JPH095283A - Gas concentration detector - Google Patents

Gas concentration detector

Info

Publication number
JPH095283A
JPH095283A JP15648095A JP15648095A JPH095283A JP H095283 A JPH095283 A JP H095283A JP 15648095 A JP15648095 A JP 15648095A JP 15648095 A JP15648095 A JP 15648095A JP H095283 A JPH095283 A JP H095283A
Authority
JP
Japan
Prior art keywords
temperature
voltage
gas
concentration
gas concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15648095A
Other languages
Japanese (ja)
Other versions
JP3516244B2 (en
Inventor
Masaru Matsuno
勝 松野
Takashi Kaneko
隆 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Gastar Co Ltd
Original Assignee
Yazaki Corp
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp, Gastar Co Ltd filed Critical Yazaki Corp
Priority to JP15648095A priority Critical patent/JP3516244B2/en
Publication of JPH095283A publication Critical patent/JPH095283A/en
Application granted granted Critical
Publication of JP3516244B2 publication Critical patent/JP3516244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To provide a gas concentration detector which can detect gas concentration in a high accuracy without increasing the cost. CONSTITUTION: A gas detection element 1a and a temperature detection element 1b which are of the same construction are driven by allowing a constant current to flow therein through a constant current source 21. Both end voltage of the gas detection element 1a is amplified by an amplifying means 27 with a constant gain and it is A/D-converted thereafter to detect the gas concentration. Both end voltage of the temperature detection element 1b is amplified by an amplifying means 24 with a constant gain and it is A/D-converted thereafter to detect the ambient temperature. A gas concentration voltage shifting means 27a shifts both end voltage of the gas detection element 1a in multiple stages according to that of the gas detection element that is A/D-converted before amplification. A gas concentration detection means 23-1 detects the gas concentration in accordance with the A/D-converted value of both end voltage of the gas detection element that is shifted by the gas concentration voltage shifting means, the shift quantity of the gas concentration voltage shifting means, and a temperature corrected quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCOのような可燃性のガ
スを検知する接触燃焼式センサを使用してガス濃度を検
出するガス濃度検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas concentration detecting device for detecting a gas concentration using a catalytic combustion type sensor for detecting a combustible gas such as CO.

【0002】[0002]

【従来の技術】従来、接触燃焼式センサとして、白金線
を使用して同一構成に形成した2つの素子の一方をセン
サ素子、他方を基準素子として直列に接続し、この直列
接続したセンサ素子と基準素子に定電流源から一定の電
流を流して駆動すと共に、センサ素子をガス検知素子、
基準素子を温度検知素子として動作させるようにしたも
のが知られている。ガス検知素子は検知したガス濃度に
応じた大きさの抵抗値を示すだけでなく、周囲温度によ
っても抵抗値が変化するので、このようなセンサを使用
したガス濃度検出装置では、温度検知素子によって周囲
温度を検知し、この検知した温度によって、ガス検知素
子の抵抗値を補正してガス濃度を検知することが必要で
ある。
2. Description of the Related Art Conventionally, as a catalytic combustion type sensor, one of two elements formed in the same structure by using a platinum wire is connected in series using one as a sensor element and the other as a reference element, and a sensor element connected in series. A constant current is supplied to the reference element from a constant current source to drive it, and the sensor element is a gas detection element,
It is known that the reference element is made to operate as a temperature detecting element. Since the gas detection element not only shows a resistance value of a magnitude corresponding to the detected gas concentration, but also the resistance value changes depending on the ambient temperature, in a gas concentration detection device using such a sensor, the temperature detection element It is necessary to detect the ambient temperature, and to correct the resistance value of the gas detection element based on the detected temperature to detect the gas concentration.

【0003】このために従来、温度検知素子の両端電圧
をA/D変換して読み取って純粋に温度に応じた成分を
含む温度電圧データを得て温度を検知すると共に、ガス
検知素子の両端電圧をA/D変換して読み取って検知ガ
スの濃度に応じた成分を含む濃度電圧データを得、この
濃度電圧データを検知温度によって補正することによっ
て検知ガスの濃度を検出するようにしている。
For this reason, conventionally, the voltage across the temperature detecting element is A / D converted and read to obtain temperature / voltage data containing a component purely corresponding to the temperature to detect the temperature, and the voltage across the gas detecting element is detected. Is read by A / D conversion to obtain concentration voltage data containing a component corresponding to the concentration of the detection gas, and the concentration of the detection gas is detected by correcting the concentration voltage data with the detection temperature.

【0004】[0004]

【発明が解決しようとする課題】しかし、A/D変換器
の入力電圧許容範囲には制限があるので、濃度と温度に
起因して大きく変化するセンサ出力信号を入力電圧許容
範囲内に入るように増幅できるゲインには限りがある。
また、ガス濃度を高い精度で検出するために分解能を上
げるには、ビット数の多いA/D変換器を使用すればよ
いが、ビット数の多いA/D変換器は一般に高価であ
り、装置のコストアップを招く。
However, since the input voltage permissible range of the A / D converter is limited, the sensor output signal that greatly changes due to the concentration and temperature should be within the input voltage permissible range. There is a limit to the gain that can be amplified.
In order to increase the resolution in order to detect the gas concentration with high accuracy, an A / D converter with a large number of bits may be used, but an A / D converter with a large number of bits is generally expensive and the device Increase the cost.

【0005】よって本発明は、上述した従来の問題点に
鑑み、コストアップを招くことなく高い精度でガス濃度
を検出することのできるガス濃度検出装置を提供するこ
とを目的としている。
Therefore, in view of the above-mentioned conventional problems, it is an object of the present invention to provide a gas concentration detecting device which can detect the gas concentration with high accuracy without increasing the cost.

【0006】また本発明は、上述した従来の問題点に鑑
み、出力特性に大きな温度依存性を有するガス検知セン
サを使用したものにおいて、コストアップを招くことな
く高い精度でガス濃度を検出することのできるガス濃度
検出装置を提供することを目的としている。
Further, in view of the above-mentioned conventional problems, the present invention uses a gas detection sensor having a large temperature dependence in output characteristics, and can detect the gas concentration with high accuracy without increasing the cost. It is an object of the present invention to provide a gas concentration detection device capable of performing the above.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明により成されたガス濃度検出装置は、図1の基本
構成図に示すように、同一構成に形成した2つの素子1
a,1bの一方1aをガス検知素子、他方1bを温度検
知素子として直列に接続し、該直列接続したガス検知素
子と温度検知素子に定電流源21から一定の電流を流し
て駆動し、検知ガス濃度に応じて抵抗値が変化する前記
ガス検知素子の両端電圧を一定のゲインの濃度用増幅手
段27で増幅後A/D変換してガス濃度を検知すると共
に、周囲温度に応じて抵抗値が変化する前記温度検知素
子の両端電圧を一定のゲインの温度用増幅手段24で増
幅後A/D変換して周囲温度を検知し、前記検知ガス濃
度を前記検知周囲温度によって温度補正して濃度検出手
段23−1がガス濃度を検出するガス濃度検出装置にお
いて、増幅前の前記ガス検知素子の両端電圧をA/D変
換して得た値の大きさに応じて、前記ガス検知素子の両
端電圧を多段階シフトする第1のガス濃度電圧シフト手
段27aを備え、前記濃度検出手段が、前記第1のガス
濃度電圧シフト手段によってシフトした前記ガス検知素
子の両端電圧のA/D変換値と、前記第1のガス濃度電
圧シフト手段のシフト量と、前記温度補正量とにより、
ガス濃度を検出するようにしたことを特徴としている。
In order to achieve the above object, a gas concentration detecting device according to the present invention is composed of two elements 1 having the same structure as shown in the basic structure diagram of FIG.
One of a and 1b is connected in series as a gas detection element and the other 1b is used as a temperature detection element, and a constant current is supplied from the constant current source 21 to the gas detection element and the temperature detection element connected in series to drive the detection. The voltage across the gas detecting element, whose resistance value changes according to the gas concentration, is amplified by the concentration amplifying means 27 with a constant gain and A / D converted to detect the gas concentration, and the resistance value changes according to the ambient temperature. The voltage across the temperature sensing element, which changes with temperature, is amplified by the temperature amplifying means 24 having a constant gain and A / D converted to detect the ambient temperature, and the detected gas concentration is corrected by the detected ambient temperature to obtain the concentration. In the gas concentration detection device in which the detection means 23-1 detects the gas concentration, both ends of the gas detection element are detected according to the magnitude of the value obtained by A / D converting the voltage across the gas detection element before amplification. Multi-stage voltage And a first gas concentration voltage shift means 27a for operating the concentration detecting means, wherein the concentration detecting means shifts the A / D converted value of the voltage across the gas detecting element by the first gas concentration voltage shifting means, and the first gas concentration voltage shifting means 27a. By the shift amount of the gas concentration voltage shift means of and the temperature correction amount,
The feature is that the gas concentration is detected.

【0008】前記ガス濃度検出装置が、増幅前の前記温
度検知素子の両端電圧をA/D変換して得た値の大きさ
に応じて、前記温度検知素子の両端電圧を多段階シフト
する温度電圧シフト手段24aを更に備え、前記濃度検
出手段が、前記温度電圧シフト手段によってシフトした
前記温度検知素子の両端電圧のA/D変換値と前記温度
電圧シフト手段のシフト量とにより温度を検出し、該検
出した温度により前記温度補正量を求めるようにしたこ
とを特徴としている。
The temperature at which the gas concentration detecting device shifts the voltage across the temperature detecting element in multiple stages according to the magnitude of the value obtained by A / D converting the voltage across the temperature detecting element before amplification. A voltage shift means 24a is further provided, and the concentration detection means detects the temperature by the A / D conversion value of the voltage across the temperature detection element shifted by the temperature voltage shift means and the shift amount of the temperature voltage shift means. The temperature correction amount is obtained based on the detected temperature.

【0009】前記ガス濃度検出装置が、増幅前の前記温
度検知素子の両端電圧をA/D変換して得た値の大きさ
に応じて、前記ガス検知素子の両端電圧を多段階シフト
する第2のガス濃度電圧シフト手段27bを更に備え、
前記濃度検出手段が、前記第1及び第2のガス濃度電圧
シフト手段によってシフトした前記ガス検知素子の両端
電圧のA/D変換値と、前記第1及び第2のガス濃度電
圧シフト手段のシフト量と、前記温度補正量とにより、
ガス濃度を検出するようにしたことを特徴としている。
The gas concentration detecting device shifts the voltage across the gas sensing element in multiple stages according to the magnitude of the value obtained by A / D converting the voltage across the temperature sensing element before amplification. 2 further comprises a gas concentration voltage shifting means 27b,
The A / D converted value of the voltage across the gas detection element shifted by the first and second gas concentration voltage shifting means by the concentration detecting means, and the shift of the first and second gas concentration voltage shifting means. By the amount and the temperature correction amount,
The feature is that the gas concentration is detected.

【0010】[0010]

【作用】上記構成において、第1のガス濃度電圧シフト
手段27aが、増幅前のガス検知素子の両端電圧をA/
D変換して得た値の大きさに応じて、ガス検知素子の両
端電圧を多段階シフトし、濃度検出手段23−1が、第
1のガス濃度電圧シフト手段によってシフトしたガス検
知素子の両端電圧のA/D変換値と、第1のガス濃度電
圧シフト手段のシフト量と、温度補正量とにより、ガス
濃度を検出しているので、ガス濃度を反映したガス検知
素子の両端電圧を高い分解能で測定することができる。
In the above structure, the first gas concentration voltage shifting means 27a changes the voltage across the gas detecting element before amplification to A /
Depending on the magnitude of the value obtained by D conversion, the voltage across the gas sensing element is shifted in multiple steps, and the concentration detecting means 23-1 shifts the voltage across the gas sensing element by the first gas concentration voltage shifting means. Since the gas concentration is detected by the A / D conversion value of the voltage, the shift amount of the first gas concentration voltage shift means, and the temperature correction amount, the voltage across the gas detection element that reflects the gas concentration is high. It can be measured with resolution.

【0011】温度電圧シフト手段27bが増幅前の温度
検知素子の両端電圧をA/D変換して得た値の大きさに
応じて、温度検知素子の両端電圧を多段階シフトし、濃
度検出手段が、温度電圧シフト手段によってシフトした
温度検知素子の両端電圧のA/D変換値と温度電圧シフ
ト手段のシフト量とにより温度を検出し、該検出した温
度により温度補正量を求めているので、温度を反映した
温度検知素子の両端電圧を高い分解能で測定することが
できる。
The temperature-voltage shift means 27b shifts the voltage across the temperature detecting element in multiple stages according to the magnitude of the value obtained by A / D converting the voltage across the temperature detecting element before amplification, and the concentration detecting means However, since the temperature is detected by the A / D conversion value of the voltage across the temperature detecting element shifted by the temperature voltage shift means and the shift amount of the temperature voltage shift means, the temperature correction amount is obtained by the detected temperature. The voltage across the temperature sensing element reflecting the temperature can be measured with high resolution.

【0012】第2のガス濃度電圧シフト手段27bが、
増幅前の温度検知素子の両端電圧をA/D変換して得た
値の大きさに応じて、ガス検知素子の両端電圧を多段階
シフトし、濃度検出手段が、第1及び第2のガス濃度電
圧シフト手段によってシフトしたガス検知素子の両端電
圧のA/D変換値と、第1及び第2のガス濃度電圧シフ
ト手段のシフト量と、温度補正量とにより、ガス濃度を
検出しているので、ガス濃度を反映したガス検知素子の
両端電圧をより高い分解能で測定することができる。
The second gas concentration voltage shifting means 27b is
The voltage across the gas sensing element is shifted in multiple steps according to the magnitude of the value obtained by A / D converting the voltage across the temperature sensing element before amplification, and the concentration detecting means causes the first and second gases The gas concentration is detected by the A / D converted value of the voltage across the gas detection element shifted by the concentration voltage shift means, the shift amounts of the first and second gas concentration voltage shift means, and the temperature correction amount. Therefore, the voltage across the gas detection element, which reflects the gas concentration, can be measured with higher resolution.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図2はCOガス濃度を検出するように構成された
本発明によるガス濃度検出装置の一実施例を示す回路図
である。同図において、1は白金線を使用して同一構成
に形成したガス検知素子1a及び温度検知素子1bを直
列に接続して構成した接触燃焼式センサであり、装置本
体2の端子2a〜2cに接離自在に接続されている。ガ
ス検知素子1aは検知すべきCOガスに感度を有し、温
度検知素子1bはCOガスに対して感度を有せず周囲温
度のみを検知するように配置される。ガス検知素子1a
の一端はGND(接地)ラインに接続された端子2a
に、温度検知素子1bの一端は端子2cに、そして両素
子の相互接続点は端子2bにそれぞれ接続されている。
5Vラインと端子2cとの間には定電流源21が接続さ
れ、温度検知素子1bとガス検知素子1aを通じて一定
の電流を流す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a circuit diagram showing an embodiment of a gas concentration detecting device according to the present invention configured to detect CO gas concentration. In the figure, reference numeral 1 is a contact combustion type sensor constituted by connecting in series a gas detection element 1a and a temperature detection element 1b, which are formed in the same configuration by using a platinum wire, and are connected to terminals 2a to 2c of the apparatus main body 2. It is connected so that it can come in and out freely. The gas detection element 1a is sensitive to the CO gas to be detected, and the temperature detection element 1b is arranged not to be sensitive to the CO gas and to detect only the ambient temperature. Gas detection element 1a
One end of the terminal 2a connected to the GND (ground) line
In addition, one end of the temperature detecting element 1b is connected to the terminal 2c, and the interconnection point of both elements is connected to the terminal 2b.
A constant current source 21 is connected between the 5V line and the terminal 2c, and a constant current flows through the temperature detecting element 1b and the gas detecting element 1a.

【0014】温度検知素子1bの両端電圧は、オペアン
プOP1と抵抗R9〜R12とからなる差動増幅回路2
2の反転及び非反転入力に印加されて差分増幅される。
この差分増幅により得られた第1の温度信号は、予め定
めたプログラムに従って処理を行うマイクロコンピュー
タ(μCOM)23のA/D変換器(ADC)23aに
入力されると共に、オペアンプOP2と抵抗R13〜R
17とアナログスイッチAS1及びAS2とからなる反
転増幅回路24の反転入力に印加されて例えば65倍の
所定のゲインで増幅される。第1の温度信号はADC2
3aによりA/D変換されてμCOM23内に読み込ま
れる。ADC23aには、ADC基準電圧発生器25か
らADCの基準電圧例えば3Vも印加されている。反転
増幅回路24で増幅された第2の温度信号もμCOM2
3のADC23aに入力され、ADC23aによりA/
D変換されてμCOM23内に読み込まれる。μCOM
23は予め定めたプログラムに従って処理を行う中央処
理ユニット(CPU)23 1 、プログラムや固定データ
などを格納したROM232 、各種のデータを格納する
エリアやワークエリアを有するRAM233 などを内蔵
している。
The voltage across the temperature sensing element 1b is the operational voltage.
The differential amplifier circuit 2 including the OP1 and the resistors R9 to R12.
It is applied to two inverting and non-inverting inputs for differential amplification.
The first temperature signal obtained by this differential amplification is determined in advance.
Microcomputer that performs processing according to the program
The A / D converter (ADC) 23a of the data (μCOM) 23
It is input, and the operational amplifier OP2 and resistors R13 to R
17 and the analog switches AS1 and AS2
It is applied to the inverting input of the inversion amplifier circuit 24, and the voltage of
It is amplified with a predetermined gain. The first temperature signal is ADC2
A / D converted by 3a and read into μCOM23
It is. The ADC 23a has an ADC reference voltage generator 25.
The reference voltage of ADC, such as 3V, is also applied. Inversion
The second temperature signal amplified by the amplifier circuit 24 is also μCOM2.
3 is input to the ADC 23a, and the ADC 23a outputs A /
It is D-converted and read into the μCOM 23. μCOM
Reference numeral 23 is a central processing unit that performs processing according to a predetermined program.
Processing unit (CPU) 23 1, Programs and fixed data
ROM 23 that stores information such as2, Store various data
RAM23 with area and work areaThreeBuilt in
doing.

【0015】オペアンプOP2の反転入力には加算用電
位ラインの電圧を可変抵抗VR3により分圧した電圧が
印加され、その非反転入力には演算基準電圧ラインが接
続されて演算基準電圧が印加されている。抵抗R14と
アナログスイッチAS1及び抵抗R15とアナログスイ
ッチAS2は直列に接続されてオペアンプOP2の反転
入力とGNDラインとの間にそれぞれ接続され、第1の
温度信号に基づいてμCOM23により制御されてオペ
アンプOP2の反転入力に印加される電圧を4レンジで
シフトする温度電圧シフト回路24aを構成している。
温度電圧シフト回路24aのアナログスイッチAS1及
びアナログスイッチAS2はμCOM23からのオン・
オフ制御信号によってオン・オフされる。なお、抵抗R
14及びR15の大きさは1対2の関係になっている。
なお、上記差動増幅回路22及び反転増幅回路24は温
度検知回路を構成している。
The inverting input of the operational amplifier OP2 is applied with a voltage obtained by dividing the voltage of the potential line for addition by the variable resistor VR3, and the non-inverting input thereof is connected with the operation reference voltage line and applied with the operation reference voltage. There is. The resistor R14 and the analog switch AS1 and the resistor R15 and the analog switch AS2 are connected in series and are respectively connected between the inverting input of the operational amplifier OP2 and the GND line, and are controlled by the μCOM23 based on the first temperature signal to operate the operational amplifier OP2. The temperature-voltage shift circuit 24a that shifts the voltage applied to the inverting input of 4 ranges in four ranges is configured.
The analog switch AS1 and the analog switch AS2 of the temperature / voltage shift circuit 24a are turned on by the μCOM 23.
It is turned on / off by an off control signal. The resistance R
The sizes of 14 and R15 have a one-to-two relationship.
The differential amplifier circuit 22 and the inverting amplifier circuit 24 form a temperature detection circuit.

【0016】ガス濃度検知素子1aと温度検知素子1b
の相互接続点の電圧は、オペアンプOP3と抵抗R31
〜R33と可変抵抗VR4とからなる反転増幅回路26
の反転入力に印加されて反転増幅される。なお、反転増
幅回路26は図示しないが正負電源で動作されている。
この反転増幅により得られた第1のガス濃度信号は、A
DC23aによりA/D変換されてμCOM23内に読
み込まれる。オペアンプOP4と抵抗R34〜R42と
アナログスイッチAS3及びAS8とからなる反転増幅
回路27の反転入力に印加されて例えば36倍の所定の
ゲインで増幅される。反転増幅回路27で増幅された第
2のガス濃度信号もμCOM23に入力され、ADC2
3aによりA/D変換されてμCOM23内に読み込ま
れる。オペアンプOP3及びOP4の非反転入力には演
算基準電圧ラインが接続されている。
Gas concentration detecting element 1a and temperature detecting element 1b
The voltage at the interconnection point of is the operational amplifier OP3 and the resistor R31.
˜R33 and variable resistor VR4 inverting amplifier circuit 26
Is applied to the inverting input of and is inverted and amplified. The inverting amplifier circuit 26 is operated by a positive and negative power source (not shown).
The first gas concentration signal obtained by this inverting amplification is A
It is A / D converted by the DC 23a and read into the μCOM 23. It is applied to the inverting input of an inverting amplifier circuit 27 including an operational amplifier OP4, resistors R34 to R42, and analog switches AS3 and AS8, and amplified with a predetermined gain of 36 times, for example. The second gas concentration signal amplified by the inverting amplifier circuit 27 is also input to the μCOM 23 and the ADC 2
It is A / D converted by 3a and read into the μCOM 23. A calculation reference voltage line is connected to the non-inverting inputs of the operational amplifiers OP3 and OP4.

【0017】抵抗R35及びR36とアナログスイッチ
AS3及びAS4は加算用電位ラインとオペアンプOP
4の反転入力との間にそれぞれ直列に接続され、第1の
ガス濃度信号に基づいてμCOM23によりオペアンプ
OP4の反転入力に印加される電圧を4レンジでシフト
する第1の濃度電圧シフト回路27aを構成している。
第1の濃度電圧シフト回路27aのアナログスイッチA
S3及びAS4も、μCOM23からのオン・オフ制御
信号によってオン.オフされる。なお、抵抗R35及び
R36の大きさも1対2の関係になっている。
The resistors R35 and R36 and the analog switches AS3 and AS4 are connected to the addition potential line and the operational amplifier OP.
A first concentration voltage shift circuit 27a, which is connected in series with the four inverting inputs and shifts the voltage applied to the inverting input of the operational amplifier OP4 by the μCOM 23 in four ranges based on the first gas concentration signal. I am configuring.
Analog switch A of the first concentration voltage shift circuit 27a
S3 and AS4 are also turned on by the on / off control signal from the μCOM 23. Turned off. The sizes of the resistors R35 and R36 also have a one-to-two relationship.

