuit using the operational amplifier. In this way, the difference between the output voltages of the two heating resistors 5 and 6 is output from the operational amplifier 13.
[0026]
【The invention's effect】
According to the first aspect of the present invention, the heating resistor serving as the input resistance is driven by a constant voltage drive system by a constant voltage source, and the amount of heat generated by the increase in power consumption of the heating resistor when the fluid flow rate increases. In addition, since both heating resistors have the characteristics of the constant current driving method in which the driving currents are equal, the measurement range of the fluid flow velocity can be expanded.
In addition, the output voltage of the two heating resistors can be compared by a comparator using a second operational amplifier having a relatively low input impedance. In order to compare the output voltages of the two heating resistors, a conventional constant current drive is used. Since a high-impedance amplifier such as a flow sensor of the type is not necessary, the circuit configuration can be simplified.
[0027]
The invention according to claim 2 is the upstream of the fluid in the invention according to claim 1, in which the output voltage characteristics with respect to the flow velocity (flow rate) are less susceptible to decrease in sensitivity in a high flow velocity (flow rate) region and have good linearity. Since the heating resistor arranged on the side is driven at a constant voltage, the measurement range of the flow rate of the fluid can be further expanded.
[0028]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the output voltages of the two heating resistors can be compared by a comparator using a second operational amplifier having a relatively low input impedance. In order to compare the output voltages of the body, a high impedance amplifier such as a conventional constant current drive type flow sensor is not required, so that the circuit configuration can be simplified.
[Brief description of the drawings]
FIG. 1A is a plan view of an element of a flow sensor according to an embodiment of the present invention, and FIG.
FIG. 2 is a circuit diagram of a drive circuit for a flow sensor according to one embodiment of the present invention.
FIG. 3 is a circuit diagram of a driving circuit of a conventional flow sensor that is a constant current driving method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flow sensor element 2 Board | substrate 5 Heating resistor 6 Heating resistor 10 Flow sensor drive circuit 11 1st operational amplifier 12 2nd operational amplifier

Claims (2)

基板と、基板上に形成され検出対象となる流体の流れる方向の上流側と下流側とに各々配置された2つの発熱抵抗体と、
前記発熱抵抗体の一方が入力抵抗として反転入力端子に接続され、他方が負帰還抵抗として接続されている第1のオペアンプと、
入力抵抗である前記発熱抵抗体に一定電圧を印可する電源と、
前記電源の出力電圧と前記第1のオペアンプの出力電圧とが入力され、この両電圧の差電圧を示す信号を出力する第2のオペアンプと、
を備えているフローセンサ。
A substrate, and two heating resistors respectively disposed on the upstream side and the downstream side in the direction in which the fluid to be detected formed on the substrate flows;
A first operational amplifier in which one of the heating resistors is connected as an input resistor to an inverting input terminal, and the other is connected as a negative feedback resistor;
A power source for applying a constant voltage to the heating resistor as an input resistor;
A second operational amplifier that receives an output voltage of the power supply and an output voltage of the first operational amplifier and outputs a signal indicating a difference voltage between the two voltages;
Equipped with a flow sensor.
入力抵抗である発熱抵抗体を流体の流れる方向の上流側に、負帰還抵抗である発熱抵抗体を下流側に、各々配置したことを特徴とする請求項1に記載のフローセンサ。  The flow sensor according to claim 1, wherein the heating resistor as an input resistor is arranged on the upstream side in the fluid flow direction, and the heating resistor as a negative feedback resistor is arranged on the downstream side.
JP24344698A 1998-08-28 1998-08-28 Flow sensor Expired - Fee Related JP3788869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24344698A JP3788869B2 (en) 1998-08-28 1998-08-28 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24344698A JP3788869B2 (en) 1998-08-28 1998-08-28 Flow sensor

Publications (2)

Publication Number Publication Date
JP2000074714A JP2000074714A (en) 2000-03-14
JP3788869B2 true JP3788869B2 (en) 2006-06-21

Family

ID=17104009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24344698A Expired - Fee Related JP3788869B2 (en) 1998-08-28 1998-08-28 Flow sensor

Country Status (1)

Country Link
JP (1) JP3788869B2 (en)

Also Published As

Publication number Publication date
JP2000074714A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
JP2005172463A (en) Heat resistance type flow meter
JPH0664080B2 (en) Temperature compensation circuit for flow sensor
WO2001004580A3 (en) Improved mass flow sensor interface circuit
JP3788869B2 (en) Flow sensor
JPH0432617Y2 (en)
JP3937589B2 (en) Angular velocity sensor
US7013725B1 (en) System and method for regulating bridge voltage in a discontinuous-time hot-wire anemometer
JPH0663800B2 (en) Heater temperature control circuit
JPH0618540A (en) Wind velocity sensor
JPH0663801B2 (en) Flow rate measurement circuit
JP2001235352A (en) Electromagnetic flowmeter
JP2003315129A (en) Thermal flow measuring instrument
JP3819185B2 (en) Flow velocity measuring device
JPH0432081U (en)
JPS62250312A (en) Flow speed sensor driving circuit
JP4205669B2 (en) Thermal air flow sensor device
JP3563982B2 (en) Flow measurement device and method
JP4089657B2 (en) Air flow sensor
JP2965808B2 (en) Eddy detection circuit
JPH0642223Y2 (en) Magnetic detection circuit
JP2001153898A (en) Circuit for detecting voltage
JPH0413982A (en) Sensor drive circuit
JPH1019622A (en) Thermo-sensitive flow sensor and drive circuit thereof
JP3771069B2 (en) Flow measuring device
JPH09264903A (en) Sensor circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050304

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060324

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees