JP2007285849A - Gas concentration detector - Google Patents

Gas concentration detector Download PDF

Info

Publication number
JP2007285849A
JP2007285849A JP2006113105A JP2006113105A JP2007285849A JP 2007285849 A JP2007285849 A JP 2007285849A JP 2006113105 A JP2006113105 A JP 2006113105A JP 2006113105 A JP2006113105 A JP 2006113105A JP 2007285849 A JP2007285849 A JP 2007285849A
Authority
JP
Japan
Prior art keywords
resistance
temperature detector
current
voltage
resistance temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006113105A
Other languages
Japanese (ja)
Inventor
Osamu Kimura
修 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2006113105A priority Critical patent/JP2007285849A/en
Publication of JP2007285849A publication Critical patent/JP2007285849A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and space-saving gas concentration detector capable of detecting accurately a gas concentration without being affected by a gas temperature of measured gas. <P>SOLUTION: A resistance/voltage conversion circuit 20 supplies a current to a temperature measuring resistor Rs arranged in a supply passage of the measured gas and having a resistance value varied depending on a temperature, to generate a voltage in response to the resistance value of the temperature measuring resistor Rs. A CPU 25a switches a current supplied to the temperature measuring resistor Rs by an FETQ, between a current Is1 with a level of making a temperature of the temperature measuring resistor Rs higher than a peripheral temperature, and a current Is2 with a level of making the temperature of the temperature measuring resistor Rs equal to the peripheral temperature. The CPU 25a detects a voltage in response to the resistance value of the temperature measuring resistor Rs generated by the resistance/voltage conversion circuit 20, and the gas concentration is detected based on the voltage in response to the resistance value of the detected temperature measuring resistor Rs. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガス濃度検出装置に係り、特に、例えば水素ガスなどの被測定ガスの濃度を検出するガス濃度検出装置に関するものである。   The present invention relates to a gas concentration detection device, and more particularly to a gas concentration detection device that detects the concentration of a gas to be measured such as hydrogen gas.

上述したガス濃度検出装置としては、発熱して温度に依存して抵抗値が変化する測温抵抗体を用いたものが知られている。まず、この測温抵抗体を用いたガス濃度検出装置の原理について説明する。上記測温抵抗体は、被測定ガスの供給路に配置される。供給される被測定ガスの濃度が高くなるに従って被測定ガスの熱伝導率が高くなり、被測定ガスがより多くの熱量を測温抵抗体から奪う。この結果、測温抵抗体の抵抗値が下がる。即ち、測温抵抗体の抵抗値は被測定ガスの濃度に応じた値となり、この測温抵抗体の抵抗値に基づいてガス濃度を検出することができる。   As the above-described gas concentration detection device, one using a resistance temperature detector that generates heat and changes its resistance value depending on temperature is known. First, the principle of the gas concentration detector using this resistance temperature detector will be described. The resistance temperature detector is disposed in the supply path of the gas to be measured. As the concentration of the measured gas supplied increases, the thermal conductivity of the measured gas increases, and the measured gas takes more heat from the resistance temperature detector. As a result, the resistance value of the resistance temperature detector decreases. That is, the resistance value of the resistance temperature detector becomes a value corresponding to the concentration of the gas to be measured, and the gas concentration can be detected based on the resistance value of the resistance temperature detector.

上述したガス濃度検出装置の一例として図10に示された湿度センサが提案されている(特許文献1)。この湿度センサは、雰囲気中の水蒸気(被測定ガス)の濃度を検出するセンサである。図中、Rは測温抵抗体である。この測温抵抗体Rには、スイッチSを介して抵抗R1H及び抵抗R1Lが直列に接続されている。抵抗R1H及び抵抗R1Lは互いに並列に接続されている。   A humidity sensor shown in FIG. 10 has been proposed as an example of the above-described gas concentration detection device (Patent Document 1). This humidity sensor is a sensor that detects the concentration of water vapor (measuring gas) in the atmosphere. In the figure, R is a resistance temperature detector. A resistance R1H and a resistance R1L are connected in series to the resistance temperature detector R via a switch S. The resistor R1H and the resistor R1L are connected in parallel to each other.

この測温抵抗体R及び抵抗R1Hまたは抵抗R1Lから成る直列回路には、抵抗R2及び抵抗R3から成る直列回路が並列に接続されている。即ち、測温抵抗体R、抵抗R1Hまたは抵抗R1L、抵抗R2及び抵抗R3によってブリッジ回路が組まれている。電源装置3は、スイッチSを介して測温抵抗体Rに電圧を印加して電流を流してジュール熱を発生して測温抵抗体Rを所定の温度にするものである。また、温度検出器5は測定雰囲気の温度の情報を補正装置4に与えるものである。   A series circuit composed of the resistor R2 and the resistor R3 is connected in parallel to the series circuit composed of the resistance temperature detector R and the resistor R1H or the resistor R1L. That is, a bridge circuit is formed by the resistance temperature detector R, the resistor R1H or the resistor R1L, the resistor R2, and the resistor R3. The power supply device 3 applies a voltage to the resistance temperature detector R via the switch S and causes a current to flow to generate Joule heat to bring the resistance temperature detector R to a predetermined temperature. Further, the temperature detector 5 gives information on the temperature of the measurement atmosphere to the correction device 4.

上述したスイッチSは、切替制御装置SCにより動作が制御される。切替制御装置SCから出力される切替信号S1がHのとき(図11(a)参照)、スイッチSの接点が抵抗R1H側に接続される。これにより、抵抗R1H及び抵抗R1Lのうち抵抗R1Hのみが測温抵抗体Rに直列接続される。上記抵抗R1Hが測温抵抗体Rに接続されているとき、測温抵抗体Rに供給される電流IはIHとなり(図11(b)参照)、測温抵抗体Rの発熱温度が300°C以上になる。   The operation of the switch S described above is controlled by the switching control device SC. When the switching signal S1 output from the switching control device SC is H (see FIG. 11A), the contact of the switch S is connected to the resistor R1H side. Thereby, only resistance R1H among resistance R1H and resistance R1L is connected in series with resistance temperature detector R. When the resistor R1H is connected to the resistance temperature detector R, the current I supplied to the resistance temperature detector R is IH (see FIG. 11B), and the heating temperature of the resistance temperature detector R is 300 °. C or higher.

一方、切替制御装置SCから出力される切替信号S1がLのとき(図11(a)参照)、スイッチSの接点が抵抗R1L側に接続される。これにより、抵抗R1H及び抵抗R1Lのうち抵抗R1Lのみが測温抵抗体Rに直列接続される。上記抵抗R1Lが測温抵抗体Rに接続されているとき、測温抵抗体Rに供給される電流IはILとなり(図11(b)参照)、測温抵抗体Rの発熱温度が100°C〜150°Cとなる。   On the other hand, when the switching signal S1 output from the switching control device SC is L (see FIG. 11A), the contact of the switch S is connected to the resistor R1L side. Thereby, only resistance R1L is connected in series with resistance temperature detector R among resistance R1H and resistance R1L. When the resistor R1L is connected to the resistance temperature detector R, the current I supplied to the resistance temperature detector R becomes IL (see FIG. 11B), and the heating temperature of the resistance temperature detector R is 100 °. C to 150 ° C.

測温抵抗体Rが300°C以上に発熱しているとき、測温抵抗体Rの抵抗値は雰囲気内に含まれる水蒸気量によって変動する。即ち、測温抵抗体Rが300°C以上に発熱しているときのブリッジ回路の出力電圧VHは、雰囲気内に含まれる水蒸気量、即ち湿度に応じた電圧となる(図11(c)参照)。   When the resistance thermometer R generates heat at 300 ° C. or more, the resistance value of the resistance thermometer R varies depending on the amount of water vapor contained in the atmosphere. That is, the output voltage VH of the bridge circuit when the resistance temperature detector R generates heat at 300 ° C. or more is a voltage corresponding to the amount of water vapor contained in the atmosphere, that is, the humidity (see FIG. 11C). ).

一方、測温抵抗体Rが100°C〜150°Cの間で発熱しているときは、水蒸気量には不感となり測温抵抗体Rの抵抗値は周囲温度によって変動する。即ち、測温抵抗体Rが100°C〜150°Cに発熱しているときのブリッジ回路の出力電圧VLは、周囲温度に応じた電圧となる(図11(c)参照)。   On the other hand, when the resistance thermometer R generates heat between 100 ° C. and 150 ° C., it becomes insensitive to the amount of water vapor, and the resistance value of the resistance thermometer R varies depending on the ambient temperature. That is, the output voltage VL of the bridge circuit when the resistance temperature detector R generates heat at 100 ° C. to 150 ° C. is a voltage corresponding to the ambient temperature (see FIG. 11C).

そこで、補正装置4は、湿度情報である電圧VHを周囲温度情報である電圧VLで補正して、周囲温度の影響を除去した湿度VIを検出することができる(図11(e)参照)。
特開平8−184576号公報
Therefore, the correction device 4 can detect the humidity VI from which the influence of the ambient temperature is removed by correcting the voltage VH that is humidity information with the voltage VL that is ambient temperature information (see FIG. 11E).
JP-A-8-184576

上述した従来のガス濃度検出装置としての湿度センサでは周囲温度情報である電圧VLに基づいて湿度情報である電圧VHを補正して、周囲温度の影響を除去した湿度VIを出力している。しかしながら、上述した電圧VLは正確に周囲温度に応じた値ではない。その理由としては、100°C〜150°Cとあるように測温抵抗体Rの温度を周囲温度よりも高くして、測温抵抗体Rを自己発熱させているからである。詳しく説明すると、測温抵抗体Rは下記の式(7)及び(8)に示すように表すことができる。
R=(1+αT)K0 …(7)
T=T0+TW …(8)
なお、R:測温抵抗体の抵抗値、K0:測温抵抗体の静抵抗値、α:抵抗温度係数、T:測温抵抗体の温度、T0:周囲温度、TW:自己発熱による温度
The humidity sensor as the conventional gas concentration detection device described above corrects the voltage VH that is humidity information based on the voltage VL that is ambient temperature information, and outputs the humidity VI from which the influence of the ambient temperature is removed. However, the voltage VL described above is not exactly a value according to the ambient temperature. This is because the temperature measuring resistor R is made to self-heat by setting the temperature of the resistance temperature detector R higher than the ambient temperature so as to be 100 ° C. to 150 ° C. More specifically, the resistance temperature detector R can be expressed as shown in the following formulas (7) and (8).
R = (1 + αT) K 0 (7)
T = T 0 + T W (8)
R: resistance value of resistance temperature detector, K 0 : static resistance value of resistance temperature detector, α: resistance temperature coefficient, T: temperature of resistance temperature detector, T 0 : ambient temperature, T W : self-heating By temperature

上述した式(7)及び(8)に示すように、測温抵抗体Rの温度Tは、周囲温度T0と自己発熱による温度TWとを加算した値となる。測温抵抗体Rの自己発熱による熱分布は一様ではなく、測温抵抗体Rが何度°Cになっているかわからない。その為、自己発熱している測温抵抗体Rの抵抗値を測定しても周囲温度が分からず、即ち、電圧VLから正確な周囲温度を求めることができない。 As shown in the equations (7) and (8) described above, the temperature T of the resistance temperature detector R is a value obtained by adding the ambient temperature T 0 and the temperature T W due to self-heating. The heat distribution due to self-heating of the resistance temperature detector R is not uniform, and it is not known how many degrees the temperature resistance resistor R is at ° C. Therefore, even if the resistance value of the resistance thermometer R that is self-heating is measured, the ambient temperature is not known, that is, the accurate ambient temperature cannot be obtained from the voltage VL.

そこで、従来では、さらに温度検出器5を設けて、この温度検出器5から出力される温度信号(図11(d)参照)に基づいて湿度情報である電圧VHを補正して、周囲温度の影響を除去した湿度VIを検出している。   Therefore, conventionally, a temperature detector 5 is further provided, and the voltage VH, which is humidity information, is corrected based on the temperature signal output from the temperature detector 5 (see FIG. 11D), and the ambient temperature Humidity VI from which the influence has been removed is detected.

このため、温度検出器5を設ける分だけ部品コストが上がり、湿度センサのサイズも大きくなる。また、湿度センサに温度検出器を設置する機構を設けなければならず、温度センサの筐体の加工費のコストが上がり、筐体の大きさも大きくなると言う問題があった。   For this reason, the part cost increases by the provision of the temperature detector 5, and the size of the humidity sensor also increases. In addition, there is a problem that a mechanism for installing a temperature detector in the humidity sensor has to be provided, which increases the cost of processing the casing of the temperature sensor and increases the size of the casing.

そこで、本発明は、上記のような問題点に着目し、安価にかつ省スペースに被測定ガスのガス温度の影響を受けずに正確にガス濃度を検出することができるガス濃度検出装置を提供することを課題とする。   Accordingly, the present invention provides a gas concentration detection apparatus that can accurately detect the gas concentration at low cost and in a space-saving manner without being affected by the gas temperature of the gas to be measured, paying attention to the above problems. The task is to do.

上記課題を解決するためになされた請求項1記載の発明は、被測定ガスの供給路に配置されて温度に依存して抵抗値が変化する測温抵抗体と、該測温抵抗体に電流を供給して当該測温抵抗体の抵抗値に応じた電圧を発生させる抵抗/電圧変換手段と、該抵抗/電圧変換手段が発生した前記測温抵抗体の抵抗値に応じた電圧を検出する電圧検出手段と、該電圧検出手段が検出した前記測温抵抗体の抵抗値に応じた電圧に基づいて前記被測定ガスの濃度を検出する濃度検出手段とを備えたガス濃度検出装置において、前記測温抵抗体の温度が周囲温度よりも高くなるような大きさの第1の電流と前記測温抵抗体の温度が周囲温度と等しくなるような大きさの第2の電流との間において、前記抵抗/電圧変換手段が前記測温抵抗体に供給する電流を切り替える切替手段が設けられていることを特徴とするガス濃度検出装置に存する。   The invention according to claim 1, which has been made in order to solve the above-mentioned problems, is a resistance temperature detector that is arranged in a supply path of a gas to be measured and changes its resistance value depending on temperature, and a current in the resistance temperature detector. And a resistance / voltage conversion means for generating a voltage corresponding to the resistance value of the resistance temperature detector, and a voltage corresponding to the resistance value of the resistance temperature detector generated by the resistance / voltage conversion means is detected. In the gas concentration detection device, comprising: voltage detection means; and concentration detection means for detecting the concentration of the gas to be measured based on a voltage corresponding to the resistance value of the resistance temperature detector detected by the voltage detection means. Between a first current sized such that the temperature of the resistance temperature detector is higher than the ambient temperature and a second current sized such that the temperature of the resistance temperature detector is equal to the ambient temperature, The current supplied to the resistance temperature detector by the resistance / voltage conversion means Ri Order switching unit resides in the gas concentration measuring apparatus, wherein a is provided.

請求項2記載の発明は、前記抵抗/電圧変換手段が、前記測温抵抗体の抵抗値に応じた電圧を増幅する増幅器を有し、そして、前記ガス濃度検出装置が、前記増幅器が増幅した前記測温抵抗体の抵抗値に応じた電圧をデジタル値に変換するアナログ/デジタル変換手段と、前記測温抵抗体に前記第2の電流を供給しているときの前記増幅器のゲインが前記測温抵抗体に前記第1の電流を供給しているときの前記増幅器のゲインよりも高くなるように前記増幅器のゲインを制御するゲイン制御手段とを備えていることを特徴とする請求項1記載のガス濃度検出装置に存する。   According to a second aspect of the present invention, the resistance / voltage conversion means includes an amplifier that amplifies a voltage corresponding to a resistance value of the resistance temperature detector, and the gas concentration detection device is amplified by the amplifier. Analog / digital conversion means for converting a voltage corresponding to a resistance value of the resistance temperature detector into a digital value, and a gain of the amplifier when the second current is supplied to the resistance temperature detector are measured. 2. A gain control means for controlling a gain of the amplifier so as to be higher than a gain of the amplifier when the first current is supplied to the temperature resistor. It exists in the gas concentration detection device.

請求項3記載の発明は、前記増幅器が、前記測温抵抗体の抵抗値に応じた電圧と基準電圧との差分を増幅し、そして、前記ガス濃度検出装置が、前記増幅器に前記基準電圧を供給する基準電圧供給手段と、前記測温抵抗体に前記第2の電流を供給しているときに前記増幅器に供給される基準電圧よりも前記測温抵抗体に前記第1の電流を供給しているときに前記増幅器に供給される基準電圧の方が高くなるように前記基準電圧供給手段を制御する基準電圧制御手段とを備えていることを特徴とする請求項2項記載のガス濃度検出装置に存する。   According to a third aspect of the present invention, the amplifier amplifies a difference between a voltage corresponding to a resistance value of the resistance temperature detector and a reference voltage, and the gas concentration detection device applies the reference voltage to the amplifier. A reference voltage supply means for supplying, and supplying the first current to the RTD rather than a reference voltage supplied to the amplifier when the second current is supplied to the RTD. 3. The gas concentration detection according to claim 2, further comprising reference voltage control means for controlling the reference voltage supply means so that a reference voltage supplied to the amplifier is higher when the power is supplied. Exists in the device.

請求項4記載の発明は、前記抵抗/電圧変換手段が、前記測温抵抗体の抵抗値に応じた電圧と基準電圧との差分を増幅する増幅器とを有し、そして、前記ガス濃度検出装置が、前記増幅器が増幅した前記測温抵抗体の抵抗値に応じた電圧をデジタル値に変換するアナログ/デジタル変換手段と、前記増幅器に前記基準電圧を供給する基準電圧供給手段と、前記測温抵抗体に前記第2の電流を供給しているときに前記増幅器に供給される基準電圧よりも前記測温抵抗体に前記第1の電流を供給しているときに前記増幅器に供給される基準電圧の方が高くなるように前記基準電圧供給手段を制御する基準電圧制御手段とを備えていることを特徴とする請求項1項記載のガス濃度検出装置に存する。   According to a fourth aspect of the present invention, the resistance / voltage conversion unit includes an amplifier that amplifies a difference between a voltage corresponding to a resistance value of the resistance temperature detector and a reference voltage, and the gas concentration detection device. Analog / digital conversion means for converting a voltage corresponding to the resistance value of the resistance temperature detector amplified by the amplifier into a digital value, reference voltage supply means for supplying the reference voltage to the amplifier, and the temperature measurement A reference supplied to the amplifier when the first current is supplied to the resistance temperature detector rather than a reference voltage supplied to the amplifier when the second current is supplied to the resistor. 2. The gas concentration detection apparatus according to claim 1, further comprising reference voltage control means for controlling the reference voltage supply means so that the voltage becomes higher.

以上説明したように請求項1記載の発明によれば、ガス濃度を検出するための測温抵抗体を流用してガス濃度の影響を受けずにガス温度を正確に検出することができる。そして、濃度検出手段が、第1の電流が供給されているときに電圧検出手段が検出した測温抵抗体の抵抗値、即ちガス濃度に応じた電圧と第2の電流が供給されているときに電圧検出手段が検出した測温抵抗体の抵抗値、即ちガス温度に応じた電圧とに基づいて温度補正を行った正確な被測定ガスの濃度を検出することができるので、安価にかつ省スペースに被測定ガスのガス温度の影響を受けずに正確にガス濃度を検出することができる。   As described above, according to the first aspect of the present invention, it is possible to accurately detect the gas temperature without being affected by the gas concentration by using the resistance temperature detector for detecting the gas concentration. When the concentration detecting means is supplied with the resistance value of the resistance temperature detector detected by the voltage detecting means when the first current is supplied, that is, the voltage corresponding to the gas concentration and the second current. In addition, it is possible to detect the accurate concentration of the gas to be measured with temperature correction based on the resistance value of the resistance temperature detector detected by the voltage detecting means, that is, the voltage corresponding to the gas temperature. The gas concentration can be accurately detected without being affected by the gas temperature of the gas to be measured in the space.

請求項2記載の発明によれば、第2の電流は第1の電流より小さい。このため、第1の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動幅に比べて、第2の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動幅が小さくなる。ゲイン制御手段により第2の電流を供給しているときのゲインを高くすることにより、第2の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動幅を、第1の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動幅に近づけることができる。これにより、第1の電流及び第2の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動領域とアナログ/デジタル変換手段の電圧変換領域とを一致させることができるので、アナログ/デジタル変換手段の変換精度の向上を図って、精度良くガス濃度を検出することができる。   According to the invention described in claim 2, the second current is smaller than the first current. For this reason, compared with the fluctuation range of the voltage according to the resistance value of the resistance temperature detector when the first current is supplied, the voltage according to the resistance value of the resistance temperature detector when the second current is supplied. The fluctuation range of becomes smaller. By increasing the gain when the second current is supplied by the gain control means, the fluctuation range of the voltage according to the resistance value of the resistance temperature detector when the second current is supplied is changed to the first It is possible to approach the fluctuation range of the voltage according to the resistance value of the resistance temperature detector when the current is supplied. As a result, the voltage fluctuation region according to the resistance value of the resistance temperature detector when the first current and the second current are supplied can be matched with the voltage conversion region of the analog / digital conversion means. The gas concentration can be detected with high accuracy by improving the conversion accuracy of the analog / digital conversion means.

請求項3及び4記載の発明によれば、第2の電流は第1の電流より小さい。このため、第2の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動領域に比べて、第1の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動領域が高くなる。基準電圧制御手段により第1の電流を供給しているときに増幅器に供給する基準電圧を高くすることにより、第1の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動領域を、第2の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動領域に近づけることができる。これにより、第1の電流及び第2の電流を供給したときの測温抵抗体の抵抗値に応じた電圧の変動領域とアナログ/デジタル変換手段の電圧変換領域とを一致させることができるので、アナログ/デジタル変換手段の変換精度の向上を図って、精度良くガス濃度を検出することができる。   According to invention of Claim 3 and 4, 2nd electric current is smaller than 1st electric current. For this reason, the voltage according to the resistance value of the resistance temperature detector when the first current is supplied, compared to the voltage fluctuation region according to the resistance value of the resistance temperature detector when the second current is supplied. The fluctuation region becomes high. When the first current is supplied by the reference voltage control means, the reference voltage supplied to the amplifier is increased to change the voltage according to the resistance value of the resistance temperature detector when the first current is supplied. The region can be brought close to a voltage fluctuation region according to the resistance value of the resistance temperature detector when the second current is supplied. As a result, the voltage fluctuation region according to the resistance value of the resistance temperature detector when the first current and the second current are supplied can be matched with the voltage conversion region of the analog / digital conversion means. The gas concentration can be detected with high accuracy by improving the conversion accuracy of the analog / digital conversion means.

以下、本発明の一実施の形態を図面に基づいて説明する。図1は、本発明のガス濃度検出装置の一実施形態を示す回路図である。同図に示すように、ガス濃度検出装置は、被測定ガスとしての水素(H2)ガスの供給路に配置されて温度に依存して抵抗値が変化する測温抵抗体Rsと、測温抵抗体Rsに電流を供給してその測温抵抗体Rsの抵抗値に応じた電圧ΔVを発生させる抵抗/電圧変換回路20(抵抗/電圧変換手段)とを備えている。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of a gas concentration detection apparatus of the present invention. As shown in the figure, the gas concentration detection device includes a resistance temperature detector Rs which is arranged in a supply path of hydrogen (H 2 ) gas as a gas to be measured and whose resistance value changes depending on temperature, A resistance / voltage conversion circuit 20 (resistance / voltage conversion means) that supplies a current to the resistor Rs and generates a voltage ΔV corresponding to the resistance value of the resistance temperature detector Rs is provided.

上述した抵抗/電圧変換回路20は、測温抵抗体Rsと共にハーフブリッジ回路を形成する抵抗R11、R12と、定電圧源22と、差動増幅器OP(増幅器)と、電界効果トランジスタ(FET)Qから構成されている。抵抗R12とFETQは直列に接続されている。この抵抗R12及びFETQから成る直列回路及び抵抗R11は、互いに並列に接続されている。定電圧源22は、測温抵抗体Rs及び抵抗R11、R12から成る並列回路に定電圧Vaを供給している。   The resistance / voltage conversion circuit 20 described above includes resistors R11 and R12 that form a half-bridge circuit together with the resistance temperature detector Rs, a constant voltage source 22, a differential amplifier OP (amplifier), and a field effect transistor (FET) Q. It is composed of The resistor R12 and the FETQ are connected in series. The series circuit composed of the resistor R12 and the FET Q and the resistor R11 are connected in parallel to each other. The constant voltage source 22 supplies a constant voltage Va to a parallel circuit composed of a resistance temperature detector Rs and resistors R11 and R12.

上述したFETQは後述するμCOM25内のCPU25aによってオンオフが制御されている。FETQがオンすると、測温抵抗体Rsに抵抗R11と抵抗R12の並列抵抗が接続される。このとき、測温抵抗体Rsに流れる電流Is1は下記の式(1)で表される。
Is1=Va/(Rs+R11//R12) …(1)
The above-described FETQ is controlled to be turned on / off by a CPU 25a in the μCOM 25 described later. When the FET Q is turned on, the parallel resistance of the resistor R11 and the resistor R12 is connected to the resistance temperature detector Rs. At this time, the current Is1 flowing through the resistance temperature detector Rs is expressed by the following equation (1).
Is1 = Va / (Rs + R11 // R12) (1)

電流Is1を測温抵抗体Rsに流すと、測温抵抗体Rsにジュール熱が発生する。電流Is1の大きさは、上記測温抵抗体Rsに発生するジュール熱によって測温抵抗体Rsの温度が周囲温度よりも高くなるように設定されている。即ち、電流Is1の大きさは、測温抵抗体Rsが自己発熱するように設定されている。より詳しく説明すると、電流Is1を流すことにより測温抵抗体Rsに発生する熱量が周囲に放熱される熱量より多いと測温抵抗体Rsの温度が周囲温度よりも高くなる。   When the current Is1 is passed through the resistance temperature detector Rs, Joule heat is generated in the resistance temperature detector Rs. The magnitude of the current Is1 is set so that the temperature of the resistance temperature detector Rs becomes higher than the ambient temperature due to Joule heat generated in the resistance temperature detector Rs. That is, the magnitude of the current Is1 is set so that the resistance temperature detector Rs self-heats. More specifically, when the amount of heat generated in the resistance temperature detector Rs by flowing the current Is1 is larger than the amount of heat radiated to the surroundings, the temperature of the resistance temperature detector Rs becomes higher than the ambient temperature.

一方、FETQがオフすると、測温抵抗体Rsには抵抗R11及びR12のうち抵抗R11のみが接続される。このとき、測温抵抗体Rsに流れる電流Is2は下記の式(2)で表される。
Is2=Va/(Rs+R11) …(2)
On the other hand, when the FET Q is turned off, only the resistor R11 of the resistors R11 and R12 is connected to the resistance temperature detector Rs. At this time, the current Is2 flowing through the resistance temperature detector Rs is expressed by the following equation (2).
Is2 = Va / (Rs + R11) (2)

電流Is2を測温抵抗体Rsに流すと、測温抵抗体Rsにジュール熱が発生する。電流Is2の大きさは、上記測温抵抗体Rsにジュール熱が発生しても測温抵抗体Rsの温度が周囲温度より高くならず、周囲温度と等しくなるように設定されている。即ち、電流Is2の大きさは、測温抵抗体Rsが自己発熱しないように設定されている。より詳しく説明すると、電流Is2を流すことにより測温抵抗体Rsに発生する熱量が周囲に放熱される熱量より小さいと測温抵抗体Rsの温度は周囲温度と等しいままである。   When the current Is2 is passed through the resistance temperature detector Rs, Joule heat is generated in the resistance temperature detector Rs. The magnitude of the current Is2 is set so that the temperature of the resistance temperature detector Rs does not become higher than the ambient temperature but equal to the ambient temperature even when Joule heat is generated in the resistance temperature detector Rs. That is, the magnitude of the current Is2 is set so that the resistance temperature detector Rs does not self-heat. More specifically, when the amount of heat generated in the resistance temperature detector Rs by flowing the current Is2 is smaller than the amount of heat radiated to the surroundings, the temperature of the resistance temperature detector Rs remains equal to the ambient temperature.

上記差動増幅器OPの反転入力には測温抵抗体Rs及び抵抗R11、R12間の接続点に生ずる電圧が出力電圧Vとして供給されている。差動増幅器OPの被反転入力には後述するデジタル/アナログ(D/A)コンバーター23(基準電圧供給手段)から供給される基準電圧Vrefが供給されている。差動増幅器OPは、出力電圧Vと基準電圧でVrefとの差をゲインαで増幅した値を出力電圧ΔV(=α×(V−Vref))として出力する。   A voltage generated at a connection point between the resistance temperature detector Rs and the resistors R11 and R12 is supplied as an output voltage V to the inverting input of the differential amplifier OP. A reference voltage Vref supplied from a digital / analog (D / A) converter 23 (reference voltage supply means) to be described later is supplied to the inverted input of the differential amplifier OP. The differential amplifier OP outputs a value obtained by amplifying the difference between the output voltage V and the reference voltage Vref with a gain α as an output voltage ΔV (= α × (V−Vref)).

FETQがオンしていて、測温抵抗体Rsに抵抗R11及びR12の並列抵抗が接続されているとき、上述した出力電圧Vは下記の式(3)で表される値となる。
V={(R11//R12)/(Rs+R11//R12)}×Va …(3)
従って、差動増幅器OPの出力電圧ΔVは下記の式(4)で表される値となる。
ΔV=α×[{(R11//R12)/(Rs+R11//R12)}×Va−Vref] …(4)
When the FET Q is turned on and the parallel resistances of the resistors R11 and R12 are connected to the resistance temperature detector Rs, the output voltage V described above becomes a value represented by the following equation (3).
V = {(R11 // R12) / (Rs + R11 // R12)} × Va (3)
Therefore, the output voltage ΔV of the differential amplifier OP becomes a value represented by the following equation (4).
ΔV = α × [{(R11 // R12) / (Rs + R11 // R12)} × Va−Vref] (4)

一方、FETQがオフして、測温抵抗体Rsに抵抗R11及びR12のうち抵抗R11のみが直列接続されているとき、上述した出力電圧Vは下記の式(5)で表される値となる。
V={R11/(Rs+R11)}×Va …(5)
従って、差動増幅器OPの出力電圧ΔVは下記の式(6)で表される値となる。
ΔV=α×[{R11/(Rs+R11)}×Va−Vref] …(6)
On the other hand, when the FET Q is turned off and only the resistor R11 of the resistors R11 and R12 is connected in series to the resistance temperature detector Rs, the output voltage V described above is a value represented by the following equation (5). .
V = {R11 / (Rs + R11)} × Va (5)
Therefore, the output voltage ΔV of the differential amplifier OP becomes a value represented by the following equation (6).
ΔV = α × [{R11 / (Rs + R11)} × Va−Vref] (6)

上述した抵抗R11、R12は温度に依存して抵抗値が変わるものではなく、抵抗値は常に固定である。従って、上記式(3)〜(6)から明らかなように出力電圧V、ΔVは、測温抵抗体Rsの抵抗値に応じた電圧である。また、式(4)及び(6)から明らかなように差動増幅器OPは測温抵抗体Rsの抵抗値に応じた電圧Vと基準電圧Vrefの差分を増幅する増幅器に相当する。   The resistance values of the resistors R11 and R12 described above do not change depending on the temperature, and the resistance values are always fixed. Therefore, as apparent from the above formulas (3) to (6), the output voltages V and ΔV are voltages according to the resistance value of the resistance temperature detector Rs. As is clear from the equations (4) and (6), the differential amplifier OP corresponds to an amplifier that amplifies the difference between the voltage V corresponding to the resistance value of the resistance temperature detector Rs and the reference voltage Vref.

上述した差動増幅器OPの出力電圧ΔVはアナログ/デジタル(A/D)コンバータ24(アナログ/デジタル変換手段)に供給される。A/Dコンバータ24は、アナログの出力電圧ΔVをデジタル値に変換してμCOM25に対して供給する。   The above-described output voltage ΔV of the differential amplifier OP is supplied to an analog / digital (A / D) converter 24 (analog / digital conversion means). The A / D converter 24 converts the analog output voltage ΔV into a digital value and supplies it to the μCOM 25.

μCOM25は、処理プログラムに従って各種の処理を行う演算処理装置(以下CPU)25aと、CPU25aが行う処理のプログラムなどを格納した読出専用のメモリであるROM25bと、CPU25aでの各種の処理過程で利用するワークエリア、各種データを格納するデータ記憶エリアなどを有する読み出し書き込み自在のメモリであるRAM25cとを備えている。   The μCOM 25 is used in various processing steps in the CPU 25a, an arithmetic processing unit (hereinafter referred to as CPU) 25a that performs various processes according to a processing program, a ROM 25b that is a read-only memory that stores a program for processing performed by the CPU 25a, and the like. A RAM 25c that is a readable / writable memory having a work area, a data storage area for storing various data, and the like is provided.

なお、上述した測温抵抗体Rsは、図2に示すようにSi基板26によって支持されるダイヤフラム27上に設けられている。   The temperature measuring resistor Rs described above is provided on a diaphragm 27 supported by the Si substrate 26 as shown in FIG.

次に、上述したように測温抵抗体Rsに電流Is1を流したときの測温抵抗体Rsの抵抗値変化と、測温抵抗体Rsに電流Is2を流したときの測温抵抗体Rsの抵抗値変化について図3〜図6を参照して以下説明する。一般的に抵抗に電流を流すと熱が発生する。この熱量は抵抗に流す電流の大きさに依存する。抵抗に流す電流が大きくなるに従って抵抗には大きな熱量が発生する。抵抗に流す電流が小さくなるに従って抵抗には小さな熱量が発生する。   Next, as described above, the resistance value change of the resistance temperature detector Rs when the current Is1 flows through the resistance temperature detector Rs, and the resistance value of the resistance temperature detector Rs when the current Is2 flows through the resistance temperature detector Rs. The resistance value change will be described below with reference to FIGS. Generally, heat is generated when a current is passed through a resistor. This amount of heat depends on the amount of current flowing through the resistor. As the current flowing through the resistor increases, a large amount of heat is generated in the resistor. As the current flowing through the resistor decreases, a small amount of heat is generated in the resistor.

今、測温抵抗体Rsが自己発熱しない電流Is2を測温抵抗体Rsに流してH2ガスを供給すると、図3に示すように、測温抵抗体Rsの抵抗値はH2ガスのガス温度に応じた値となる。測温抵抗体Rsが自己発熱せずにその温度が周囲温度、即ちガス温度と等しいときは、H2ガスによって奪われる熱量がない。このため、図6に示すように、測温抵抗体Rsの抵抗値はH2ガスのガス濃度に対してまったく不感となる。 If the current Is2 that does not self-heat from the resistance temperature detector Rs is supplied to the resistance temperature detector Rs and H 2 gas is supplied, the resistance value of the resistance temperature detector Rs is equal to that of the H 2 gas as shown in FIG. The value depends on the temperature. When the resistance thermometer Rs does not self-heat and its temperature is equal to the ambient temperature, that is, the gas temperature, there is no amount of heat taken away by the H 2 gas. For this reason, as shown in FIG. 6, the resistance value of the resistance temperature detector Rs is completely insensitive to the gas concentration of the H 2 gas.

測温抵抗体Rsの温度は、その周囲温度、即ちガス温度が高くなるに従って高くなり、ガス温度が低くなるに従って低くなる。このため、FETQがオフして自己発熱しない大きさの電流Is2を供給している間、測温抵抗体Rsの抵抗値はH2ガスのガス温度に応じた値となる。 The temperature of the resistance temperature detector Rs increases as the ambient temperature, that is, the gas temperature increases, and decreases as the gas temperature decreases. For this reason, the resistance value of the resistance temperature detector Rs is a value corresponding to the gas temperature of the H 2 gas while the FET Is turned off and the current Is2 having a magnitude that does not self-heat is supplied.

一方、測温抵抗体Rsが自己発熱する大きさの電流Is1を測温抵抗体Rsに流すと、測温抵抗体Rsが自己発熱してその温度が周囲温度、即ちガス温度より高くなる。このとき測温抵抗体RsにH2ガスを供給すると、H2ガスはその濃度に応じた熱量を測温抵抗体Rsから奪う。従って、図4に示すように、測温抵抗体Rsの温度はH2ガスのガス濃度に応じた値となる。測温抵抗体Rsは温度に応じて抵抗値が変化する抵抗であるため、図5に示すように測温抵抗体Rsの抵抗値はH2ガスのガス濃度に応じた値となる。 On the other hand, when a current Is1 having a magnitude that causes the temperature measuring resistor Rs to self-heat is passed through the temperature measuring resistor Rs, the temperature measuring resistor Rs self-heats and the temperature becomes higher than the ambient temperature, that is, the gas temperature. In this case supplying a H 2 gas in RTD Rs, H 2 gas rob heat corresponding to the concentration of RTD Rs. Therefore, as shown in FIG. 4, the temperature of the resistance temperature detector Rs becomes a value corresponding to the gas concentration of the H 2 gas. Since the resistance temperature detector Rs is a resistance whose resistance value changes according to the temperature, the resistance value of the resistance temperature detector Rs is a value corresponding to the gas concentration of the H 2 gas as shown in FIG.

上述した構成のガス濃度検出装置の動作について図7及び図8を参照して以下説明する。図7(a)はFETQのオンオフ状態、(b)は電流Is、(c)は出力電圧V、(d)は差動増幅器OPのゲイン、(e)は基準電圧Vref、(f)は差動増幅器OPの出力電圧ΔVのタイムチャートである。図8は、ガス濃度検出処理におけるCPU25aの処理手順を示すフローチャートである。   The operation of the gas concentration detection apparatus having the above-described configuration will be described below with reference to FIGS. 7A shows the on / off state of the FET Q, FIG. 7B shows the current Is, FIG. 7C shows the output voltage V, FIG. 7D shows the gain of the differential amplifier OP, FIG. 7E shows the reference voltage Vref, and FIG. 4 is a time chart of an output voltage ΔV of the dynamic amplifier OP. FIG. 8 is a flowchart showing the processing procedure of the CPU 25a in the gas concentration detection processing.

まず、CPU25aは、FETQのオンオフを繰り返すオンオフ処理を行う(図7(a)参照)。これにより測温抵抗Rsには、自己発熱する大きさの電流Is1と自己発熱しない大きさ電流Is2とが交互に流れる(図7(b)参照)。即ち、CPU25aは請求項中の切替手段として働く。そして、測温抵抗体Rsに自己発熱しない電流Is2が供給されているとき、測温抵抗体Rsの抵抗値はH2ガスのガス温度に応じた値となる。一方、測温抵抗体Rsに自己発熱する電流Is1が供給されているとき、測温抵抗体Rsの抵抗値はH2ガスのガス濃度に応じた値となる。従って、ハーフブリッジ回路からは、ガス温度に応じた出力電圧Vと濃度に応じた出力電圧Vとが交互に出力される(図7(c)参照)。 First, the CPU 25a performs an on / off process in which the FETQ is repeatedly turned on / off (see FIG. 7A). As a result, a current Is1 that is self-heated and a current Is2 that does not self-heat flow alternately through the temperature measuring resistor Rs (see FIG. 7B). That is, the CPU 25a functions as switching means in the claims. When the current Is2 that does not generate heat is supplied to the resistance temperature detector Rs, the resistance value of the resistance temperature detector Rs is a value corresponding to the gas temperature of the H 2 gas. On the other hand, when the current Is1 that self-heats is supplied to the resistance temperature detector Rs, the resistance value of the resistance temperature detector Rs becomes a value corresponding to the gas concentration of the H 2 gas. Therefore, the output voltage V corresponding to the gas temperature and the output voltage V corresponding to the concentration are alternately output from the half bridge circuit (see FIG. 7C).

次に、CPU25aは、ゲイン制御手段として働き、上記オンオフ処理に同期して差動増幅器OPのゲインαを制御するゲイン制御処理を行う。ゲイン制御処理において、CPU25aは、測温抵抗体Rsに電流Is2を供給しているときの差動増幅器OPのゲインαが測温抵抗体Rsに電流Is1を供給しているときの差動増幅器OPのゲインよりも高くなるように差動増幅器OPのゲインを制御している(図7(d)参照)。   Next, the CPU 25a functions as a gain control unit, and performs a gain control process for controlling the gain α of the differential amplifier OP in synchronization with the on / off process. In the gain control process, the CPU 25a uses the differential amplifier OP when the gain α of the differential amplifier OP when the current Is2 is supplied to the temperature measuring resistor Rs and the current Is1 is supplied to the temperature measuring resistor Rs. The gain of the differential amplifier OP is controlled so as to be higher than the gain (see FIG. 7D).

また、CPU25aは、基準電圧制御供給手段として働き、上記オンオフ処理に同期して差動増幅器OPに供給する基準電圧Vを制御する基準電圧制御処理を行う。基準電圧制御処理において、CPU25aは、測温抵抗体Rsに電流Is2を供給しているときに差動増幅器OPに供給する基準電圧よりも測温抵抗体Rsに電流Is1を供給しているときに差動増幅器OPに供給する基準電圧の方が高くなるようにD/Aコンバータ24にデジタルの基準電圧を出力している(図7(e)参照)。   Further, the CPU 25a functions as a reference voltage control supply unit, and performs a reference voltage control process for controlling the reference voltage V supplied to the differential amplifier OP in synchronization with the on / off process. In the reference voltage control process, the CPU 25a supplies the current Is1 to the temperature measuring resistor Rs rather than the reference voltage supplied to the differential amplifier OP when the current Is2 is supplied to the temperature measuring resistor Rs. A digital reference voltage is output to the D / A converter 24 so that the reference voltage supplied to the differential amplifier OP is higher (see FIG. 7E).

図7(c)中、VEQ1は電流Is1が供給されているときの出力電圧Vの変動領域を示し、VEQ2は電流Is2が供給されているときの変動領域を示す。上述したように電流Is2は電流Is1に比べて小さい。このため、同図に示すように、変動領域VEQ2の幅が変動領域VEQ1の幅に比べて小さくなる。従って、上述したゲイン制御処理によって電流Is2を供給しているときのゲインαを高くすることにより、電流Is2を供給しているときの差動増幅器OPの出力電圧ΔVの変動幅を、電流Is1を供給しているときの差動増幅器OPの出力電圧ΔVの変動幅に近づけることができる。   In FIG. 7C, VEQ1 indicates a fluctuation region of the output voltage V when the current Is1 is supplied, and VEQ2 indicates a fluctuation region when the current Is2 is supplied. As described above, the current Is2 is smaller than the current Is1. For this reason, as shown in the figure, the width of the variable region VEQ2 is smaller than the width of the variable region VEQ1. Therefore, by increasing the gain α when the current Is2 is supplied by the gain control process described above, the fluctuation range of the output voltage ΔV of the differential amplifier OP when the current Is2 is supplied is set to the current Is1. It is possible to approach the fluctuation range of the output voltage ΔV of the differential amplifier OP during supply.

また、変動幅VEQ1及びVEQ2を比較しても分かるように、電流Is1が供給されているときの出力電圧Vは比較的高いところで変動している。一方、電流Is2が供給されているときの出力電圧Vは比較的低いところで変動している。従って、上述した基準電圧制御処理によって電流Is1を供給しているときの基準電圧を高くすることにより、電流Is1を供給しているときの差動増幅器OPの出力電圧ΔVの変動領域を、電流Is2を供給しているときの差動増幅器OPの出力電圧ΔVの変動領域に近づけることができる。そして、電流Is1及び電流Is2を供給しているとこの差動増幅器OPの出力電圧ΔVの変動領域とA/Dコンバータ24の変換領域VEQ3とを一致させることができ、A/Dコンバータ24による変換精度の向上を図って、精度良くガス濃度を検出することができる。   Further, as can be seen by comparing the fluctuation ranges VEQ1 and VEQ2, the output voltage V when the current Is1 is supplied fluctuates at a relatively high level. On the other hand, the output voltage V when the current Is2 is supplied fluctuates at a relatively low level. Therefore, by increasing the reference voltage when the current Is1 is supplied by the above-described reference voltage control process, the fluctuation region of the output voltage ΔV of the differential amplifier OP when the current Is1 is supplied is changed to the current Is2. Can be brought close to the fluctuation region of the output voltage ΔV of the differential amplifier OP. When the current Is1 and the current Is2 are supplied, the fluctuation region of the output voltage ΔV of the differential amplifier OP and the conversion region VEQ3 of the A / D converter 24 can be matched, and conversion by the A / D converter 24 is performed. The gas concentration can be detected with high accuracy by improving the accuracy.

理想的には電流Is1及びIs2を供給しているときの差動増幅器OPの出力電圧ΔVの変動領域が完全にA/Dコンバータ24の変換領域VEQ3と一致するように、差動増幅器OPのゲインや、差動増幅器OPに供給する基準電圧Vrefを制御するのが望ましい。   Ideally, the gain of the differential amplifier OP is such that the fluctuation region of the output voltage ΔV of the differential amplifier OP when the currents Is1 and Is2 are supplied completely coincides with the conversion region VEQ3 of the A / D converter 24. In addition, it is desirable to control the reference voltage Vref supplied to the differential amplifier OP.

また、CPU25aは、上述したオンオフ制御処理、ゲイン制御処理、基準電圧制御処理に並列して濃度検出処理を行う。この濃度検出処理におけるCPU25aの処理手順について図8のフローチャートを参照して以下説明する。   Further, the CPU 25a performs density detection processing in parallel with the above-described on / off control processing, gain control processing, and reference voltage control processing. The processing procedure of the CPU 25a in this density detection process will be described below with reference to the flowchart of FIG.

まず、CPU25aは、FETQをオフして測温抵抗体Rsに電流Is2を流す(ステップS1)。次に、CPU25aは、電圧検出手段として働き、A/Dコンバータ24から出力される測温抵抗体Rsの抵抗値に応じた出力電圧ΔVを検出する(ステップS2)。次に、CPU25aは、ステップS2で検出した出力電圧ΔVをガス温度に応じた電圧としてRAM25c内に格納する(ステップS3)。   First, the CPU 25a turns off the FET Q and causes the current Is2 to flow through the resistance temperature detector Rs (step S1). Next, the CPU 25a functions as a voltage detection unit, and detects an output voltage ΔV corresponding to the resistance value of the resistance temperature detector Rs output from the A / D converter 24 (step S2). Next, the CPU 25a stores the output voltage ΔV detected in step S2 in the RAM 25c as a voltage corresponding to the gas temperature (step S3).

次に、CPU25aは、FETQがオンして測温抵抗体Rsに電流Is1を流す(ステップS4)。次にCPU25aは、電圧検出手段として働き、A/Dコンバータ24から出力される測温抵抗体Rsの抵抗値に応じた出力電圧ΔVを検出する(ステップS5)。次に、CPU25aは、ステップS6で検出した出力電圧ΔVをガス濃度に応じた電圧としてRAM25c内に格納する(ステップS6)。   Next, the CPU 25a turns on the FET Q and causes the current Is1 to flow through the resistance temperature detector Rs (step S4). Next, the CPU 25a functions as a voltage detection unit, and detects an output voltage ΔV corresponding to the resistance value of the resistance temperature detector Rs output from the A / D converter 24 (step S5). Next, the CPU 25a stores the output voltage ΔV detected in step S6 in the RAM 25c as a voltage corresponding to the gas concentration (step S6).

次に、CPU25aは、ガス濃度検出手段として働き、ガス温度に応じた出力電圧ΔVとガス濃度に応じた出力電圧ΔVとに基づいて補正演算することでガス温度の影響を除去したガス濃度を検出して(ステップS7)、再びステップS1に戻る。   Next, the CPU 25a functions as a gas concentration detection means, and detects the gas concentration from which the influence of the gas temperature is removed by performing a correction operation based on the output voltage ΔV corresponding to the gas temperature and the output voltage ΔV corresponding to the gas concentration. (Step S7), the process returns to Step S1 again.

上述したガス濃度検出装置によれば、CPU25aが、抵抗/電圧変換回路20が測温抵抗体Rsに供給する電流を、測温抵抗体Rsの温度が周囲温度よりも高くなるような大きさの電流Is1と測温抵抗体Rsの温度が周囲温度と等しくなるような大きさの電流Is2との間で切り替える。測温抵抗体Rsに電流Is1を流すと測温抵抗体Rsが自己発熱してその温度が周囲温度、即ちガス温度よりも高くなる。このときH2ガスはガス濃度に応じた熱量を測温抵抗体Rsから奪い、測温抵抗体Rsの温度、即ち抵抗値はガス濃度に応じて変化する。測温抵抗体Rsに電流Is2を流すと測温抵抗体Rsは自己発熱せずにその温度が周囲温度、即ちガス温度と等しくなる。このため測温抵抗体Rsの温度、即ち抵抗値はガス濃度には全く不感となりガス温度に応じて変化する。   According to the gas concentration detection device described above, the CPU 25a supplies the current supplied to the resistance temperature detector Rs by the resistance / voltage conversion circuit 20 so that the temperature of the resistance temperature detector Rs is higher than the ambient temperature. It switches between the current Is1 and the current Is2 having a magnitude such that the temperature of the resistance temperature detector Rs is equal to the ambient temperature. When the current Is1 is passed through the resistance temperature detector Rs, the resistance temperature detector Rs self-heats and its temperature becomes higher than the ambient temperature, that is, the gas temperature. At this time, the H2 gas takes away the amount of heat corresponding to the gas concentration from the resistance temperature detector Rs, and the temperature of the resistance temperature detector Rs, that is, the resistance value changes according to the gas concentration. When the current Is2 is passed through the resistance temperature detector Rs, the resistance temperature detector Rs does not self-heat and its temperature becomes equal to the ambient temperature, that is, the gas temperature. For this reason, the temperature of the resistance temperature detector Rs, that is, the resistance value is completely insensitive to the gas concentration and changes according to the gas temperature.

従って、ガス濃度を検出するための測温抵抗体Rsを流用してガス濃度の影響を受けずにガス温度を正確に検出することができる。そして、CPU25aが、電流Is1が供給されているときに検出した測温抵抗体Rsの抵抗値、即ちガス濃度に応じた電圧と電流Is2が供給されているときに検出した測温抵抗体Rsの抵抗値、即ちガス温度に応じた電圧とに基づいて温度補正を行った正確な被測定ガスの濃度を検出することができる。このため、安価にかつ省スペースにH2ガスのガス温度の影響を受けずに正確にガス濃度を検出することができる。   Therefore, it is possible to accurately detect the gas temperature without being affected by the gas concentration by using the resistance temperature detector Rs for detecting the gas concentration. The resistance value of the resistance temperature detector Rs detected when the current Is1 is supplied, that is, the resistance value of the resistance temperature detector Rs detected when the voltage and the current Is2 according to the gas concentration are supplied. Based on the resistance value, that is, the voltage corresponding to the gas temperature, it is possible to detect an accurate concentration of the gas to be measured, which has been subjected to temperature correction. For this reason, it is possible to accurately detect the gas concentration at low cost and in a space-saving manner without being affected by the gas temperature of the H2 gas.

なお、上述した実施形態では、CPU25aがFETQのオンオフを制御することにより、測温抵抗体Rsと直列に接続する抵抗の抵抗値を変えて、測温抵抗体Rsに流す電流を切り替えていたが、本発明はこれに限ったものではない。即ち、抵抗/電圧変換回路20としては、測温抵抗体Rsに流す電流が変えられる構成であればなんでもよく、例えば図9に示すような構成であってもよい。   In the above-described embodiment, the CPU 25a controls on / off of the FET Q, thereby changing the resistance value of the resistor connected in series with the resistance temperature detector Rs and switching the current flowing through the resistance temperature detector Rs. However, the present invention is not limited to this. That is, the resistance / voltage conversion circuit 20 may be of any configuration as long as the current flowing through the resistance temperature detector Rs can be changed. For example, the configuration shown in FIG.

同図に示すように、定電圧源22をその定電圧Vaが変換可能に構成し、CPU25aによって定電圧源22が供給する定電圧Vaを切り替えて、測温抵抗体Rsに流れる電流を切り替えるようにしてもよい。   As shown in the figure, the constant voltage source 22 is configured such that the constant voltage Va can be converted, and the constant voltage Va supplied from the constant voltage source 22 is switched by the CPU 25a to switch the current flowing through the resistance temperature detector Rs. It may be.

また、上述した実施形態では、抵抗/電圧検出回路20は測温抵抗体Rsを含むハーフブリッジ回路により構成されていたが、本発明はこれに限ったものではない。即ち、抵抗/電圧検出回路20は、測温抵抗体Rsの抵抗値に応じた電圧を発生させる回路であればなんでもよく、例えば従来のようにブリッジ回路を構成してもよい。   In the above-described embodiment, the resistance / voltage detection circuit 20 is configured by a half bridge circuit including the resistance temperature detector Rs, but the present invention is not limited to this. That is, the resistance / voltage detection circuit 20 may be any circuit that generates a voltage corresponding to the resistance value of the resistance temperature detector Rs. For example, a conventional bridge circuit may be configured.

また、上述した実施形態では、定電圧源22を用いて測温抵抗体Rsに電流Is1、Is2を流していたが、本発明はこれに限ったものではなく、定電流源を用いて測温抵抗体Rsに電流を流してもよい。   In the above-described embodiment, the currents Is1 and Is2 are passed through the resistance temperature detector Rs using the constant voltage source 22, but the present invention is not limited to this, and the temperature measurement is performed using the constant current source. A current may be passed through the resistor Rs.

また、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   Further, the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

本発明のガス濃度検出装置の一実施の形態を示す回路図である。It is a circuit diagram which shows one Embodiment of the gas concentration detection apparatus of this invention. 図1に示すガス濃度検出装置を構成する測温抵抗体Rsが搭載されたSi基台及びダイヤフラムを示す図である。It is a figure which shows the Si base and diaphragm with which the resistance temperature sensor Rs which comprises the gas concentration detection apparatus shown in FIG. 1 is mounted. 測温抵抗体Rsが自己発熱しない電流Is2を流したときの測温抵抗体Rsの抵抗値とガス温度との関係を示すグラフである。It is a graph which shows the relationship between the resistance value of the resistance thermometer Rs, and gas temperature when the electric current Is2 which does not self-heat the resistance thermometer Rs flows. 測温抵抗体Rsが自己発熱する電流Is1を流したときの測温抵抗体Rsの温度とガス濃度との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the resistance thermometer Rs, and gas concentration when the electric current Is1 which self-heating of the resistance thermometer Rs flows. 測温抵抗体Rsが自己発熱する電流Is1を流したときの測温抵抗体Rsの抵抗値とガス濃度との関係を示すグラフである。It is a graph which shows the relationship between the resistance value of the resistance temperature detector Rs, and gas concentration when the electric current Is1 which self-heating of the resistance temperature detector Rs flows. 測温抵抗体Rsが自己発熱しない電流Is2を流したときの測温抵抗体Rsの抵抗値とガス濃度との関係を示すグラフである。It is a graph which shows the relationship between the resistance value of the resistance thermometer Rs, and gas concentration when the electric current Is2 which does not self-heat the resistance thermometer Rs flows. (a)はFETQのオンオフ状態、(b)は電流Is、(c)は出力電圧V、(d)は差動増幅器OPのゲイン、(e)は基準電圧Vref、(f)は差動増幅器OPの出力電圧ΔVのタイムチャートである。(A) is the on / off state of the FETQ, (b) is the current Is, (c) is the output voltage V, (d) is the gain of the differential amplifier OP, (e) is the reference voltage Vref, and (f) is the differential amplifier. 6 is a time chart of an OP output voltage ΔV. ガス濃度検出処理におけるCPU25aの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of CPU25a in a gas concentration detection process. 他の実施形態におけるガス濃度検出装置の一例を示す回路図である。It is a circuit diagram which shows an example of the gas concentration detection apparatus in other embodiment. 従来のガス濃度検出装置の一例としての湿度センサを示す回路図である。It is a circuit diagram which shows the humidity sensor as an example of the conventional gas concentration detection apparatus. 図10に示す湿度センサの各部の信号、電流、電圧のタイムチャートである。It is a time chart of the signal of each part of the humidity sensor shown in FIG. 10, an electric current, and a voltage.

符号の説明Explanation of symbols

Is1 電流(第1の電流)
Is2 電流(第2の電流)
OP 差動増幅器(増幅器)
Rs 測温抵抗体
20 抵抗/電圧変換回路(抵抗/電圧変換手段)
23 D/Aコンバータ(基準電圧供給手段)
24 A/Dコンバータ(アナログ/デジタル変換手段)
25a CPU(切替手段、ゲイン制御手段、基準電圧制御手段)
Is1 current (first current)
Is2 current (second current)
OP Differential Amplifier (Amplifier)
Rs RTD 20 Resistance / voltage conversion circuit (resistance / voltage conversion means)
23 D / A converter (reference voltage supply means)
24 A / D converter (analog / digital conversion means)
25a CPU (switching means, gain control means, reference voltage control means)

Claims (4)

被測定ガスの供給路に配置されて温度に依存して抵抗値が変化する測温抵抗体と、該測温抵抗体に電流を供給して当該測温抵抗体の抵抗値に応じた電圧を発生させる抵抗/電圧変換手段と、該抵抗/電圧変換手段が発生した前記測温抵抗体の抵抗値に応じた電圧を検出する電圧検出手段と、該電圧検出手段が検出した前記測温抵抗体の抵抗値に応じた電圧に基づいて前記被測定ガスの濃度を検出する濃度検出手段とを備えたガス濃度検出装置において、
前記測温抵抗体の温度が周囲温度よりも高くなるような大きさの第1の電流と前記測温抵抗体の温度が周囲温度と等しくなるような大きさの第2の電流との間において、前記抵抗/電圧変換手段が前記測温抵抗体に供給する電流を切り替える切替手段が設けられていることを特徴とするガス濃度検出装置。
A resistance temperature detector whose resistance value varies depending on the temperature is arranged in the supply path of the gas to be measured, and supplies a current to the resistance temperature detector to generate a voltage corresponding to the resistance value of the resistance temperature detector. Resistance / voltage conversion means to be generated, voltage detection means for detecting a voltage corresponding to the resistance value of the resistance temperature detector generated by the resistance / voltage conversion means, and the resistance temperature detector detected by the voltage detection means In a gas concentration detection device comprising a concentration detection means for detecting the concentration of the gas to be measured based on a voltage corresponding to the resistance value of
Between the first current having a magnitude such that the temperature of the resistance temperature detector is higher than the ambient temperature and the second current having a magnitude such that the temperature of the resistance temperature detector is equal to the ambient temperature. A gas concentration detection device comprising switching means for switching a current supplied to the resistance temperature detector by the resistance / voltage conversion means.
前記抵抗/電圧変換手段が、前記測温抵抗体の抵抗値に応じた電圧を増幅する増幅器を有し、そして、
前記ガス濃度検出装置が、前記増幅器が増幅した前記測温抵抗体の抵抗値に応じた電圧をデジタル値に変換するアナログ/デジタル変換手段と、前記測温抵抗体に前記第2の電流を供給しているときの前記増幅器のゲインが前記測温抵抗体に前記第1の電流を供給しているときの前記増幅器のゲインよりも高くなるように前記増幅器のゲインを制御するゲイン制御手段とを備えている
ことを特徴とする請求項1記載のガス濃度検出装置。
The resistance / voltage converting means includes an amplifier for amplifying a voltage corresponding to a resistance value of the resistance temperature detector; and
The gas concentration detector supplies an analog / digital conversion means for converting a voltage corresponding to a resistance value of the resistance temperature detector amplified by the amplifier into a digital value, and supplies the second current to the resistance temperature detector. Gain control means for controlling the gain of the amplifier so that the gain of the amplifier when the current is being supplied is higher than the gain of the amplifier when the first current is supplied to the resistance temperature detector. The gas concentration detection device according to claim 1, further comprising:
前記増幅器が、前記測温抵抗体の抵抗値に応じた電圧と基準電圧との差分を増幅し、そして、
前記ガス濃度検出装置が、前記増幅器に前記基準電圧を供給する基準電圧供給手段と、前記測温抵抗体に前記第2の電流を供給しているときに前記増幅器に供給される基準電圧よりも前記測温抵抗体に前記第1の電流を供給しているときに前記増幅器に供給される基準電圧の方が高くなるように前記基準電圧供給手段を制御する基準電圧制御手段とを備えている
ことを特徴とする請求項2項記載のガス濃度検出装置。
The amplifier amplifies a difference between a voltage corresponding to a resistance value of the resistance temperature detector and a reference voltage; and
Reference voltage supply means for supplying the reference voltage to the amplifier and a reference voltage supplied to the amplifier when the gas concentration detection device supplies the second current to the resistance temperature detector. Reference voltage control means for controlling the reference voltage supply means so that the reference voltage supplied to the amplifier is higher when the first current is supplied to the resistance temperature detector. The gas concentration detection apparatus according to claim 2, wherein
前記抵抗/電圧変換手段が、前記測温抵抗体の抵抗値に応じた電圧と基準電圧との差分を増幅する増幅器とを有し、そして、
前記ガス濃度検出装置が、前記増幅器が増幅した前記測温抵抗体の抵抗値に応じた電圧をデジタル値に変換するアナログ/デジタル変換手段と、前記増幅器に前記基準電圧を供給する基準電圧供給手段と、前記測温抵抗体に前記第2の電流を供給しているときに前記増幅器に供給される基準電圧よりも前記測温抵抗体に前記第1の電流を供給しているときに前記増幅器に供給される基準電圧の方が高くなるように前記基準電圧供給手段を制御する基準電圧制御手段とを備えている
ことを特徴とする請求項1項記載のガス濃度検出装置。
The resistance / voltage converting means includes an amplifier that amplifies a difference between a voltage corresponding to a resistance value of the resistance temperature detector and a reference voltage; and
The gas concentration detection device converts an analog / digital conversion means that converts a voltage corresponding to a resistance value of the resistance temperature detector amplified by the amplifier into a digital value, and a reference voltage supply means that supplies the reference voltage to the amplifier. And the amplifier when the first current is supplied to the resistance temperature detector than the reference voltage supplied to the amplifier when the second current is supplied to the resistance temperature detector. The gas concentration detection device according to claim 1, further comprising a reference voltage control unit that controls the reference voltage supply unit so that a reference voltage supplied to the reference voltage is higher.
JP2006113105A 2006-04-17 2006-04-17 Gas concentration detector Abandoned JP2007285849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006113105A JP2007285849A (en) 2006-04-17 2006-04-17 Gas concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006113105A JP2007285849A (en) 2006-04-17 2006-04-17 Gas concentration detector

Publications (1)

Publication Number Publication Date
JP2007285849A true JP2007285849A (en) 2007-11-01

Family

ID=38757762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006113105A Abandoned JP2007285849A (en) 2006-04-17 2006-04-17 Gas concentration detector

Country Status (1)

Country Link
JP (1) JP2007285849A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412006B1 (en) * 2012-09-12 2014-02-12 光明理化学工業株式会社 Gas concentration measurement method
WO2014041830A1 (en) * 2012-09-12 2014-03-20 光明理化学工業株式会社 Method for measuring gas concentration
JP2015227822A (en) * 2014-06-02 2015-12-17 Tdk株式会社 Heat conduction type gas sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577759U (en) * 1992-03-19 1993-10-22 フィガロ技研株式会社 Gas detector
JPH0755748A (en) * 1993-08-10 1995-03-03 Ricoh Seiki Co Ltd Ambient gas meter
JPH08184576A (en) * 1994-12-29 1996-07-16 Mitsuteru Kimura Humidity sensor
JPH095283A (en) * 1995-06-22 1997-01-10 Yazaki Corp Gas concentration detector
JP2004354210A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Gas sensor, fuel cell system using same, and automobile using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577759U (en) * 1992-03-19 1993-10-22 フィガロ技研株式会社 Gas detector
JPH0755748A (en) * 1993-08-10 1995-03-03 Ricoh Seiki Co Ltd Ambient gas meter
JPH08184576A (en) * 1994-12-29 1996-07-16 Mitsuteru Kimura Humidity sensor
JPH095283A (en) * 1995-06-22 1997-01-10 Yazaki Corp Gas concentration detector
JP2004354210A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Gas sensor, fuel cell system using same, and automobile using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412006B1 (en) * 2012-09-12 2014-02-12 光明理化学工業株式会社 Gas concentration measurement method
WO2014041830A1 (en) * 2012-09-12 2014-03-20 光明理化学工業株式会社 Method for measuring gas concentration
JP2015227822A (en) * 2014-06-02 2015-12-17 Tdk株式会社 Heat conduction type gas sensor

Similar Documents

Publication Publication Date Title
JP5563507B2 (en) Gas detector
US20070229120A1 (en) Temperature characteristic correction method and sensor amplification circuit
JP6344101B2 (en) Gas detector
JP2007248356A (en) Flammable gas detector and flammable gas detecting method
WO2003029759A1 (en) Flow rate measuring instrument
JP2007285849A (en) Gas concentration detector
KR20090083125A (en) Temperature-compensated gas measurement apparatus for nano device gas sensor and method thereof
JP3726261B2 (en) Thermal flow meter
JP4839240B2 (en) Contact combustion type gas detector
JP2007333430A (en) Temperature compensation circuit compensation method
US9116028B2 (en) Thermal flow sensor and method of generating flow rate detection signal by the thermal flow sensor
JP4820174B2 (en) Heater control circuit and thermal conductivity measuring device
JP5437654B2 (en) Temperature measuring device
JP2008185424A (en) Detector of gas concentration
JP5511120B2 (en) Gas concentration detector
JP2012198037A (en) Temperature drift correction device
JP5178261B2 (en) Thermal flow meter
JP5221182B2 (en) Thermal flow meter
JP5062720B2 (en) Flow detection device
JP4450958B2 (en) Thermal flow sensor
JP6372097B2 (en) Detection device, detection circuit, sensor module, and image forming apparatus
JP2009068876A (en) Gas detection device
JP2008164632A (en) Temperature compensating method, temperature compensating circuit using same, sensor, and water heater
JP2004093321A (en) Bridge circuit type detector
JP3968324B2 (en) Gas property measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A762 Written abandonment of application

Effective date: 20110905

Free format text: JAPANESE INTERMEDIATE CODE: A762