【0018】抵抗R37〜R40とアナログスイッチA
S5〜AS8の直列回路も加算用電位ラインとオペアン
プOP4の反転入力との間にそれぞれ接続され、第2の
温度信号に基づいてμCOM23によりオペアンプOP
4の反転入力に印加される電圧を16レンジでシフトす
る第2の濃度電圧シフト回路27bを構成している。第
2の濃度電圧シフト回路27bのアナログスイッチAS
5〜AS8もμCOM23からのオン・オフ制御信号に
よってオン.オフされる。なお、抵抗R37〜R40の
大きさは1対2対4対8の関係になっている。そして、
上記反転増幅回路26及び27はガス濃度検知回路を構
成している。
Resistors R37 to R40 and analog switch A
The series circuit of S5 to AS8 is also connected between the summing potential line and the inverting input of the operational amplifier OP4, and the operational amplifier OP is operated by the μCOM23 based on the second temperature signal.
A second concentration voltage shift circuit 27b for shifting the voltage applied to the inverting input of 4 in 16 ranges is configured. Analog switch AS of the second concentration voltage shift circuit 27b
5 to AS8 are turned on by the on / off control signal from the μCOM 23. Turned off. The sizes of the resistors R37 to R40 are in the relationship of 1: 2: 4: 8. And
The inverting amplifier circuits 26 and 27 constitute a gas concentration detection circuit.

【0019】以上説明した構成の装置のμCOM23に
は、以下に説明する設定値をバクアップ電源なしに保持
できる例えばE2 PROMからなる不揮発性メモリ23
bが接続されており、その使用に当たって以下のような
手順で設定を行う。
The μCOM 23 of the apparatus having the above-described structure has a nonvolatile memory 23, which is, for example, an E 2 PROM, which can hold the set values described below without a backup power supply.
b is connected, and the setting is performed according to the following procedure for its use.

【0020】先ず、周囲温度25℃、被検ガス濃度0pp
m の条件の下で以下の設定を行う。センサ1を接続した
後、直列接続したガス検知素子1a及び温度検知素子1
bに流れる電流が所定値となるように定電流源21を調
整する。その後、演算基準電圧ラインの電圧値が図示し
ない可変抵抗により所定値となるように、またオペアン
プOP2の出力である第2の温度信号が可変抵抗VR3
により所定値となるように、更にオペアンプOP4の出
力である第2のガス濃度信号が可変抵抗VR4により所
定値となるようにそれぞれ調整する。
First, the ambient temperature is 25 ° C. and the concentration of the test gas is 0 pp.
Make the following settings under the condition of m. After connecting the sensor 1, the gas detecting element 1a and the temperature detecting element 1 are connected in series.
The constant current source 21 is adjusted so that the current flowing through b has a predetermined value. Then, the voltage value of the calculation reference voltage line is set to a predetermined value by a variable resistor (not shown), and the second temperature signal output from the operational amplifier OP2 is changed by the variable resistor VR3.
The second gas concentration signal, which is the output of the operational amplifier OP4, is adjusted to a predetermined value by the variable resistor VR4.

【0021】次に、周囲温度25℃での温度情報を取り
込み不揮発性メモリ23bに書き込む。また、周囲温度
25℃、被検ガス濃度0ppm で濃度情報を取り込み不揮
発性メモリ23に書き込む。続いて、周囲温度25℃、
被検ガス濃度3000ppm で濃度情報を取り込み不揮発
性メモリ23に書き込む。そして、周囲温度225℃、
被検ガス濃度0ppm での温度情報、濃度情報を取り込み
不揮発性メモリ23に書き込む。
Next, temperature information at an ambient temperature of 25 ° C. is fetched and written in the non-volatile memory 23b. Further, the concentration information is fetched at the ambient temperature of 25 ° C. and the concentration of the test gas of 0 ppm and written in the nonvolatile memory 23. Then, ambient temperature 25 ℃,
The concentration information is fetched at the test gas concentration of 3000 ppm and written in the non-volatile memory 23. And an ambient temperature of 225 ° C,
The temperature information and the concentration information at the test gas concentration of 0 ppm are fetched and written in the non-volatile memory 23.

【0022】その次に、初期値を把握するため初期デー
タの取り込みを行う。すなわち、周囲温度25℃で第1
の温度信号を読み込み、この第1の温度信号の読み込み
結果から温度電圧シフト回路24aのシフト量、すなわ
ち第2の温度信号の温度に対するシフト量を決定する。
この決定に当たっては予め定められROM232 内に格
納された温度測定レンジチャート、すなわち、温度−レ
ンジ切換情報を利用する。例えばレンジ0は−40℃〜
+35℃であるので、25℃ではシフト量は0である。
シフト量が決定したら温度電圧シフト回路24aのシフ
トを行って第2の温度信号を読み込む。第2の温度信号
は第1の温度信号よりも詳細な温度データであり、この
ときの第2の温度信号の真値はADC23aの読み取り
値+シフト量(理論値)である。ADC入力に対するシ
フト量は、〔シフトのための基準電圧(加算用電位)/
シフト抵抗値〕=フィードバック抵抗値である。この結
果を周囲温度25℃での第2の温度信号に基づく温度基
準値(25℃)として不揮発性メモリ23bに格納す
る。
Next, the initial data is taken in to grasp the initial value. That is, at an ambient temperature of 25 ° C
Of the first temperature signal, the shift amount of the temperature voltage shift circuit 24a, that is, the shift amount of the second temperature signal with respect to the temperature is determined.
Temperature measurement range chart stored in the predetermined ROM23 within 2 In this decision, i.e., the temperature - utilizes range selection information. For example, range 0 is -40 ℃ ~
Since it is + 35 ° C, the shift amount is 0 at 25 ° C.
When the shift amount is determined, the temperature / voltage shift circuit 24a is shifted to read the second temperature signal. The second temperature signal is more detailed temperature data than the first temperature signal, and the true value of the second temperature signal at this time is the read value of the ADC 23a + the shift amount (theoretical value). The shift amount with respect to the ADC input is [reference voltage for shifting (potential for addition) /
Shift resistance value] = feedback resistance value. The result is stored in the non-volatile memory 23b as a temperature reference value (25 ° C.) based on the second temperature signal at the ambient temperature of 25 ° C.

【0023】続いて、周囲温度25℃、被検ガス濃度0
ppm にて第1のガス濃度信号を読み込み、この読み込み
結果から第1の濃度電圧シフト回路27aの濃度補正量
である濃度シフト量及び第2の濃度電圧シフト回路27
bの温度補正量である温度シフト量を決定する。このと
きガス濃度側のシフト量は0であるが、温度側において
は1ビットのシフト量が必要になる。このシフト量の決
定のために、濃度−レンジ切換情報及び温度−レンジ切
換情報をROM232 に予め格納しておく。シフト量が
決定したら第1の濃度電圧シフト回路27aの濃度シフ
トと、第2の濃度電圧シフト回路27bの濃度温度シフ
トとを行って第2のガス濃度信号を読み込む。このとき
の第2のガス濃度信号の真値はADC23aの読み取り
値+濃度シフト値+温度シフト値であり、この結果を周
囲温度25℃、被検ガス濃度0ppm での第2のガス濃度
信号に基づく濃度基準値(0ppm 、25℃)として不揮
発性メモリ23bに格納する。
Then, the ambient temperature is 25 ° C. and the concentration of the test gas is 0.
The first gas concentration signal is read in ppm, and from the read result, the concentration shift amount which is the concentration correction amount of the first concentration voltage shift circuit 27a and the second concentration voltage shift circuit 27 are read.
The temperature shift amount which is the temperature correction amount of b is determined. At this time, the shift amount on the gas concentration side is 0, but a shift amount of 1 bit is required on the temperature side. For the determination of the shift amount, concentration - range change information and temperature - stored in advance the range change information to the ROM 23 2. When the shift amount is determined, the concentration shift of the first concentration voltage shift circuit 27a and the concentration temperature shift of the second concentration voltage shift circuit 27b are performed to read the second gas concentration signal. The true value of the second gas concentration signal at this time is the reading of the ADC 23a + concentration shift value + temperature shift value, and this result is used as the second gas concentration signal at the ambient temperature of 25 ° C. and the test gas concentration of 0 ppm. The concentration reference value (0 ppm, 25 ° C.) is stored in the non-volatile memory 23b.

