JP5178261B2 - Thermal flow meter - Google Patents

Thermal flow meter Download PDF

Info

Publication number
JP5178261B2
JP5178261B2 JP2008071379A JP2008071379A JP5178261B2 JP 5178261 B2 JP5178261 B2 JP 5178261B2 JP 2008071379 A JP2008071379 A JP 2008071379A JP 2008071379 A JP2008071379 A JP 2008071379A JP 5178261 B2 JP5178261 B2 JP 5178261B2
Authority
JP
Japan
Prior art keywords
temperature
circuit
sensor
heater
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008071379A
Other languages
Japanese (ja)
Other versions
JP2009229093A (en
Inventor
安治 大石
修 百瀬
宏一郎 新川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2008071379A priority Critical patent/JP5178261B2/en
Publication of JP2009229093A publication Critical patent/JP2009229093A/en
Application granted granted Critical
Publication of JP5178261B2 publication Critical patent/JP5178261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Description

本発明は、同一チップ上に、流体の通流方向に発熱素子を挟んで設けられた一対の感熱素子および周囲温度を検出する温度検出素子を形成したセンサチップを用いて構成され、前記各素子の温度特性のバラツキに起因する流量検出特性のバラツキを抑えた計測精度の高い熱式流量計に関する。   The present invention is configured using a sensor chip in which a pair of heat sensitive elements provided on the same chip with a heat generating element sandwiched in the fluid flow direction and a temperature detecting element for detecting ambient temperature are formed. The present invention relates to a thermal flow meter with high measurement accuracy that suppresses variations in flow rate detection characteristics caused by variations in temperature characteristics.

熱式流量センサは、例えば図3に示すようにシリコン基板(センサチップ)Bに形成した肉薄のダイヤフラムD上に、発熱素子Rhを間にして流体(ガス)の通流方向Fに一対の感熱素子Ru,Rdを設けると共に、前記シリコン基板Bの周辺部に周囲温度を検出する為の温度検出素子Rrを一体に設けた構造を有する。そしてこのような熱式流量センサを用いて構成される熱式流量計は、ダイヤフラムDがなすセンサ面に沿って通流する流体(ガス)による該センサ面近傍の温度分布の変化から前記流体(ガス)の流量(流速)を検出するように構成される[例えば特許文献1を参照]。   For example, as shown in FIG. 3, the thermal flow sensor has a pair of heat sensitive elements in a flow direction F of a fluid (gas) on a thin diaphragm D formed on a silicon substrate (sensor chip) B with a heating element Rh therebetween. The elements Ru and Rd are provided, and a temperature detection element Rr for detecting the ambient temperature is integrally provided on the periphery of the silicon substrate B. A thermal type flow meter configured using such a thermal type flow sensor has the above-mentioned fluid (from the change in temperature distribution in the vicinity of the sensor surface due to the fluid (gas) flowing along the sensor surface formed by the diaphragm D). Gas) is configured to detect a flow rate (flow velocity) [see, for example, Patent Document 1].

しかしこれらの発熱素子Rh、一対の感熱素子Ru,Rd、および温度検出素子Rrは白金(Pt)等の抵抗体からなり、一般的には図4に示すように温度によってその抵抗値が変化する温度変化特性を有する。しかもその温度変化特性は、製造工程上の種々の要因が影響して製造ロット毎にばらつくことが否めない。これ故、上述した構成の熱式流量センサも、通常、温度によってそのセンサ出力が変化する或る温度特性を持つ。   However, the heating element Rh, the pair of thermal elements Ru and Rd, and the temperature detection element Rr are made of a resistor such as platinum (Pt), and generally the resistance value thereof varies depending on the temperature as shown in FIG. It has temperature change characteristics. Moreover, it cannot be denied that the temperature change characteristic varies from production lot to production lot due to the influence of various factors in the production process. Therefore, the thermal flow sensor having the above-described configuration usually has a certain temperature characteristic in which the sensor output changes depending on the temperature.

そこで従来では、例えば前述した特許文献1に開示されるように予め熱式流量センサの温度特性を計測し、流量計測時におけるセンサ出力を温度補正(ゼロ点補正)するようにしている。尚、前述した一対の感熱素子Ru,Rdの抵抗値変化から流量を計測するセンサ回路に温度補正用の抵抗を組み込み、基準温度時でのセンサ出力と温度が変化したときにおけるセンサ出力とが等しくなるように補正することも提唱されている[例えば特許文献2を参照]。
特開2004−93174号公報 特開2006−329638号公報
Therefore, conventionally, for example, as disclosed in Patent Document 1 described above, the temperature characteristics of a thermal flow sensor are measured in advance, and the sensor output at the time of flow measurement is subjected to temperature correction (zero point correction). It should be noted that a temperature correction resistor is incorporated in the sensor circuit for measuring the flow rate from the change in resistance value of the pair of thermosensitive elements Ru and Rd, and the sensor output at the reference temperature is equal to the sensor output when the temperature changes. It has also been proposed to correct so that it becomes [see, for example, Patent Document 2].
JP 2004-93174 A JP 2006-329638 A

しかしながら特許文献1に開示されるように流量計測時におけるセンサ出力を温度補正(ゼロ点補正)するには、予め熱式流量センサの温度変化特性を計測して温度補正テーブル等を準備しておくことが必要であり、非常に煩わしい。しかも熱式流量センサに温度補正機能を組み込む必要があるので高価格化することが否めない。また特許文献2に開示されるように、センサ回路に温度補正用の抵抗を組み込むには、例えば工場出荷前に個々に補正抵抗の調整を行うことが必要であり、調整コストが嵩むことが否めない。   However, as disclosed in Patent Document 1, in order to perform temperature correction (zero point correction) for the sensor output during flow rate measurement, the temperature change characteristic of the thermal flow rate sensor is measured in advance and a temperature correction table or the like is prepared. It is necessary and very annoying. Moreover, since it is necessary to incorporate a temperature correction function into the thermal flow sensor, it cannot be denied that the price is increased. Further, as disclosed in Patent Document 2, in order to incorporate a temperature correction resistor into the sensor circuit, for example, it is necessary to individually adjust the correction resistor before shipment from the factory, and the adjustment cost increases. Absent.

本発明はこのような事情を考慮してなされたもので、その目的は、感熱素子等の温度特性のバラツキに起因する流量検出特性のバラツキを抑え、その流量検出特性を簡易に温度補正することのできる計測精度の高い熱式流量計を提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to suppress variations in flow rate detection characteristics caused by variations in temperature characteristics of thermal elements and the like, and to easily perform temperature correction on the flow rate detection characteristics. An object of the present invention is to provide a thermal flow meter with high measurement accuracy.

上述した目的を達成するべく本発明に係る熱式流量計は、
<a> 発熱素子Rh、流体の通流方向に上記発熱素子Rhを挟んで設けられた一対の感熱素子Ru,Rdおよび周囲温度を検出する温度検出素子Rrを同一チップ上に形成したセンサチップと、
<b> 前記発熱素子Rhに第1の固定抵抗R1を直列接続すると共に前記温度検出素子Rrに第2の固定抵抗R2を直列接続し、これらの直列回路を並列接続して形成されるヒータ用ブリッジ回路、およびこのヒータ用ブリッジ回路の駆動電圧を制御して該ヒータ用ブリッジ回路の出力を一定に保つ帰還回路を備えたヒータ回路と、
<c> 前記一対の感熱素子Ru,Rdを直列接続すると共に第3および第4の固定抵抗Rx,Ryを直列接続し、これらの直列回路を並列接続して形成され、一定電圧が印加されて駆動されるセンサ用ブリッジ回路、およびこのセンサ用ブリッジ回路の出力を増幅して出力する増幅器を備えたセンサ回路とを具備し、
<d> 周囲温度の変化に正比例する前記ヒータ回路の温度変化特性が周囲温度の変化に逆比例する前記センサ回路の温度変化特性にて相殺されて、周囲温度の変化に対する流量検出の温度変化特性がフラットになるように、前記第3および第4の固定抵抗、前記一対の感熱素子の抵抗値が設定されている、ことを特徴としている。
In order to achieve the above-mentioned object, the thermal flow meter according to the present invention is
<a> A heat generating element Rh, a sensor chip in which a pair of heat sensitive elements Ru and Rd provided with the heat generating element Rh sandwiched in the fluid flow direction and a temperature detecting element Rr for detecting the ambient temperature are formed on the same chip; ,
<b> For a heater formed by connecting a first fixed resistor R1 in series to the heating element Rh and a second fixed resistor R2 in series to the temperature detecting element Rr, and connecting these series circuits in parallel. A heater circuit comprising a bridge circuit and a feedback circuit for controlling the drive voltage of the heater bridge circuit to keep the output of the heater bridge circuit constant;
<c> The pair of thermosensitive elements Ru and Rd are connected in series and the third and fourth fixed resistors Rx and Ry are connected in series. These series circuits are connected in parallel, and a constant voltage is applied. A sensor bridge circuit to be driven, and a sensor circuit including an amplifier that amplifies and outputs the output of the sensor bridge circuit;
<d> The temperature change characteristic of the flow rate detection with respect to the change in the ambient temperature is canceled out by the temperature change characteristic of the sensor circuit that is in direct proportion to the change in the ambient temperature. The resistance values of the third and fourth fixed resistors and the pair of heat sensitive elements are set so that is flat .

ちなみに前記発熱素子Rh、前記一対の感熱素子Ru,Rdおよび前記温度検出素子Rrは、同一素材の抵抗体、例えば白金(Pt)からなる。また好ましくは前記発熱素子Rhの発熱温度Thを高く設定すると共に、前記センサ用ブリッジ回路の駆動電圧を低く設定し、これによって前記発熱素子Rh、前記一対の感熱素子Ru,Rdおよび前記温度検出素子Rrにおける各温度特性自体のバラツキを抑えることが好ましい。   Incidentally, the heating element Rh, the pair of thermal elements Ru, Rd, and the temperature detection element Rr are made of a resistor of the same material, for example, platinum (Pt). Preferably, the heating temperature Th of the heating element Rh is set high, and the driving voltage of the sensor bridge circuit is set low, whereby the heating element Rh, the pair of thermal elements Ru, Rd, and the temperature detection element. It is preferable to suppress variation in each temperature characteristic itself in Rr.

上述した構成によればヒータ回路が有する正の温度変化特性を前記センサ回路が有する負の温度変化特性により相殺することで、総合的(全体的)には熱式流量計の温度検出特性を一定にすることができる。この結果、温度検出特性の温度補正の容易化を図って熱的に安定で高精度な流量検出特性を有する熱式流量計を実現することができる。特に前記発熱素子Rh、一対の感熱素子Ru,Rdおよび温度検出素子Rrがそれぞれ有する温度変化特性を積極的に利用してセンサ回路の温度変化特性をヒータ回路の温度変化特性にて相殺し、これによって温度に依存するセンサ出力変化のバラツキを抑えるので、センサ出力に対する温度補正を簡易に行うことができ、温度補正自体も簡易に、且つ高精度に行うことができる。従って流量計測精度を十分に高く維持することができる等の実用上多大なる効果が奏せられる。   According to the above-described configuration, the temperature detection characteristic of the thermal flow meter is kept constant overall (overall) by offsetting the positive temperature change characteristic of the heater circuit with the negative temperature change characteristic of the sensor circuit. Can be. As a result, it is possible to realize a thermal flow meter having a flow detection characteristic that is thermally stable and highly accurate by facilitating temperature correction of the temperature detection characteristic. In particular, the temperature change characteristics of the sensor circuit are offset by the temperature change characteristics of the heater circuit by actively utilizing the temperature change characteristics of the heating element Rh, the pair of heat sensitive elements Ru and Rd, and the temperature detection element Rr. Therefore, the variation in the sensor output depending on the temperature is suppressed, so that the temperature correction for the sensor output can be performed easily, and the temperature correction itself can be performed easily and with high accuracy. Therefore, practically great effects such as being able to maintain the flow rate measurement accuracy sufficiently high are exhibited.

尚、発熱素子Rh、一対の感熱素子Ru,Rdおよび温度検出素子Rrを同一素材の抵抗体にて形成し、またヒータ回路における発熱素子Rhの発熱温度Thを高く設定すると共に、センサ用ブリッジ回路の駆動電圧を低く設定すれば、これによって発熱素子Rh、一対の感熱素子Ru,Rdおよび温度検出素子Rrにおける各温度特性自体のバラツキを抑えることができるので、より一層、流量検出精度を高め、また流量検出特性の安定化を図り得る等の効果が奏せられる。   The heating element Rh, the pair of thermal elements Ru, Rd, and the temperature detection element Rr are formed of a resistor of the same material, and the heating temperature Th of the heating element Rh in the heater circuit is set high, and the sensor bridge circuit If the drive voltage is set low, this can suppress variations in the temperature characteristics of the heating element Rh, the pair of thermal elements Ru and Rd, and the temperature detection element Rr, thereby further improving the flow rate detection accuracy. In addition, effects such as stabilization of flow rate detection characteristics can be achieved.

以下、図面を参照して本発明の一実施形態に係る熱式流量計について説明する。
図1は本発明に係る熱式流量計の概略構成図であり、1はシリコン等の半導体基板(センサチップ)上に一対の感熱素子Ru,Rdと発熱素子(ヒータ素子)Rh、および温度検出素子Rrを形成した、例えば図3に示したような素子構造の熱式流量センサである。ちなみに前記一対の感熱素子Ru,Rd、発熱素子(ヒータ素子)Rh、および温度検出素子Rrは、前記センサチップ1上に白金(Pt)を蒸着する等して形成した薄膜抵抗体からなる。特にこれらの感熱素子Ru,Rd、発熱素子(ヒータ素子)Rh、および温度検出素子Rrを同一素材の抵抗体を用いてセンサチップ1上に一括して形成することで、これらの素子Ru,Rd,Rh,Rr間における抵抗値の温度変化特性のバラツキが抑えられている。
Hereinafter, a thermal type flow meter according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a thermal type flow meter according to the present invention. Reference numeral 1 denotes a pair of thermal elements Ru, Rd, a heating element (heater element) Rh, and temperature detection on a semiconductor substrate (sensor chip) such as silicon. For example, a thermal flow sensor having an element structure as shown in FIG. 3 in which an element Rr is formed. Incidentally, the pair of heat sensitive elements Ru, Rd, the heating element (heater element) Rh, and the temperature detecting element Rr are formed of a thin film resistor formed by depositing platinum (Pt) on the sensor chip 1 or the like. In particular, these elements Ru, Rd, heat generating element (heater element) Rh, and temperature detecting element Rr are collectively formed on the sensor chip 1 by using a resistor of the same material, so that these elements Ru, Rd , Rh, and Rr, the variation in the temperature change characteristic of the resistance value is suppressed.

さて上記熱式流量センサ1の駆動回路は、基本的には上記温度検出素子Rrによって検出される雰囲気温度に応じて前記発熱素子Rhを発熱駆動して前記一対の感熱素子Ru,Rdの近傍の温度を一定温度Tだけ高くするヒータ回路3と、前記感熱素子Ru,Rdによりその近傍の温度Tu,Tdをそれぞれ検出し、これらの温度差ΔT(=Tu−Ud)を前記熱式流量センサ1に沿って通流する流体の流量(流速)Qとして求めるセンサ回路4とを備える。   Now, the drive circuit of the thermal flow sensor 1 basically drives the heat generating element Rh in accordance with the ambient temperature detected by the temperature detecting element Rr, and in the vicinity of the pair of heat sensitive elements Ru and Rd. The heater circuit 3 that raises the temperature by a constant temperature T and the temperature sensitive elements Ru and Rd detect the temperatures Tu and Td in the vicinity thereof, and the temperature difference ΔT (= Tu−Ud) is detected by the thermal flow sensor 1. The sensor circuit 4 is obtained as a flow rate (flow velocity) Q of the fluid flowing along

具体的には前記ヒータ回路3は、前記発熱素子Rhとこの発熱素子Rhに直列接続した第1の固定抵抗R1、および前記温度検出素子Rrとこの温度検出素子Rrに直列接続した第2の固定抵抗体R2をそれぞれハーフブリッジ回路として、これらの2つのハーフブリッジ回路(直列回路)を並列接続して構成した温度制御用の第1のブリッジ回路3aを主体として構成される。そして電源電圧Vccを受けて動作するトランジスタ3bを介して上記ブリッジ回路3aの駆動電圧Vdrivを生成すると共に、差動増幅器3cにて前記ブリッジ回路3aのブリッジ出力電圧(ブリッジ間電位差;Vh−Vr)を求め、このブリッジ出力電圧が零(0)となるように前記トランジスタ3bの作動を帰還制御して前記ブリッジ回路3aの駆動電圧Vdrivを可変するように構成される。この差動増幅器3cによる前記トランジスタ3bの帰還制御により前記発熱素子Rhの発熱温度Thが、前記温度検出素子Rrにて検出される周囲温度(雰囲気温度)よりも常に一定温度Tだけ高く設定される。   Specifically, the heater circuit 3 includes the heating element Rh and a first fixed resistor R1 connected in series to the heating element Rh, and the temperature detection element Rr and a second fixed resistance connected in series to the temperature detection element Rr. Each of the resistors R2 is a half-bridge circuit, and the first bridge circuit 3a for temperature control formed by connecting these two half-bridge circuits (series circuit) in parallel is mainly configured. Then, the drive voltage Vdriv of the bridge circuit 3a is generated through the transistor 3b that operates by receiving the power supply voltage Vcc, and the bridge output voltage (potential difference between bridges; Vh−Vr) of the bridge circuit 3a is generated by the differential amplifier 3c. The operation of the transistor 3b is feedback controlled so that the bridge output voltage becomes zero (0), and the drive voltage Vdriv of the bridge circuit 3a is varied. By the feedback control of the transistor 3b by the differential amplifier 3c, the heat generation temperature Th of the heat generation element Rh is always set higher than the ambient temperature (atmosphere temperature) detected by the temperature detection element Rr by a constant temperature T. .

また前記センサ回路4は、前記発熱素子Rhを間にして流体の通流方向に設けられた一対の感熱素子Ru,Rd、および第3および第4の固定抵抗である一対の固定抵抗体Rx,Ryを用いて構成された流量計測用の第2のブリッジ回路4aを主体として構成される。具体的にはこの第2のブリッジ回路4aは、前記一対の感熱素子Ru,Rdを直列接続してハーフブリッジ回路を形成すると共に、前記固定抵抗Rx,Ryを直列接続してハーフブリッジ回路を形成し、これらの2つのハーフブリッジ回路(直列回路)を並列接続して構成される。   The sensor circuit 4 includes a pair of thermal elements Ru and Rd provided in the fluid flow direction with the heating element Rh therebetween, and a pair of fixed resistors Rx, which are third and fourth fixed resistors. The flow rate measuring second bridge circuit 4a configured using Ry is mainly used. Specifically, the second bridge circuit 4a forms a half bridge circuit by connecting the pair of thermal elements Ru, Rd in series, and forms a half bridge circuit by connecting the fixed resistors Rx, Ry in series. These two half-bridge circuits (series circuits) are connected in parallel.

そしてこの第2のブリッジ回路4aは、定電圧源5から一定電圧VRが印加されて駆動されるようになっており、具体的には前記発熱素子Rhの上流側の感熱抵抗Ruを配置したブリッジ上辺側に一定電圧VRを印加し、前記発熱素子Rhの下流側の感熱抵抗Rdを配置したブリッジ下辺側を接地することで定電圧駆動されるものとなっている。この第2のブリッジ回路4aにおける上記感熱素子Ru,Rdの抵抗値の変化に応じたブリッジ出力電圧(ブリッジ間電位差;Vs−Vf)は差動増幅器4bにて検出され、所定の増幅利得(ゲイン)Gにて増幅されて予め定められた電圧レベルのセンサ出力Voutとして求められるようになっている。尚、上記増幅利得(ゲイン)Gは、差動増幅器4bの帰還抵抗Rfによって決定される。   The second bridge circuit 4a is driven by being applied with a constant voltage VR from a constant voltage source 5, and more specifically, a bridge in which a thermal resistor Ru on the upstream side of the heating element Rh is arranged. A constant voltage VR is applied to the upper side, and a constant voltage drive is performed by grounding the lower side of the bridge where the thermal resistor Rd on the downstream side of the heating element Rh is disposed. The bridge output voltage (potential difference between bridges; Vs−Vf) corresponding to the change in the resistance value of the thermal elements Ru and Rd in the second bridge circuit 4a is detected by the differential amplifier 4b and has a predetermined amplification gain (gain). ) It is amplified by G and obtained as a sensor output Vout having a predetermined voltage level. The amplification gain (gain) G is determined by the feedback resistor Rf of the differential amplifier 4b.

