JPH0663801B2 - Flow rate measurement circuit - Google Patents

Flow rate measurement circuit

Info

Publication number
JPH0663801B2
JPH0663801B2 JP63272936A JP27293688A JPH0663801B2 JP H0663801 B2 JPH0663801 B2 JP H0663801B2 JP 63272936 A JP63272936 A JP 63272936A JP 27293688 A JP27293688 A JP 27293688A JP H0663801 B2 JPH0663801 B2 JP H0663801B2
Authority
JP
Japan
Prior art keywords
temperature
flow rate
circuit
heater
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63272936A
Other languages
Japanese (ja)
Other versions
JPH02120621A (en
Inventor
哲生 久永
Original Assignee
山武ハネウエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山武ハネウエル株式会社 filed Critical 山武ハネウエル株式会社
Priority to JP63272936A priority Critical patent/JPH0663801B2/en
Publication of JPH02120621A publication Critical patent/JPH02120621A/en
Publication of JPH0663801B2 publication Critical patent/JPH0663801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流量測定回路に関し、特に、自動的に感度を補
正する自動感度補正回路に関するものである。
Description: TECHNICAL FIELD The present invention relates to a flow rate measuring circuit, and more particularly to an automatic sensitivity correction circuit for automatically correcting sensitivity.

〔従来の技術〕[Conventional technology]

マイクロブリッジを使用した流量測定回路は、上流側温
度センサと下流側温度センサとの間に配置されたヒータ
抵抗に電流を流して発熱させ、上流側温度センサと下流
側温度センサの出力信号の差により流量を測定する。こ
の回路を第4図に示す。第4図において、RHはヒータ
抵抗、RRは基準抵抗、RUは上流側温度センサ、RD
は下流側温度センサ、1および2は演算増幅器である。
第4図(a)はヒータ制御回路で、ヒータ抵抗RHの温度
上昇を一定に保つようにフィードバック制御を行なう。
このとき基準抵抗RRは周囲温度の測定を行なう。第4
図(b)は温度センサ回路で、上流側,下流側の2つの温
度センサRU,RDによって発生する電圧VD,VUの
差を演算増幅器2でA倍に増幅して流量信号Xとする。
Xは次のように表わせる。
A flow rate measurement circuit using a microbridge causes heat to flow by passing a current through a heater resistor arranged between the upstream temperature sensor and the downstream temperature sensor, and the difference between the output signals of the upstream temperature sensor and the downstream temperature sensor. To measure the flow rate. This circuit is shown in FIG. In FIG. 4, RH is a heater resistance, RR is a reference resistance, RU is an upstream temperature sensor, and RD.
Is a downstream temperature sensor, and 1 and 2 are operational amplifiers.
FIG. 4 (a) shows a heater control circuit which performs feedback control so as to keep the temperature rise of the heater resistance RH constant.
At this time, the reference resistance RR measures the ambient temperature. Fourth
FIG. 2B shows a temperature sensor circuit in which the difference between the voltages VD and VU generated by the two temperature sensors RU and RD on the upstream side and the downstream side is amplified by A times by the operational amplifier 2 to obtain the flow rate signal X.
X can be expressed as follows.

X=A(VD−VU)・・・・・(1) ここで、(VD−VU)はヒータ温度上昇TRに比例す
るため、XもTRに比例する。すなわち、(1)式は、 X=k・TR・・・・・(2) と表わせる。
X = A (VD-VU) (1) Since (VD-VU) is proportional to the heater temperature rise TR, X is also proportional to TR. That is, the equation (1) can be expressed as X = k · TR (2).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところが、ヒータ抵抗RHは常に基準抵抗RRより高温
になるため、抵抗値の経年変化がヒータ抵抗RHと基準
抵抗RRとで異なり、ヒータ抵抗RHの方が劣化が早
い。第5図に示すヒータ抵抗RHの温度特性のグラフに
おいて、初期特性を直線L1で示し、劣化の進んだ特性
を直線L2で示すと、第4図の回路ではヒータ抵抗の抵
抗値が一定となるように制御されるため、ヒータ抵抗R
Hの温度は初期に点Aで示すTAであったものが、後に
点Bで示すTBになってしまう。このため、感度特性が
変化し、流量信号Xの値が変わってしまうという欠点が
あった。
However, since the heater resistance RH is always higher than the reference resistance RR, the aging change of the resistance value is different between the heater resistance RH and the reference resistance RR, and the heater resistance RH is deteriorated earlier. In the graph of the temperature characteristic of the heater resistance RH shown in FIG. 5, if the initial characteristic is shown by the straight line L1 and the deteriorated characteristic is shown by the straight line L2, the resistance value of the heater resistance becomes constant in the circuit of FIG. Heater resistance R
The temperature of H was initially TA indicated by point A, but changed to TB indicated by point B later. Therefore, there is a drawback that the sensitivity characteristic changes and the value of the flow rate signal X changes.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、出力流量の値がヒータ抵抗の特
性変化の影響を受けないような流量測定回路に得ること
にある。
The present invention has been made in view of the above points, and an object thereof is to obtain a flow rate measuring circuit in which the value of the output flow rate is not affected by the characteristic change of the heater resistance.

〔課題を解決するための手段〕[Means for Solving the Problems]

このような目的を達成するために本発明は、上流側温度
センサと下流側温度センサの周力信号からヒータの上昇
温度を示す上昇温度信号を出力する上昇温度算出回路
と、上流側温度センサと下流側温度センサの出力信号か
ら温度差を示す温度差信号を出力する温度差回路と、上
昇温度により温度差を割って流量を得る割算回路と、ヒ
ータを断続する制御回路とを設けるようにしたものであ
る。
In order to achieve such an object, the present invention provides a rising temperature calculation circuit that outputs a rising temperature signal indicating a rising temperature of a heater from the circumferential force signals of the upstream temperature sensor and the downstream temperature sensor, and an upstream temperature sensor. A temperature difference circuit that outputs a temperature difference signal indicating a temperature difference from the output signal of the downstream temperature sensor, a division circuit that divides the temperature difference by the rising temperature to obtain a flow rate, and a control circuit that disconnects the heater are provided. It was done.

〔作用〕[Action]

本発明による流量測定回路においては、自動的に感度が
補正される。
In the flow rate measuring circuit according to the present invention, the sensitivity is automatically corrected.

〔実施例〕〔Example〕

第1図は本発明による流用測定回路の一実施例を示す回
路図である。同図において、3は割算回路、U1〜U3
は演算増幅器、4は制御回路、S1,S2はスイッチ、
R1,R2は抵抗、C1はコンデンであり、演算増幅器
U1〜U3は上昇温度信号を出力する上昇温度算出回路
を構成し、演算増幅器2は温度差信号を出力する温度差
回路を構成する。なお、第1図において第4図と同一部
分又は相当部分には同一符号が付してある。
FIG. 1 is a circuit diagram showing an embodiment of a diversion measuring circuit according to the present invention. In the figure, 3 is a division circuit, U1 to U3.
Is an operational amplifier, 4 is a control circuit, S1 and S2 are switches,
R1 and R2 are resistors and C1 is a condenser. The operational amplifiers U1 to U3 form a rising temperature calculation circuit that outputs a rising temperature signal, and the operational amplifier 2 forms a temperature difference circuit that outputs a temperature difference signal. In FIG. 1, the same or corresponding parts as those in FIG. 4 are designated by the same reference numerals.

演算増幅器2は温度差Xを示す温度差信号を割算回路3
へ出力し、演算増幅器U1〜U3は上昇温度Yを示す上
昇温度信号を割算回路3へ出力する。
The operational amplifier 2 divides the temperature difference signal indicating the temperature difference X into a division circuit 3
Then, the operational amplifiers U1 to U3 output the rising temperature signal indicating the rising temperature Y to the division circuit 3.

温度センサRU,RDからの出力電圧は流量に対して第
2図に示すように変化するが、基準電圧VONに対する温
度センRUとRDの出力電圧の偏差ΔVD(曲線SD)
とΔVU(曲線SU)の比は一定とみなせるので、第1
図の抵抗R1とR2の抵抗値r1とr2の比を r1/r2=ΔVD/ΔVU・・・・・(3) となるように選べば、温度センサRU,RDからの出力
電圧を加算することにより、流量にかかわらず、基準電
圧VONの値を求めることができる。
Although the output voltage from the temperature sensors RU and RD changes as shown in FIG. 2 with respect to the flow rate, the deviation ΔVD (curve SD) between the output voltages of the temperature sensors RU and RD with respect to the reference voltage V ON .
The ratio of ΔVU (curve SU) can be regarded as constant, so
If the ratio of the resistance values r1 and r2 of the resistors R1 and R2 in the figure is selected to be r1 / r2 = ΔVD / ΔVU (3), add the output voltages from the temperature sensors RU and RD. Thus, the value of the reference voltage V ON can be obtained regardless of the flow rate.

制御回路4により一定周期でスイッチS1をオフにし、
ヒータ抵抗RHをオフにする。このとき演算増幅器U1
に現れる直線L3の電圧VOFFをスイッチS2をオンにし
てコンデンサC1に充電する。次に、測定状態に戻る
と、スイッチS1がオン、スイッチS2がオフになり、
演算増幅器U1に現れる電圧VONとコンデンサC1,演
算増幅器U2が保持している電圧VOFFとの差が演算増幅
器U3にて演算される。すなわち、演算増幅器U3の出
力信号値(上昇温度)Yは、 Y=VON−VOFF・・・・・・(4) となる。演算増幅器2の出力信号値(温度差)Xは、
(1)式で示したようにX=A(VD−VU)で表わせる
が、(2)式で示したように温度差は上昇温度TRすなわ
ちYに比例するので、割算回路3でX/Yを計算するこ
とにより、その出力信号値(流量値)Zにはヒータ温度
上昇による変動分が含まれなくなる。
The control circuit 4 turns off the switch S1 at regular intervals,
Turn off the heater resistance RH. At this time, the operational amplifier U1
The voltage V OFF of the straight line L3 appearing at is charged to the capacitor C1 by turning on the switch S2. Next, when returning to the measurement state, the switch S1 is turned on and the switch S2 is turned off,
The difference between the voltage V ON appearing at the operational amplifier U1 and the voltage V OFF held by the capacitor C1 and the operational amplifier U2 is calculated by the operational amplifier U3. That is, the output signal value (rising temperature) Y of the operational amplifier U3 is Y = V ON -V OFF (4). The output signal value (temperature difference) X of the operational amplifier 2 is
Although X = A (VD-VU) can be expressed as shown in the equation (1), the temperature difference is proportional to the rising temperature TR, that is, Y as shown in the equation (2). By calculating / Y, the output signal value (flow rate value) Z does not include the variation due to the heater temperature rise.

第3図は本発明の第2の実施例を示す回路図で、デジタ
ル回路による実施例である。第3図においては、ヒータ
抵抗RHを断続して第1図と同様の機能を実現してい
る。すなわち、温度差A(VD−VU)と2つの温度セ
ンサの出力値VD,VUをマルチプレクサ(MUX)5
でA/D変換器6に取り込み、演算装置7で上昇温度の
値Y=VON−VOFFを演算することにより、ヒータ温度上
昇を補正した流量値Zを得ることができる。
FIG. 3 is a circuit diagram showing a second embodiment of the present invention, which is an embodiment using a digital circuit. In FIG. 3, the heater resistance RH is interrupted to realize the same function as in FIG. That is, the temperature difference A (VD-VU) and the output values VD and VU of the two temperature sensors are given to the multiplexer (MUX) 5
Then, the flow rate value Z in which the heater temperature rise is corrected can be obtained by fetching it into the A / D converter 6 and calculating the rise temperature value Y = V ON −V OFF by the arithmetic unit 7.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、上流側温度センサと下流
側温度センサの出力信号からヒータの上流温度および温
度差を算出し、上昇温度により温度差に割って流量を得
ることにより、ヒータの上昇温度による流量誤差を除去
できるので、ヒータの特性変化の影響を受けない流量測
定回路を得ることができる。
As described above, the present invention calculates the upstream temperature and the temperature difference of the heater from the output signals of the upstream temperature sensor and the downstream temperature sensor, and divides the temperature difference by the rising temperature to obtain the flow rate, thereby increasing the heater temperature. Since the flow rate error due to the temperature can be removed, it is possible to obtain a flow rate measuring circuit that is not affected by the heater characteristic change.

また、例えばゴミの付着によりヒータ抵抗の放熱状態が
変わっても感度が変化しなくなる効果がある。
Further, there is an effect that the sensitivity does not change even if the heat radiation state of the heater resistance changes due to adhesion of dust, for example.