【0024】更に、周囲温度25℃、被検ガス濃度30
00ppm にて第1のガス濃度信号を読み込み、この読み
込み結果から第1の濃度電圧シフト回路27aの濃度シ
フト量及び第2の濃度電圧シフト回路27bの温度シフ
ト量を決定する。この決定したシフト量のシフトを第1
の濃度電圧シフト回路27aと第2の濃度電圧シフト回
路27bとについて行いながら第2のガス濃度信号を読
み込む。このときの第2のガス濃度信号の真値はADC
23aの読み取り値+濃度シフト値+温度シフト値であ
り、この結果を周囲温度25℃、被検ガス濃度3000
ppm での第2のガス濃度信号に基づく濃度基準値(30
00ppm 、25℃)として不揮発性メモリ23bに格納
する。そして濃度基準値(3000ppm 、25℃)−濃
度基準値(0ppm 、25℃)/3000=電圧感度/1
ppm =ガス感度となり、これを不揮発性メモリ23bに
格納する。このガス感度はガス濃度測定時に相対ガス濃
度から絶対ガス濃度を求めるときに使用する。
Further, the ambient temperature is 25 ° C. and the test gas concentration is 30.
The first gas concentration signal is read at 00 ppm, and the concentration shift amount of the first concentration voltage shift circuit 27a and the temperature shift amount of the second concentration voltage shift circuit 27b are determined from the read result. This determined shift amount is the first
The second gas concentration signal is read while performing the concentration voltage shift circuit 27a and the second concentration voltage shift circuit 27b. The true value of the second gas concentration signal at this time is ADC
23a read value + concentration shift value + temperature shift value, and the result is the ambient temperature 25 ° C. and the test gas concentration 3000.
Concentration reference value based on the second gas concentration signal in ppm (30
00 ppm, 25 ° C.) in the non-volatile memory 23b. And concentration reference value (3000 ppm, 25 ° C.)-Concentration reference value (0 ppm, 25 ° C.) / 3000 = voltage sensitivity / 1
ppm = gas sensitivity, which is stored in the non-volatile memory 23b. This gas sensitivity is used when obtaining the absolute gas concentration from the relative gas concentration when measuring the gas concentration.

【0025】次に、周囲温度225℃で第1の温度信号
を読み込み、この読み込み結果から温度電圧シフト回路
24aのシフト量を決定する。シフト量が決定したら第
1の電圧シフト回路24aのシフトを行って第2の温度
信号を読み込む。第2の温度信号の真値はADC23a
の読み取り値+シフト量であり、これを温度基準値(2
25℃)として不揮発性メモリ23bに格納する。25
℃から225℃までの間の電圧/温度の感度=温度基準
値(225℃)−温度基準値(25℃)となり、1℃当
りの(電圧/温度)感度=〔温度基準値(225℃)−
温度基準値(25℃)〕/200=電圧感度/℃=温度
係数となり、これを不揮発性メモリ23bに格納する。
Next, the first temperature signal is read at the ambient temperature of 225 ° C., and the shift amount of the temperature voltage shift circuit 24a is determined from the read result. When the shift amount is determined, the first voltage shift circuit 24a is shifted to read the second temperature signal. The true value of the second temperature signal is the ADC 23a
Read value + shift amount, which is the temperature reference value (2
25 ° C.) and stored in the non-volatile memory 23b. 25
Sensitivity of voltage / temperature from ℃ to 225 ° C = temperature reference value (225 ° C) -temperature reference value (25 ° C), and (voltage / temperature) sensitivity per 1 ° C = [temperature reference value (225 ° C) −
Temperature reference value (25 ° C.)] / 200 = voltage sensitivity / ° C. = temperature coefficient, which is stored in the nonvolatile memory 23b.

【0026】更にまた、周囲温度225℃、被検ガス濃
度0ppm で第1のガス濃度信号を読み込み、この読み込
み結果から第1の濃度電圧シフト回路27aのシフト量
を決定する。シフト量が決定したら第1の濃度電圧シフ
ト回路27aのシフトを行って第2のガス濃度信号を読
み込む。このときの第2のガス濃度信号の真値はADC
23aの読み取り値+濃度シフト値+温度シフト値であ
り、この結果を周囲温度225℃、被検ガス濃度0ppm
での第2のガス濃度信号に基づく濃度基準値(0ppm 、
225℃)として不揮発性メモリ23bに格納する。そ
して濃度基準値(0ppm 、225℃)−濃度基準値(0
ppm 、25℃)/200=センサの温度係数/℃=ガス
濃度温度係数となり、これを不揮発性メモリ23bに格
納する。そして、このガス濃度温度係数から必要な1℃
当りの補正量を求めておき、25℃との温度差分に対す
る補正量を決定するのに利用する。
Furthermore, the first gas concentration signal is read at an ambient temperature of 225 ° C. and the test gas concentration of 0 ppm, and the shift amount of the first concentration voltage shift circuit 27a is determined from the read result. When the shift amount is determined, the first concentration voltage shift circuit 27a is shifted to read the second gas concentration signal. The true value of the second gas concentration signal at this time is ADC
23a read value + concentration shift value + temperature shift value, and the result is an ambient temperature of 225 ° C. and a test gas concentration of 0 ppm.
Concentration reference value (0ppm, based on the second gas concentration signal at
225 ° C.) and stored in the non-volatile memory 23b. And concentration reference value (0ppm, 225 ° C) -concentration reference value (0
ppm, 25 ° C.) / 200 = sensor temperature coefficient / ° C. = gas concentration temperature coefficient, which is stored in the non-volatile memory 23b. And, from this gas concentration temperature coefficient, 1 ° C required
The amount of correction for the hit is obtained in advance and used to determine the amount of correction for the temperature difference from 25 ° C.

【0027】上述した設定作業により、不揮発メモリ2
3bには、図3に示すように、温度基準値(25℃)、
濃度基準値(0ppm 、25℃)、濃度基準値(3000
ppm、25℃)、ガス感度、温度基準値(225℃)、
温度係数、濃度基準値(0ppm 、225℃)、ガス濃度
温度係数などが格納されるようになっているが、このよ
うに設定値を定めることによって、センサなどの装置構
成部品などのバラツキに左右されない、装置個々に最適
な設定値が設定されるようになる。しかし、装置間のバ
ラツキが少ない場合には、予め定めた設定値を外部から
書き込むようにしてもよい。
By the setting work described above, the nonvolatile memory 2
3b, as shown in FIG. 3, a temperature reference value (25 ° C.),
Concentration reference value (0ppm, 25 ° C), concentration reference value (3000
ppm, 25 ° C), gas sensitivity, temperature reference value (225 ° C),
The temperature coefficient, concentration reference value (0 ppm, 225 ° C), gas concentration temperature coefficient, etc. are stored. However, by setting the setting values in this way, it may be affected by variations in device components such as sensors. The optimum setting value will be set for each device. However, if there is little variation between devices, a preset set value may be written from the outside.