このように構成された熱式流量計において、流量が零[0]であるときの挙動について述べると、前述した如くヒータ回路3を構成する第1のブリッジ回路3aは、基本的には周囲温度に応じて抵抗値が変化する温度検出素子Rrと固定抵抗R2とにより前記駆動電圧Vdrivを分圧した電圧Vrと、前記発熱素子Rhと固定抵抗R1とにより前記駆動電圧Vdrivを分圧した電圧Vhとが等しくなるように前記駆動電圧Vdrivが制御され、これによって前記発熱素子Rhの発熱温度が前記周囲温度よりも一定温度Tだけ高くなるように制御される。   In the thermal flow meter configured as described above, the behavior when the flow rate is zero [0] will be described. As described above, the first bridge circuit 3a constituting the heater circuit 3 basically has an ambient temperature. The voltage Vr obtained by dividing the drive voltage Vdriv by the temperature detection element Rr and the fixed resistor R2 whose resistance value changes according to the voltage Vh, and the voltage Vh obtained by dividing the drive voltage Vdriv by the heating element Rh and the fixed resistor R1. And the drive voltage Vdriv is controlled so that the heat generation temperature of the heat generating element Rh is higher than the ambient temperature by a constant temperature T.

しかしながら発熱素子Rhの発熱温度を制御するべく前記駆動電圧Vdrivを帰還制御した際、該駆動電圧Vdrivの変化に伴って温度検出素子Rrに流れる電流が変化し、これに起因して前記温度検出素子Rrの抵抗値が若干変化するので、上述した構成のヒータ回路3は若干ではあるが周囲温度の変化に対して、例えば図2(a)に示すような正の温度変化特性を有する。   However, when the drive voltage Vdriv is feedback-controlled to control the heat generation temperature of the heat generating element Rh, the current flowing through the temperature detecting element Rr changes with the change of the driving voltage Vdriv, and as a result, the temperature detecting element Since the resistance value of Rr slightly changes, the heater circuit 3 having the above-described configuration has a positive temperature change characteristic as shown in FIG.

即ち、例えば周囲温度の上昇に伴って前記温度検出素子Rrの抵抗値が大きくなり、固定抵抗R2とによる前記駆動電圧Vdrivの分圧電圧Vrが上昇した分、前記固定抵抗R1と発熱素子Rhとによる前記駆動電圧Vdrivの分圧電圧Vhを高くするべく前記駆動電圧Vdrivが高められるので、これに伴って前記温度検出素子Rrに流れる電流が増大する。するとこの電流の増大に伴って前記温度検出素子Rrの抵抗値が若干ではあるが更に大きくなるので、結局、前記発熱素子Rhの発熱温度Thは、周囲温度よりも一定温度Tに上記温度検出素子Rrの抵抗値変化に起因する微小温度tを加えた分だけ高くなる。このことは前述した如くブリッジ回路3aを形成して構成されるヒータ回路3は、温度変化に対して正の温度変化特性を有することになる。   That is, for example, as the ambient temperature rises, the resistance value of the temperature detection element Rr increases, and the divided voltage Vr of the drive voltage Vdriv by the fixed resistance R2 increases, so that the fixed resistance R1 and the heating element Rh As the drive voltage Vdriv is increased to increase the divided voltage Vh of the drive voltage Vdriv, the current flowing through the temperature detection element Rr increases accordingly. Then, as the current increases, the resistance value of the temperature detection element Rr is slightly increased, but eventually, the heat generation temperature Th of the heat generation element Rh is set to a constant temperature T from the ambient temperature. It becomes higher by the addition of the minute temperature t resulting from the resistance value change of Rr. This means that the heater circuit 3 formed by forming the bridge circuit 3a as described above has a positive temperature change characteristic with respect to the temperature change.

これに対してセンサ回路4を構成する前述したブリッジ回路4aは、一定の電圧VRにて定電圧駆動されており、また一対の感熱素子Ru,Rdは前記ブリッジ回路4aにおけるブリッジ下辺側にそれぞれ組み込まれている。そして周囲温度の変化によって一対の感熱素子Ru,Rdの各抵抗値が変化したとき、これに伴って上記各感熱素子Ru,Rdにそれぞれ流れる電流が変化し、これに起因して前記感熱素子Ru,Rdの各抵抗値も変化するので、上述した構成のヒータ回路3は若干ではあるが周囲温度の変化に対して、例えば図2(b)に示すような負の温度変化特性を有する。   On the other hand, the above-described bridge circuit 4a constituting the sensor circuit 4 is driven at a constant voltage VR at a constant voltage VR, and the pair of thermal elements Ru and Rd are respectively incorporated on the bridge lower side of the bridge circuit 4a. It is. When the resistance values of the pair of thermal elements Ru and Rd change due to changes in the ambient temperature, the currents flowing through the thermal elements Ru and Rd change accordingly, and as a result, the thermal element Ru , Rd also change, so that the heater circuit 3 having the above-described configuration has a negative temperature change characteristic as shown in FIG.