さらに、ヒータ抵抗を直接電源に接続すれば、電源電圧
が低くても十分な電力を供給でき温度上昇を高くとれる
ため、温度センサの出力値が増大し、流量信号のS/N
比が向上する効果がある。
Further, if the heater resistance is directly connected to the power supply, sufficient power can be supplied even if the power supply voltage is low and the temperature rise can be increased, so that the output value of the temperature sensor increases and the S / N of the flow rate signal is increased.
This has the effect of improving the ratio.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による流量測定回路の一実施例を示す回
路図、第2図はヒータオンオフにおける温度センサの特
性を示すグラフ、第3図は本発明の第2の実施例を示す
回路図、第4図は従来の流量測定回路を示す回路図、第
5図は一般的なヒータ電源の制御方法を説明するための
グラフである。 2,U1〜U3……演算増幅器、3……割算回路、4…
…制御回路、RH……ヒータ抵抗、RU……上流側温度
センサ、RD……下流側温度センサ、S1,S2……ス
イッチ、R1,R2……抵抗、C1……コンデンサ。
FIG. 1 is a circuit diagram showing an embodiment of a flow rate measuring circuit according to the present invention, FIG. 2 is a graph showing characteristics of a temperature sensor when a heater is on and off, and FIG. 3 is a circuit diagram showing a second embodiment of the present invention. FIG. 4 is a circuit diagram showing a conventional flow rate measuring circuit, and FIG. 5 is a graph for explaining a general heater power source control method. 2, U1 to U3 ... Operational amplifier, 3 ... Division circuit, 4 ...
... Control circuit, RH ... Heater resistance, RU ... Upstream temperature sensor, RD ... Downstream temperature sensor, S1, S2 ... Switch, R1, R2 ... Resistor, C1 ... Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】上流側温度センサと下流側温度センサの出
力信号からヒータの上昇温度を示す上昇温度信号を出力
する上昇温度算出回路と、前記上流側温度センサと下流
側温度センサの出力信号から温度差を示す温度差信号を
出力する温度差回路と、前記上昇温度により前記温度差
を割って流量を得る割算回路と、前記ヒータを断続する
制御回路とを備えた流量測定回路。
1. A rising temperature calculation circuit for outputting a rising temperature signal indicating a rising temperature of a heater from output signals of an upstream temperature sensor and a downstream temperature sensor, and an output signal of the upstream temperature sensor and a downstream temperature sensor. A flow rate measurement circuit including a temperature difference circuit that outputs a temperature difference signal indicating a temperature difference, a division circuit that divides the temperature difference by the rising temperature to obtain a flow rate, and a control circuit that connects and disconnects the heater.
JP63272936A 1988-10-31 1988-10-31 Flow rate measurement circuit Expired - Lifetime JPH0663801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63272936A JPH0663801B2 (en) 1988-10-31 1988-10-31 Flow rate measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63272936A JPH0663801B2 (en) 1988-10-31 1988-10-31 Flow rate measurement circuit

Publications (2)

Publication Number Publication Date
JPH02120621A JPH02120621A (en) 1990-05-08
JPH0663801B2 true JPH0663801B2 (en) 1994-08-22

Family

ID=17520829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63272936A Expired - Lifetime JPH0663801B2 (en) 1988-10-31 1988-10-31 Flow rate measurement circuit

Country Status (1)

Country Link
JP (1) JPH0663801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742025A2 (en) 2005-07-08 2007-01-10 Hitachi, Ltd. Thermal type flow measuring apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493116B2 (en) * 1996-05-24 2004-02-03 株式会社リコー Flow measurement device and flow measurement method
EP1418408B1 (en) 2001-08-14 2014-07-09 Hitachi, Ltd. Thermal flow sensor
JP4793621B2 (en) * 2005-02-17 2011-10-12 横河電機株式会社 Thermal flow meter
JP4811636B2 (en) * 2005-02-18 2011-11-09 横河電機株式会社 Thermal flow meter
JP5178261B2 (en) * 2008-03-19 2013-04-10 アズビル株式会社 Thermal flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742025A2 (en) 2005-07-08 2007-01-10 Hitachi, Ltd. Thermal type flow measuring apparatus

Also Published As

Publication number Publication date
JPH02120621A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
WO2003029759A1 (en) Flow rate measuring instrument
JPH0663801B2 (en) Flow rate measurement circuit
JP4284851B2 (en) Pressure sensor circuit
JPH01227030A (en) Detecting circuit of resistance temperature characteristic
US7249516B2 (en) Method of operating a resistive heat-loss pressure sensor
JP2000018989A (en) Ratiometric output-type heating resistor-type air flowmeter
US20060021444A1 (en) Method of operating a resistive heat-loss pressure sensor
JPH0373822B2 (en)
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
JP3153463B2 (en) Hall element drive circuit
JPH0663800B2 (en) Heater temperature control circuit
JPH0353128A (en) Zero point correcting circuit
JP2000214030A (en) Pressure sensor circuit
JPH0718729B2 (en) Heater temperature control circuit
JPS6361961A (en) Current detector
JPH07139985A (en) Thermal air flow measuring instrument
JPS6111837Y2 (en)
JP4820017B2 (en) Flow measurement device using flow sensor
JP2953070B2 (en) A / D converter
JPH0633375Y2 (en) Thermal flow sensor
JP2577291Y2 (en) Temperature measurement device for strain gauge transducer
EP1771711B1 (en) Method of operating a resistive heat-loss pressure sensor
JPH0868696A (en) Temperature measuring apparatus
KR880000121B1 (en) Electron range
JP2002022514A (en) Thermal flow sensor, flowmeter, method for detecting flow velocity, method for preparing table, and method for preparing relational expression

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15