【0028】上述のような設定を行った後に行うガス濃
度の測定について以下説明する。
The measurement of the gas concentration performed after the above settings will be described below.

【0029】先ず、25℃との温度差を把握する。この
ために第2の温度信号を測定する。第2の温度信号の測
定は、第1の温度信号を読み取り、その結果から温度シ
フト量を決定し、この決定した温度シフトを行ないなが
ら第2の温度信号(ADC値)を読み取ることで行う。
次に、温度Tの値を求める。これは、T=第2の温度信
号(ADC値)+温度シフト量を計算することによって
行う。続いて、Tと25℃値(第2の温度信号)との差
をΔTとし、ΔT=Tの値−温度基準値(25℃)を計
算する。次に、温度基準値(25℃)との温度差を温度
差〔Δ(n−25℃)〕として、温度差〔Δ(n−25
℃)〕=ΔT/温度係数=(25℃との差)を計算す
る。
First, the temperature difference from 25 ° C. is grasped. For this purpose, the second temperature signal is measured. The measurement of the second temperature signal is performed by reading the first temperature signal, determining the temperature shift amount from the result, and reading the second temperature signal (ADC value) while performing the determined temperature shift.
Next, the value of the temperature T is obtained. This is done by calculating T = second temperature signal (ADC value) + temperature shift amount. Subsequently, the difference between T and the value of 25 ° C. (second temperature signal) is ΔT, and ΔT = value of T−temperature reference value (25 ° C.) is calculated. Next, the temperature difference [Δ (n-25 ° C)] is defined as the temperature difference [Δ (n-25 ° C)] from the temperature reference value (25 ° C).
C)] = ΔT / temperature coefficient = (difference from 25 ° C.).

【0030】続いて、ガス濃度温度補正を行う。このた
めに、温度差〔Δ(n−25℃)〕でガス濃度の温度補
正を行うが、回路上の温度補正を行うとともに、数値的
な補正量(論理補正量)を行う。
Subsequently, the gas concentration temperature is corrected. For this reason, the temperature of the gas concentration is corrected by the temperature difference [Δ (n-25 ° C.)], but the temperature on the circuit is also corrected and a numerical correction amount (logical correction amount) is performed.

【0031】最後に、濃度測定を行うために、先ず第2
のガス濃度信号を測定する。第2のガス濃度信号の測定
は、第1のガス濃度信号を読み取り、その結果から必要
な濃度シフト量を決定し、この決定した濃度シフトを行
いながら第2のガス濃度信号(ADC値)を読み取るこ
とで行う。次に、相対濃度値を、第2のガス濃度信号
(ADC)値+濃度シフト量+回路上の温度補正量+論
理補正量を計算して求める。最後に、濃度の絶対値を、
相対濃度値×ガス感度を計算して求める。
Finally, in order to carry out the concentration measurement, first the second
The gas concentration signal of is measured. In the measurement of the second gas concentration signal, the first gas concentration signal is read, the required concentration shift amount is determined from the result, and the second gas concentration signal (ADC value) is determined while performing the determined concentration shift. Do by reading. Next, the relative concentration value is obtained by calculating the second gas concentration signal (ADC) value + the concentration shift amount + the temperature correction amount on the circuit + the logical correction amount. Finally, the absolute value of the concentration
Calculate by calculating relative concentration value x gas sensitivity.

【0032】上述した濃度測定動作をCPU231 が予
め定めたプログラムに従って行う処理を示す図4のフロ
ーチャートを参照して概略説明すると、最初のステップ
S1において第1の温度信号の測定と測定結果による温
度電圧シフト回路24aのシフト量の決定算出を行って
から第2の温度信号を測定し、次のステップS2におい
て温度の値を求める。続いてステップS3に進んでステ
ップS2において求めた温度の値により第2の濃度電圧
シフト回路27bのシフト量を決定して温度補正を加
え、続くステップS4において第1の濃度信号の測定と
測定結果による第1の濃度電圧回路27aのシフト量の
決定を行ってからステップS5に進んで第2の濃度信号
を測定して濃度を検出する。図4のフローチャートにつ
いて説明したようにCPU231 は濃度検出手段23−
1として働いている。
A brief explanation will be given with reference to a flow chart of FIG. 4 showing a process in which the CPU 23 1 carries out the above-mentioned concentration measuring operation according to a predetermined program. In the first step S1, the first temperature signal is measured and the temperature according to the measurement result is measured. After the shift amount of the voltage shift circuit 24a is determined and calculated, the second temperature signal is measured, and the temperature value is obtained in the next step S2. Subsequently, the process proceeds to step S3, the shift amount of the second concentration voltage shift circuit 27b is determined based on the value of the temperature obtained in step S2, and the temperature is corrected. After the shift amount of the first concentration voltage circuit 27a is determined by, the process proceeds to step S5 and the second concentration signal is measured to detect the concentration. As described with reference to the flowchart of FIG. 4, the CPU 23 1 uses the density detecting means 23-
Working as 1.

【0033】例えば被検ガスをCOとしてより具体的に
説明すると、センサ1のCOガス感度(電圧/ガス濃
度)は11.5mV/1000ppm 、温度係数は0.8mV
/℃とかなり大きい。また、動作温度範囲は300℃
(−40℃〜260℃)であるため、出力電圧変化は3
00℃×0.8mV/℃=240mVとなる。ADC23a
の入力レンジは0〜3Vに設定され、その分解能は25
6ビットであるので、出力電圧をそのまま変換するとそ
の分解能は、 300℃/256ビット=1.172℃/ビット となる。
For example, when the gas to be detected is CO, the CO gas sensitivity (voltage / gas concentration) of the sensor 1 is 11.5 mV / 1000 ppm and the temperature coefficient is 0.8 mV.
/ ° C, which is quite large. The operating temperature range is 300 ° C
Since it is (-40 ° C to 260 ° C), the output voltage change is 3
It becomes 00 ° C. × 0.8 mV / ° C. = 240 mV. ADC 23a
The input range of is set to 0-3V and the resolution is 25
Since it is 6 bits, if the output voltage is converted as it is, the resolution will be 300 ° C./256 bits = 1.172 ° C./bit.

【0034】これに対し、反転増幅回路24の増幅率を
36倍とし、その入力を4レンジでシフトすると、 300℃/4=75℃ 75℃×0.8mV/℃×36=2.160V となる。ADC23aの入力電圧最大値は3V/256
ビットであるので、2.160Vは184ビットとな
り、 75℃/184ビット=0.4℃/ビット となって、分解能は向上し、より精度のよい温度測定が
できる。
On the other hand, when the amplification factor of the inverting amplifier circuit 24 is set to 36 times and its input is shifted by 4 ranges, 300 ° C./4=75° C. 75 ° C. × 0.8 mV / ° C. × 36 = 2.160 V Become. Maximum input voltage of ADC 23a is 3V / 256
Since it is a bit, 2.160V becomes 184 bits and becomes 75 ° C./184 bits = 0.4 ° C./bit, the resolution is improved, and more accurate temperature measurement can be performed.

【0035】また、濃度検知範囲は0〜6000ppm で
あり、センサの出力電圧変化に換算すると11.5mV×
6=69mVである。これに対し、センサ1の温度による
出力電圧変化は、300℃×0.8mV=240mVであ
る。そして、ADC23aの入力電圧範囲を3Vとする
と、上記数値とシフトレンジなどから、上記反転増幅回
路27の最適な増幅率として65倍を設定している。上
記要件から、濃度に対する分解能を上げるため、濃度出
力に対する温度補正及び濃度信号に対する階段状のシフ
ト制御を行う。
The density detection range is 0 to 6000 ppm, which is 11.5 mV x when converted into the sensor output voltage change.
6 = 69 mV. On the other hand, the output voltage change due to the temperature of the sensor 1 is 300 ° C. × 0.8 mV = 240 mV. Then, assuming that the input voltage range of the ADC 23a is 3V, the optimum amplification factor of the inverting amplifier circuit 27 is set to 65 times from the above numerical value and shift range. From the above requirements, in order to increase the resolution for density, temperature correction for density output and stepwise shift control for density signal are performed.