即ち、例えば周囲温度の上昇に伴ってガス(流体)の温度が高められると、これに伴って前記一対の感熱素子Ru,Rdの各抵抗値もそれぞれ大きくなる。すると前述したようにブリッジ回路4aは一定電圧VRにより駆動されているので、上記感熱素子Ru,Rdの各抵抗値の増大に伴って該感熱素子Ru,Rdを流れる電流がそれぞれ減少し、これに起因して前記各感熱素子Ru,Rdの各抵抗値が若干低下する。すると周囲温度の上昇に伴う前記各感熱素子Ru,Rdの抵抗値が低下に伴って、ブリッジ回路4aのブリッジ出力が若干低下する。換言すれば前記ブリッジ回路4aのブリッジ出力は、前述したガス(流体)の温度に相当した電圧よりも若干低下した電圧となる。従って前述した如くブリッジ回路4aを形成して定電圧駆動されるセンサ回路4は、温度変化に対して負の温度変化特性を有することになる。   That is, for example, when the temperature of the gas (fluid) is increased as the ambient temperature increases, the resistance values of the pair of thermal elements Ru and Rd are also increased accordingly. Then, as described above, since the bridge circuit 4a is driven by the constant voltage VR, the currents flowing through the thermal elements Ru and Rd respectively decrease as the resistance values of the thermal elements Ru and Rd increase. As a result, the respective resistance values of the thermal elements Ru and Rd are slightly reduced. As a result, the bridge output of the bridge circuit 4a slightly decreases as the resistance values of the thermal elements Ru and Rd decrease as the ambient temperature increases. In other words, the bridge output of the bridge circuit 4a is a voltage slightly lower than the voltage corresponding to the temperature of the gas (fluid) described above. Therefore, as described above, the sensor circuit 4 that forms the bridge circuit 4a and is driven at a constant voltage has a negative temperature change characteristic with respect to the temperature change.

このように前記ヒータ回路3は、発熱素子Rhおよび温度検出素子Rrがそれぞれ有する抵抗値の温度変化特性に起因して、温度変化に対して前記発熱素子Rhの発熱温度Thが図2(a)に示すように変化する正の温度変化特性を有している。また前記センサ回路4は、感熱素子Ru,Rdがそれぞれ有する抵抗値の温度変化特性に起因して、温度変化に対してそのセンサ出力Voutが図2(b)に示すように変化する負の温度変化特性を有している。   As described above, the heater circuit 3 causes the heat generation temperature Th of the heat generation element Rh to change with respect to the temperature change due to the temperature change characteristics of the resistance values of the heat generation element Rh and the temperature detection element Rr. It has a positive temperature change characteristic that changes as shown in FIG. The sensor circuit 4 has a negative temperature at which the sensor output Vout changes as shown in FIG. 2B with respect to the temperature change due to the temperature change characteristics of the resistance values of the thermal elements Ru and Rd. Has change characteristics.

従って上述した各温度変化特性を有するヒータ回路3およびセンサ回路4を備えて構成される熱式流量計においては、総合的(全体的)には前記ヒータ回路3における温度変化分によって前記センサ回路4における温度変化分が打ち消されることになる。故にヒータ回路3が有する正の温度変化特性を、センサ回路4が有する負の温度変化特性にて相殺するように設定すれば、理想的には図2(c)に示すようにフラットな温度変化特性を持つ熱式流量計を実現することが可能となる。換言すれば上述した如く構成した熱式流量計によれば、発熱素子Rh、感熱素子Ru,Rd、および温度検出素子Rrの温度に対する抵抗値変化特性のバラツキの影響を受けることのない一定の流量検出特性を持たせることが可能となる。   Accordingly, in the thermal type flow meter configured to include the heater circuit 3 and the sensor circuit 4 having the above-described temperature change characteristics, the sensor circuit 4 is comprehensively (overall) according to the temperature change in the heater circuit 3. The temperature change at is canceled out. Therefore, if the positive temperature change characteristic of the heater circuit 3 is set so as to be offset by the negative temperature change characteristic of the sensor circuit 4, ideally a flat temperature change as shown in FIG. It becomes possible to realize a thermal flow meter having characteristics. In other words, according to the thermal flow meter configured as described above, a constant flow rate that is not affected by variations in resistance value change characteristics with respect to the temperatures of the heating element Rh, the thermal elements Ru and Rd, and the temperature detection element Rr. It is possible to provide detection characteristics.

従って本発明に係る熱式流量計によれば、ヒータ回路3が持つ正の温度特性とセンサ回路4が持つ負の温度特性とが相補的な関係を持つように、予め固定抵抗体Rx,Ry,Ru,Rdの各抵抗値によって規定される回路定数を設定しておくことにより、そのセンサ出力Voutの温度変化特性を一定に揃えることが可能となるので、その温度補正を簡易に行うことが可能となる。しかも前記発熱素子Rh、一対の感熱素子Ru,Rdおよび温度検出素子Rrがそれぞれ有する温度変化特性を積極的に利用して、前記ヒータ回路3とセンサ回路4との間でその温度変化特性のバラツキを相殺するのでその構成が簡単であり、更にはその温度変化特性を一定に揃えることが可能となるので、簡易な温度補正の下で流量計測精度を十分に高くすることができる等の実用上多大なる効果が奏せられる。   Therefore, according to the thermal type flow meter of the present invention, the fixed resistors Rx, Ry are previously set so that the positive temperature characteristic of the heater circuit 3 and the negative temperature characteristic of the sensor circuit 4 have a complementary relationship. By setting circuit constants defined by the respective resistance values of Ru, Rd, Rd, it is possible to make the temperature change characteristics of the sensor output Vout constant, so that the temperature correction can be easily performed. It becomes possible. In addition, the temperature change characteristics of the heating element Rh, the pair of heat sensitive elements Ru and Rd, and the temperature detection element Rr are positively utilized, and the temperature change characteristics vary between the heater circuit 3 and the sensor circuit 4. Since the temperature change characteristics can be made uniform, the flow measurement accuracy can be sufficiently increased under simple temperature correction. A great effect is produced.

特に発熱素子Rh、一対の感熱素子Ru,Rdおよび温度検出素子Rrを同一素材の抵抗体にて形成し、またヒータ回路3における発熱素子Rhの発熱温度(ヒータ温度)Thを高く設定すると共に、センサ回路4におけるブリッジ回路4aの駆動電圧VRを低く設定すれば、これによって発熱素子Rh、一対の感熱素子Ru,Rdおよび温度検出素子Rrにおける各温度特性自体のバラツキを抑えることができる。従って前述した正の温度変化特性と負の温度変化特性との合わせ込みを容易に行うことが可能となるので、より一層、流量検出精度を高め、また流量検出特性の安定化を図り得る等の効果が奏せられる。   In particular, the heating element Rh, the pair of thermal elements Ru, Rd, and the temperature detection element Rr are formed of a resistor made of the same material, and the heating temperature (heater temperature) Th of the heating element Rh in the heater circuit 3 is set high. If the drive voltage VR of the bridge circuit 4a in the sensor circuit 4 is set low, it is possible to suppress variations in the temperature characteristics of the heating element Rh, the pair of thermal elements Ru and Rd, and the temperature detection element Rr. Therefore, the above-described positive temperature change characteristic and negative temperature change characteristic can be easily combined, so that the flow rate detection accuracy can be further improved and the flow rate detection characteristic can be stabilized. An effect is produced.

更には前述した構成によれば、前述した感熱素子Ru,Rd、発熱素子(ヒータ素子)Rh、および温度検出素子Rrにおける抵抗値の温度変化特性が製造ロットによって異なっていても、製造ロット毎の上記温度変化特性のバラツキを打ち消して、その温度特性を一定化することができる。従って製造ロットの違いに拘わりなく、特性の揃った熱式流量計を容易に実現することが可能となる。またこのようにして熱式流量計の温度特性を一定に揃えることができるので、予め個々のセンサ出力特性を調べなくても、温度に対するセンサ出力のゼロ点補正を簡易に実施することができる等の効果が奏せられる。   Furthermore, according to the configuration described above, even if the temperature change characteristics of the resistance values of the thermal elements Ru and Rd, the heating element (heater element) Rh, and the temperature detection element Rr described above vary depending on the manufacturing lot, The temperature characteristic can be made constant by canceling the variation in the temperature change characteristic. Therefore, it is possible to easily realize a thermal flow meter with uniform characteristics regardless of the difference in production lots. In addition, since the temperature characteristics of the thermal type flow meter can be made uniform in this way, the zero point correction of the sensor output with respect to the temperature can be easily carried out without examining the individual sensor output characteristics in advance. The effect of.

尚、本発明は上述した実施形態に限定されるものではない。例えば発熱素子Rhの発熱温度(ヒータ温度)Thや、センサ回路4を構成するブリッジ回路4aの駆動電圧VR等は、前述した感熱素子Ru,Rd、発熱素子(ヒータ素子)Rh、および温度検出素子Rrの各抵抗値や、固定抵抗R1,R2,Rx,Ryの各抵抗値により定まる回路仕様に応じて、前述した正の温度変化特性および負の温度変化特性の条件を満たすように設定すれば良いものである。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, the heat generation temperature (heater temperature) Th of the heat generating element Rh, the drive voltage VR of the bridge circuit 4a constituting the sensor circuit 4 and the like are the above-described heat sensitive elements Ru and Rd, the heat generating elements (heater elements) Rh, and the temperature detecting element. According to the circuit specifications determined by the resistance values of Rr and the resistance values of the fixed resistors R1, R2, Rx, and Ry, the conditions of the positive temperature change characteristic and the negative temperature change characteristic described above may be satisfied. It ’s good. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明の一実施形態に係る熱式流量計の概略構成図。The schematic block diagram of the thermal type flow meter which concerns on one Embodiment of this invention. 図1に示す熱式流量計の温度変化特性を示す図。The figure which shows the temperature change characteristic of the thermal type flow meter shown in FIG. 熱式流量センサの概略的な素子構造を示す図。The figure which shows the schematic element structure of a thermal type flow sensor. 感熱素子Ru,Rd、発熱素子Rh、および温度検出素子Rrにおける抵抗値の温度変化特性を示す図。The figure which shows the temperature change characteristic of the resistance value in the thermosensitive elements Ru and Rd, the heat generating element Rh, and the temperature detection element Rr.