【0036】濃度に対する分解能について見ると、AD
C23aの入力電圧範囲は0〜3Vであり、これを濃度
検知範囲の0〜6000ppm にそのまま当てはめると、
ADC23aで認識することのできる分解能は6000
ppm /256ビット=23.4375ppm /ビットであ
る。
Looking at the resolution with respect to the concentration, AD
The input voltage range of C23a is 0 to 3V. If this is directly applied to the concentration detection range of 0 to 6000ppm,
The resolution that can be recognized by the ADC 23a is 6000.
ppm / 256 bits = 23.4375 ppm / bit.

【0037】ところで、センサ1が発生する電気信号を
増幅されADC23aに入力される入力電圧には、濃度
に起因するものと、温度に起因するものとが含まれてい
るので、温度に対する温度補正と、濃度に起因するレン
ジ制御を最適に制御する必要がある。このためのレンジ
切換は、図5に示すような温度補正のためのものと図6
に示すような濃度側のレンジ制御のものとに分けて行
い、最終的には時間的に同時に存在する両者を図7に示
すように重ねたものとなる。図7は温度補正レンジチャ
ートの例であり、本例おいて、レンジ当りの温度は、3
00℃/16レンジ=18.75℃/レンジである。レ
ンジ当りの電圧は、0.8mV/℃×18.75℃×65
=975mV(典型値)であり、最大値は典型値×1.1
=1.0725Vである。、濃度の1レンジは、(1
1.5mV/1000ppm )×1500ppm ×65×1.
25=1.416V/レンジとなり、この濃度分がグラ
フに上乗せになり、1.0725V+1.4016V=
2.474Vとなる。なお、上下に約0.2Vの余裕を
とっている。また、25℃時の値は、(25℃−16.
25℃)×0.8mV×65倍+0.2V=0.655V
である。
By the way, the input voltage amplified by the sensor 1 and input to the ADC 23a includes the one due to the concentration and the one due to the temperature. It is necessary to optimally control the range control caused by the concentration. The range switching for this purpose is for temperature correction as shown in FIG.
The density side range control as shown in Fig. 7 is separately performed, and finally both are present simultaneously in terms of time, as shown in Fig. 7. FIG. 7 is an example of a temperature correction range chart. In this example, the temperature per range is 3
00 ° C / 16 range = 18.75 ° C / range. The voltage per range is 0.8 mV / ° C × 18.75 ° C × 65
= 975 mV (typical value), maximum value is typical value x 1.1
= 1.0725V. , 1 concentration range is (1
1.5 mV / 1000 ppm) × 1500 ppm × 65 × 1.
25 = 1.416V / range, this concentration is added to the graph, 1.0725V + 1.41616V =
It becomes 2.474V. It should be noted that there is a margin of about 0.2 V above and below. The value at 25 ° C is (25 ° C-16.
25 ° C) x 0.8 mV x 65 times +0.2 V = 0.655 V
It is.

【0038】今、濃度検知範囲6000ppm を4レンジ
で測定した場合の分解能を計算すると、 6000ppm /4レンジ=1500ppm /レンジ 1500ppm =11.5mV/1000ppm =17.25
mV 17.25mV×65=1.12125V 3V/256ビット=1.12125V/Xビット X=95.68ビット 1500ppm /95.68ビット=15.68ppm /ビ
ット となり、濃度の分解能が20ppm /ビット以下になって
いる。
Now, calculating the resolution when the concentration detection range of 6000 ppm is measured in four ranges, 6000 ppm / 4 range = 1500 ppm / range 1500 ppm = 11.5 mV / 1000 ppm = 17.25
mV 17.25 mV × 65 = 1.12125V 3V / 256 bit = 1.12125V / X bit X = 95.68 bit 1500ppm / 95.68 bit = 15.68ppm / bit, and the density resolution is 20ppm / bit or less. Has become.

【0039】[0039]

【発明の効果】以上説明したように本発明によれば、ガ
ス濃度を反映したガス検知素子の両端電圧を高い分解能
で測定することができるので、ビット数の多いADCを
使用してコストアップを招くことなく高い精度でガス濃
度を検出することのできる。
As described above, according to the present invention, the voltage across the gas detecting element reflecting the gas concentration can be measured with high resolution, so that the cost can be increased by using the ADC having a large number of bits. The gas concentration can be detected with high accuracy without inviting.

【0040】また、温度を反映した温度検知素子の両端
電圧を高い分解能で測定することができるので、温度補
正量のための温度を反映した温度検知素子の両端電圧を
高い分解能で測定することができる。
Since the voltage across the temperature sensing element reflecting the temperature can be measured with high resolution, the voltage across the temperature sensing element reflecting the temperature for the temperature correction amount can be measured with high resolution. it can.

【0041】更に、高い分解能により測定した温度によ
り濃度信号をシフトして温度濃度補正を行っているの
で、出力特性に大きな温度依存性を有するガス検知セン
サを使用したものにおいて、コストアップを招くことな
く高い精度でガス濃度を検出することのできる。
Furthermore, since the concentration signal is shifted by shifting the concentration signal according to the temperature measured with high resolution, the cost is increased in the case of using the gas detection sensor having a large temperature dependency in the output characteristic. The gas concentration can be detected with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガス濃度検出装置の基本構成を示
すブロック図である。
FIG. 1 is a block diagram showing a basic configuration of a gas concentration detection device according to the present invention.

【図2】本発明によるガス濃度検出装置の一実施例を示
す回路図である。
FIG. 2 is a circuit diagram showing an embodiment of a gas concentration detecting device according to the present invention.

【図3】図2中の不揮発性メモリに格納される設定値を
示す図である。
FIG. 3 is a diagram showing setting values stored in a non-volatile memory in FIG.

【図4】図2中のCPUが行う処理の一部分の概略を示
すフローチャートである。
FIG. 4 is a flowchart showing an outline of a part of processing performed by a CPU in FIG.

【図5】第2の濃度電圧シフト回路による温度補正のた
めのレンジ切換の様子を示すグラフである。
FIG. 5 is a graph showing how the range is switched for temperature correction by the second concentration voltage shift circuit.

【図6】第2の濃度電圧シフト回路による濃度制御のた
めのレンジ切換の様子を示すグラフである。
FIG. 6 is a graph showing how a range is switched for density control by a second density voltage shift circuit.

【図7】第2の濃度電圧シフト回路による温度補正と濃
度制御を重ねたレンジ切換の様子を示すグラフである。
FIG. 7 is a graph showing a state of range switching in which temperature correction and density control are overlapped by a second density voltage shift circuit.