符号の説明Explanation of symbols

1 センサチップ
3 ヒータ回路
3a ブリッジ回路
4 センサ回路
4a ブリッジ回路
5 定電圧源
Ru,Rd 感熱素子
Rh 発熱素子
Rr 温度検出素子
R1,R2,Rx,Ry 固定抵抗
DESCRIPTION OF SYMBOLS 1 Sensor chip 3 Heater circuit 3a Bridge circuit 4 Sensor circuit 4a Bridge circuit 5 Constant voltage source Ru, Rd Thermal element Rh Heating element Rr Temperature detection element R1, R2, Rx, Ry Fixed resistance

Claims (2)

発熱素子、流体の通流方向に上記発熱素子を挟んで設けられた一対の感熱素子および周囲温度を検出する温度検出素子を同一チップ上に形成したセンサチップと、
前記発熱素子に第1の固定抵抗を直列接続すると共に前記温度検出素子に第2の固定抵抗を直列接続し、これらの直列回路を並列接続して形成されるヒータ用ブリッジ回路、およびこのヒータ用ブリッジ回路の駆動電圧を制御して該ヒータ用ブリッジ回路の出力を一定に保つ帰還回路を備えたヒータ回路と、
前記一対の感熱素子を直列接続すると共に第3および第4の固定抵抗を直列接続し、これらの直列回路を並列接続して形成され、一定電圧が印加されて駆動されるセンサ用ブリッジ回路、およびこのセンサ用ブリッジ回路の出力を増幅して出力する増幅器を備えたセンサ回路とを具備し、
周囲温度の変化に正比例する前記ヒータ回路の温度変化特性が周囲温度の変化に逆比例する前記センサ回路の温度変化特性にて相殺されて、周囲温度の変化に対する流量検出の温度変化特性がフラットになるように、前記第3および第4の固定抵抗、前記一対の感熱素子の抵抗値が設定されている、ことを特徴とする熱式流量計。
A sensor chip in which a heating element, a pair of thermal elements provided with the heating element sandwiched in the fluid flow direction, and a temperature detection element for detecting the ambient temperature are formed on the same chip;
A bridge circuit for a heater formed by connecting a first fixed resistor in series with the heating element and a second fixed resistor in series with the temperature detecting element, and connecting these series circuits in parallel, and for the heater A heater circuit comprising a feedback circuit for controlling the driving voltage of the bridge circuit to keep the output of the heater bridge circuit constant;
A sensor bridge circuit formed by connecting the pair of thermosensitive elements in series and connecting the third and fourth fixed resistors in series, and connecting these series circuits in parallel, and driven by applying a constant voltage; and A sensor circuit including an amplifier that amplifies and outputs the output of the bridge circuit for the sensor;
The temperature change characteristic of the heater circuit that is directly proportional to the change in the ambient temperature is offset by the temperature change characteristic of the sensor circuit that is inversely proportional to the change in the ambient temperature, and the temperature change characteristic of the flow rate detection with respect to the change in the ambient temperature is flat. The thermal flow meter is characterized in that the third and fourth fixed resistors and the resistance values of the pair of heat sensitive elements are set .
前記発熱素子、前記一対の感熱素子および前記温度検出素子は、同一素材の抵抗体からなる請求項1に記載の熱式流量計。   The thermal flow meter according to claim 1, wherein the heat generating element, the pair of heat sensitive elements, and the temperature detecting element are made of a resistor made of the same material.
JP2008071379A 2008-03-19 2008-03-19 Thermal flow meter Active JP5178261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071379A JP5178261B2 (en) 2008-03-19 2008-03-19 Thermal flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008071379A JP5178261B2 (en) 2008-03-19 2008-03-19 Thermal flow meter

Publications (2)

Publication Number Publication Date
JP2009229093A JP2009229093A (en) 2009-10-08
JP5178261B2 true JP5178261B2 (en) 2013-04-10

Family

ID=41244684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071379A Active JP5178261B2 (en) 2008-03-19 2008-03-19 Thermal flow meter

Country Status (1)

Country Link
JP (1) JP5178261B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206226A1 (en) * 2017-04-11 2018-10-11 Robert Bosch Gmbh Sensor for detecting at least one property of a fluid medium
CN109668599B (en) * 2019-01-16 2024-03-26 江苏华海测控技术有限公司 Coriolis mass flowmeter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663801B2 (en) * 1988-10-31 1994-08-22 山武ハネウエル株式会社 Flow rate measurement circuit
JP4037723B2 (en) * 2002-09-26 2008-01-23 株式会社山武 Thermal flow meter

Also Published As

Publication number Publication date
JP2009229093A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
US10712300B2 (en) Gas sensor device, and heating current control method for gas sensor device
JPH0862055A (en) Method and equipment for thermometry
US20160327421A1 (en) Apparatus and Method for Determining Flow of a Medium
JP4470743B2 (en) Flow sensor
WO2003029759A1 (en) Flow rate measuring instrument
JPS6135311A (en) Hot wire type flow velocity detecting device
JP5178261B2 (en) Thermal flow meter
JP3726261B2 (en) Thermal flow meter
JP5029509B2 (en) Flow sensor
JPH09318412A (en) Thermal flow velocity sensor
JP3454265B2 (en) Thermal flow sensor
JP5178263B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
JP5178264B2 (en) Thermal flow meter
JP3706283B2 (en) Flow sensor circuit
JP2007285849A (en) Gas concentration detector
JP2009229092A (en) Thermal flowmeter and method for initial adjustment thereof
JP4648662B2 (en) Driving method and driving circuit of flow sensor
JP3577902B2 (en) Thermal flow sensor
JP5178262B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
JP3523105B2 (en) Flow sensor heater control device
JP3991161B2 (en) Flow rate sensor
JP3486511B2 (en) Flow sensor
JP5159383B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
JP2008046143A (en) Thermal fluid sensor and flow sensor
JPH11351936A (en) Thermal flow-rate sensor and thermal flow-rate detection circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150