【符号の説明】[Explanation of symbols]

1a ガス検知素子 1b 温度検知素子 21 定電流源 23−1 濃度検出手段(CPU) 24 温度用増幅手段 24a 温度電圧シフト手段 27 濃度用増幅手段 27a 第1のガス濃度電圧シフト手段 27b 第2のガス濃度電圧シフト手段 1a Gas detection element 1b Temperature detection element 21 Constant current source 23-1 Concentration detection means (CPU) 24 Temperature amplification means 24a Temperature voltage shift means 27 Concentration amplification means 27a First gas Concentration voltage shift means 27b Second gas Concentration voltage shift means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同一構成に形成した2つの素子の一方を
ガス検知素子、他方を温度検知素子として直列に接続
し、該直列接続したガス検知素子と温度検知素子に定電
流源から一定の電流を流して駆動し、検知ガス濃度に応
じて抵抗値が変化する前記ガス検知素子の両端電圧を一
定のゲインの濃度用増幅手段で増幅後A/D変換してガ
ス濃度を検知すると共に、周囲温度に応じて抵抗値が変
化する前記温度検知素子の両端電圧を一定のゲインの温
度用増幅手段で増幅後A/D変換して周囲温度を検知
し、前記検知ガス濃度を前記検知周囲温度によって温度
補正して濃度検出手段がガス濃度を検出するガス濃度検
出装置において、 増幅前の前記ガス検知素子の両端電圧をA/D変換して
得た値の大きさに応じて、前記ガス検知素子の両端電圧
を多段階シフトする第1のガス濃度電圧シフト手段を備
え、 前記濃度検出手段が、前記第1のガス濃度電圧シフト手
段によってシフトした前記ガス検知素子の両端電圧のA
/D変換値と、前記第1のガス濃度電圧シフト手段のシ
フト量と、前記温度補正量とにより、ガス濃度を検出す
るようにしたことを特徴とするガス濃度検出装置。
1. A constant current from a constant current source to a gas detection element and a temperature detection element connected in series, wherein one of two elements having the same structure is connected as a gas detection element and the other is connected as a temperature detection element. The voltage across the gas detecting element whose resistance value changes according to the detected gas concentration is amplified by the concentration amplifying means having a constant gain and A / D converted to detect the gas concentration. The voltage across the temperature detecting element, whose resistance value changes according to the temperature, is amplified by the temperature amplifying means with a constant gain and A / D converted to detect the ambient temperature, and the detected gas concentration is determined by the detected ambient temperature. In a gas concentration detecting device in which the temperature is corrected and the concentration detecting means detects the gas concentration, the gas detecting element is responsive to the magnitude of the value obtained by A / D converting the voltage across the gas detecting element before amplification. The voltage across Comprising a first gas concentration voltage shift means for floor shift, the concentration detecting means, A of the voltage across the gas sensing element that is shifted by the first gas concentration voltage shift means
A gas concentration detecting device, wherein a gas concentration is detected based on the / D conversion value, the shift amount of the first gas concentration voltage shifting means, and the temperature correction amount.
【請求項2】 増幅前の前記温度検知素子の両端電圧を
A/D変換して得た値の大きさに応じて、前記温度検知
素子の両端電圧を多段階シフトする温度電圧シフト手段
を更に備え、 前記濃度検出手段が、前記温度電圧シフト手段によって
シフトした前記温度検知素子の両端電圧のA/D変換値
と前記温度電圧シフト手段のシフト量とにより温度を検
出し、該検出した温度により前記温度補正量を求めるよ
うにしたことを特徴とする請求項1記載のガス濃度検出
装置。
2. A temperature-voltage shift means for shifting the voltage across the temperature sensing element in multiple stages according to the magnitude of the value obtained by A / D converting the voltage across the temperature sensing element before amplification. The concentration detecting means detects the temperature by the A / D conversion value of the voltage across the temperature detecting element shifted by the temperature voltage shifting means and the shift amount of the temperature voltage shifting means, and detects the temperature by the detected temperature. The gas concentration detecting device according to claim 1, wherein the temperature correction amount is obtained.
【請求項3】 増幅前の前記温度検知素子の両端電圧を
A/D変換して得た値の大きさに応じて、前記ガス検知
素子の両端電圧を多段階シフトする第2のガス濃度電圧
シフト手段を更に備え、 前記濃度検出手段が、前記第1及び第2のガス濃度電圧
シフト手段によってシフトした前記ガス検知素子の両端
電圧のA/D変換値と、前記第1及び第2のガス濃度電
圧シフト手段のシフト量と、前記温度補正量とにより、
ガス濃度を検出するようにしたことを特徴とする請求項
1又は2記載のガス濃度検出装置。
3. A second gas concentration voltage that shifts the voltage across the gas sensing element in multiple stages according to the magnitude of the value obtained by A / D converting the voltage across the temperature sensing element before amplification. Further comprising a shift unit, wherein the concentration detection unit shifts the first and second gas concentration voltage shift units by an A / D conversion value of the voltage across the gas detection element, and the first and second gases. By the shift amount of the concentration voltage shift means and the temperature correction amount,
The gas concentration detecting device according to claim 1 or 2, wherein the gas concentration is detected.
JP15648095A 1995-06-22 1995-06-22 Gas concentration detector Expired - Fee Related JP3516244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15648095A JP3516244B2 (en) 1995-06-22 1995-06-22 Gas concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15648095A JP3516244B2 (en) 1995-06-22 1995-06-22 Gas concentration detector

Publications (2)

Publication Number Publication Date
JPH095283A true JPH095283A (en) 1997-01-10
JP3516244B2 JP3516244B2 (en) 2004-04-05

Family

ID=15628684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15648095A Expired - Fee Related JP3516244B2 (en) 1995-06-22 1995-06-22 Gas concentration detector

Country Status (1)

Country Link
JP (1) JP3516244B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285849A (en) * 2006-04-17 2007-11-01 Yazaki Corp Gas concentration detector
JP2012202939A (en) * 2011-03-28 2012-10-22 Ngk Spark Plug Co Ltd Gas detection apparatus
WO2014017737A1 (en) * 2012-07-26 2014-01-30 인제대학교 산학협력단 Apparatus for detecting sodium in liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285849A (en) * 2006-04-17 2007-11-01 Yazaki Corp Gas concentration detector
JP2012202939A (en) * 2011-03-28 2012-10-22 Ngk Spark Plug Co Ltd Gas detection apparatus
US9244032B2 (en) 2011-03-28 2016-01-26 Ngk Spark Plug Co., Ltd. Gas detecting apparatus and gas detecting method
WO2014017737A1 (en) * 2012-07-26 2014-01-30 인제대학교 산학협력단 Apparatus for detecting sodium in liquid
US20150122648A1 (en) * 2012-07-26 2015-05-07 Nam Tae Kim Apparatus for detecting sodium in a liquid
US9395328B2 (en) * 2012-07-26 2016-07-19 Inje University Industry-Academic Cooperation Foundation Apparatus for detecting sodium in a liquid

Also Published As

Publication number Publication date
JP3516244B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
JP3309380B2 (en) Digital measuring instrument
JP3516244B2 (en) Gas concentration detector
JP2002107256A (en) Pressure sensor circuit
CN113017588B (en) Blood pressure measuring method, system, device and sphygmomanometer
JP2530950B2 (en) Thermistor temperature detection device using AD converter
JP2004309202A (en) Wind speed, and air volume sensor
JP3117401B2 (en) Sensor life judgment method
JPH0921776A (en) Gas concentration detector and initial value setting method therefor
JP2006105870A (en) Temperature sensor and method of compensating temperature sensor
US20030155931A1 (en) Current detection circuit for A/F sensor
JP2001091296A (en) Sensor with temperature compensation function
KR19980076201A (en) Temperature measuring device using RTD
JP2002084151A (en) Physical quantity detector
JP4669146B2 (en) Gas detector
JP2595858B2 (en) Temperature measurement circuit
JPH07209247A (en) Gas detector with temperature compensating function forelectrochemical gas sensor
JP2000241202A (en) Sensor device
JP2002082008A (en) Physical quantity detecting device
JP3646898B2 (en) Contact combustion type gas sensor constant current drive circuit
JPS6347999Y2 (en)
JPH09264768A (en) Sensor module
KR0159236B1 (en) Method and device for sensing room temperature
JPH09178687A (en) Gas detection apparatus
JPH0743624Y2 (en) Temperature measuring device
JP2008107162A (en) Sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees