JPH09178687A - Gas detection apparatus - Google Patents

Gas detection apparatus

Info

Publication number
JPH09178687A
JPH09178687A JP9784696A JP9784696A JPH09178687A JP H09178687 A JPH09178687 A JP H09178687A JP 9784696 A JP9784696 A JP 9784696A JP 9784696 A JP9784696 A JP 9784696A JP H09178687 A JPH09178687 A JP H09178687A
Authority
JP
Japan
Prior art keywords
voltage
gas detection
resistance
connection body
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9784696A
Other languages
Japanese (ja)
Other versions
JP3555799B2 (en
Inventor
Noriyoshi Nagase
徳美 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP09784696A priority Critical patent/JP3555799B2/en
Publication of JPH09178687A publication Critical patent/JPH09178687A/en
Application granted granted Critical
Publication of JP3555799B2 publication Critical patent/JP3555799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an apparatus whose thermal response speed is large and whose gas detection accuracy is high by providing a circuit which obtains a computing output in such a way that an adjusted output voltage and a voltage at a connection point between elements in an element-connected body are added or subtracted. SOLUTION: A gas detection apparatus is provided with a circuit in which a first series- connected body by a gas detection element D, by a compensation element C and by at least one addition resistance 14 and a power supply E are connected in parallel or with a circuit wherein a second series-connected body whose ratio of resistance values is identical to that of the first series-connected body and in which resistances are connected in series and a power supply E are connected in parallel. In the former circuit, a voltage which is generated in the addition resistance 14 is amplified by a differential amplifier 31 or it is divided by a variable resistance 15 so as to be added to, or subtracted from, a voltage at a connection point X between elements by a computing circuit 21. In the latter circuit, the difference between a voltage generated in the addition resistance 14 and a voltage generated in the resistances of the second series-connected body is amplified so as to be added to, or subtracted from, a voltage at a connection point X between elements by a computing circuit 21, and the temperature of the voltage at the connection point X between the elements is corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、都市ガス、LP
ガスあるいは灯油等を燃料とする給湯器等に備えられる
不完全燃焼検知用のガス検知装置に関する。
TECHNICAL FIELD The present invention relates to city gas, LP
The present invention relates to a gas detection device for incomplete combustion detection provided in a water heater or the like that uses gas or kerosene as fuel.

【0002】[0002]

【従来の技術】都市ガス、LPガスあるいは灯油等を燃
料とする給湯器等が不完全燃焼する場合には、一酸化炭
素ガスなどの有毒ガスが発生し、ガス中毒事故の原因と
なり兼ねない。そのような事故の防止のためには、給湯
器の煙道中に一酸化炭素ガスセンサを取り付け一酸化炭
素ガス検知を迅速に行うことは有効である。
2. Description of the Related Art When a water heater or the like using city gas, LP gas or kerosene as a fuel is incompletely burned, a toxic gas such as carbon monoxide gas is generated, which may cause a gas poisoning accident. In order to prevent such an accident, it is effective to install a carbon monoxide gas sensor in the flue of the water heater to quickly detect carbon monoxide gas.

【0003】給湯器の煙道中で一酸化炭素ガス検知をお
こなう場合には、一酸化炭素ガス濃度約3000 ppmに対し
てガス検知できればよく、検知限界濃度が50 ppmと高感
度で高価な一酸化炭素ガスセンサを使用してもよいが、
コスト上無駄なので、家庭用の可燃性ガスセンサである
接触燃焼式ガスセンサを使用することが多い。家庭用の
接触燃焼式ガスセンサが対象としている温度範囲は−20
〜40℃であるが、給湯器に適用される場合の温度範囲は
70〜230 ℃と高く、広域である。この温度範囲は接触燃
焼式ガスセンサに組み込まれている一対のガス検知素子
と補償素子の温度補償範囲を越えていて、温度補償は不
十分となる。この温度範囲に対してもガス検知を可能と
するために、別にガス温度検出用の測温素子を付加しそ
の出力とブリッジ回路の出力とを演算して温度補正を行
っている。ガス検知素子と補償素子を構成する抵抗体が
白金である場合には、それらと同じ温度係数の測温素子
として、一般温度測定用である小型の白金薄膜抵抗体が
用いられている。ガス検知素子、補償素子および測温素
子は、素子間に温度差が生じないように、給湯器の煙道
中に互いに近接して設置される。
When carbon monoxide gas is detected in the flue of a water heater, it is sufficient if the gas can be detected for a carbon monoxide gas concentration of about 3000 ppm, and the detection limit concentration is 50 ppm, which is highly sensitive and expensive. A carbon gas sensor may be used,
Since the cost is wasted, a catalytic combustion gas sensor, which is a combustible gas sensor for home use, is often used. The temperature range covered by a catalytic combustion gas sensor for home use is -20.
~ 40 ℃, but the temperature range when applied to the water heater is
It is as high as 70-230 ℃, and it is wide area. This temperature range exceeds the temperature compensation range of the pair of gas detection element and compensation element incorporated in the catalytic combustion gas sensor, and the temperature compensation becomes insufficient. In order to enable gas detection even in this temperature range, a temperature measuring element for detecting gas temperature is additionally provided, and its output and the output of the bridge circuit are calculated to perform temperature correction. When the resistor forming the gas detecting element and the compensating element is platinum, a small platinum thin-film resistor for general temperature measurement is used as a temperature measuring element having the same temperature coefficient as those. The gas detecting element, the compensating element, and the temperature measuring element are installed close to each other in the flue of the water heater so that no temperature difference occurs between the elements.

【0004】図13は従来の高温用ガス検知装置の温度補
正ガス検知回路図である。ガス検知素子D と補償素子C
の直列接続体と抵抗11、12の直列接続体および電源Eが
並列接続された通常のブリッジ回路に、さらに測温素子
S と抵抗13の直列接続体が並列接続されて高温用ブリッ
ジ回路を成している。ガス検知素子と補償素子の接続点
X の電圧をVx、抵抗11、12の接続点Y の電圧をVyとし
て、検知ガスがないときのVx-Vy をゼロ点出力という。
ガス検知素子と補償素子の抵抗の温度係数は完全に同じ
ではないため、ゼロ点出力は素子の周囲温度が高くなる
と0 ではなくなる、すなわち温度依存性をもつ。ゼロ点
出力を差動増幅器32により適当に増幅してV41 とする
と、V41 を測温素子S と抵抗13との接続点Z の電圧Vz
(周囲温度に対応する温度信号)の温度依存性に等しく
することができる。演算回路22により、V41 と Vz の差
(これらが異符号ときは和)をとれば、その出力はオフ
セットを持っているが温度依存性はない。従って、可燃
性ガスがガス検知素子と接触した場合には、ガス検知信
号のみが変動値として得られる。
FIG. 13 is a temperature correction gas detection circuit diagram of a conventional high temperature gas detection device. Gas detection element D and compensation element C
In addition to the normal bridge circuit in which the series connection body of, the series connection body of resistors 11 and 12, and the power supply E are connected in parallel,
A series connection of S and resistor 13 is connected in parallel to form a high temperature bridge circuit. Connection point between gas detection element and compensation element
The voltage at X is Vx, the voltage at the connection point Y of the resistors 11 and 12 is Vy, and Vx-Vy when there is no detection gas is called the zero point output.
Since the temperature coefficients of the resistances of the gas sensing element and the compensating element are not completely the same, the zero point output becomes non-zero when the ambient temperature of the element becomes high, that is, it has a temperature dependence. If the zero-point output is properly amplified by the differential amplifier 32 to V41, V41 is the voltage Vz at the connection point Z between the temperature measuring element S and the resistor 13.
It can be made equal to the temperature dependence of (the temperature signal corresponding to the ambient temperature). If the arithmetic circuit 22 calculates the difference between V41 and Vz (the sum when they have different signs), its output has an offset but has no temperature dependence. Therefore, when the flammable gas comes into contact with the gas detection element, only the gas detection signal is obtained as the variation value.

【0005】[0005]

【発明が解決しようとする課題】上記の温度補正法で
は、第3の素子(測温素子)をガスセンサに近く設置し
ても、3素子の温度の不均一を避けることは困難であり
温度補正の精度は高くない。また、測温素子として使用
した白金薄膜抵抗体の熱容量がガス検知素子に比較して
大きいために、測温素子の熱応答速度が小さく温度補償
が充分に行われてガス検知動作が開始されるまでに時間
を要するという問題があった。また、第3の素子の増加
によるコストアップも問題である。
In the above temperature correction method, even if the third element (temperature measuring element) is installed close to the gas sensor, it is difficult to avoid the temperature nonuniformity of the three elements, and the temperature correction is performed. The accuracy of is not high. Further, since the platinum thin film resistor used as the temperature measuring element has a large heat capacity as compared with the gas detecting element, the thermal response speed of the temperature measuring element is small and temperature compensation is sufficiently performed to start the gas detecting operation. There was a problem that it took time to get there. Further, the increase in cost due to the increase in the number of third elements is also a problem.

【0006】この発明の目的は、前記課題を解決し、熱
応答速度が大きく、また温度補正が充分になされたガス
検知の精度の高いガス検知装置を提供することである。
An object of the present invention is to solve the above-mentioned problems, and to provide a gas detection device having a high thermal response speed and sufficient temperature correction and high gas detection accuracy.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、ガス検知素子と補償素子とが直列された素子接続
体の少なくとも片側に1個の付加抵抗が接続された直列
接続体と電源が並列接続されてなる回路と、この付加抵
抗の両端の電圧を分圧して調整出力するための可変抵抗
または増幅して調整出力するための差動増幅器と、この
調整出力電圧と素子接続体の素子間の接続点の電圧とを
加算または減算して演算出力とする演算回路とを有する
ガス検知装置であって、検知ガスがガス検知素子と補償
素子に接触していないときには、前記演算出力が前記2
素子の周囲温度に依存しないように、前記可変抵抗の分
圧比または前記差動増幅器の増幅率を調節することとす
る。
To achieve the above object, a series connection body in which one additional resistor is connected to at least one side of an element connection body in which a gas detection element and a compensation element are connected in series, and a power supply. Circuit connected in parallel, a variable resistor for dividing and adjusting output the voltage across the additional resistance or a differential amplifier for amplifying and adjusting output, and the adjusted output voltage and the element connection A gas detection device having a calculation circuit for adding or subtracting a voltage at a connection point between elements to obtain a calculation output, wherein when the detection gas is not in contact with the gas detection element and the compensation element, the calculation output is 2 above
The voltage division ratio of the variable resistor or the amplification factor of the differential amplifier is adjusted so as not to depend on the ambient temperature of the element.

【0008】この場合、前記直列接続体は素子接続体の
両側に抵抗値の等しい付加抵抗が接続されたものである
と良い。あるいは、ガス検知素子と補償素子とが直列さ
れた素子接続体の両側に抵抗値の等しい付加抵抗が接続
された直列接続体と電源が並列接続されてなる回路と、
前記素子接続体の両端の電圧を分圧して調整出力するた
めの可変抵抗または増幅して調整出力するための差動増
幅器と、この調整出力電圧と素子接続体の素子間の接続
点の電圧とを加算または減算して演算出力とする演算回
路とを有するガス検知装置であって、検知ガスがガス検
知素子と補償素子に接触していないときには、前記演算
出力が前記2素子の周囲温度に依存しないように、前記
可変抵抗の分圧比または前記差動増幅器の増幅率を調節
することとする。
In this case, it is preferable that the series connection body has additional resistances having the same resistance value connected to both sides of the element connection body. Alternatively, a circuit in which a power source is connected in parallel with a series connection body in which an additional resistance having an equal resistance value is connected to both sides of an element connection body in which a gas detection element and a compensation element are connected in series,
A variable resistor for dividing and adjusting and outputting the voltage across the element connection body or a differential amplifier for amplifying and adjusting and outputting, and a voltage at a connection point between the adjustment output voltage and the element of the element connection body. A gas detection device having a calculation circuit that adds or subtracts to obtain a calculation output, wherein the calculation output depends on the ambient temperature of the two elements when the detection gas is not in contact with the gas detection element and the compensating element. In order not to do so, the voltage division ratio of the variable resistor or the amplification factor of the differential amplifier is adjusted.

【0009】あるいは、ガス検知素子と補償素子とが直
列された素子接続体の少なくとも片側に1個の付加抵抗
が接続された第1の直列接続体と、素子接続体を1個の
抵抗とみなしときの第1の直列接続体内の抵抗と同数の
抵抗が接続され、これらの抵抗値の比が第1の直列接続
体における付加抵抗の抵抗値と基準温度でのガス検知素
子と補償素子の抵抗値の和との比に等しい第2の直列接
続体と、電源が並列接続されてなる回路と、第1の直列
接続体の付加抵抗と素子接続体の接続点の電圧と、第2
の直列接続体の第1の直列接続体の抵抗に対応する比の
抵抗と他の抵抗の接続点の電圧との差を分圧して調整出
力するための可変抵抗または増幅して調整出力するため
の差動増幅器と、この調整出力電圧と素子接続体の素子
間の接続点の電圧とを加算または減算して演算出力とす
る演算回路とを有するガス検知装置であって、検知ガス
がガス検知素子と補償素子に接触していないときには、
前記演算出力が前記2素子の周囲温度に依存しないよう
に、前記可変抵抗の分圧比または前記差動増幅器の増幅
率を調節することとする。
Alternatively, the first series connection body in which one additional resistor is connected to at least one side of the element connection body in which the gas detection element and the compensating element are connected in series and the element connection body are regarded as one resistance. The same number of resistances as the resistances in the first series connection body are connected, and the ratio of these resistance values is the resistance value of the additional resistance in the first series connection body and the resistance of the gas detection element and the compensation element at the reference temperature. A second series connection body having a ratio equal to the sum of the values, a circuit in which power supplies are connected in parallel, a voltage at a connection point between the additional resistance of the first series connection body and the element connection body,
Variable resistance for amplifying and adjusting output by dividing the difference between the resistance of the ratio corresponding to the resistance of the first series connecting body of and the voltage at the connection point of the other resistance. A differential amplifier and a calculation circuit for adding or subtracting the adjusted output voltage and the voltage at the connection point between the elements of the element connection body to obtain a calculation output. When the element and the compensating element are not in contact,
The voltage division ratio of the variable resistor or the amplification factor of the differential amplifier is adjusted so that the calculation output does not depend on the ambient temperature of the two elements.

【0010】この場合、前記第1の直列接続体は素子接
続体の両側に抵抗値の等しい付加抵抗が接続されたもの
であると良い。あるいは、ガス検知素子と補償素子の直
列接続の両側に抵抗値の等しい付加抵抗が各1個接続さ
れた第1の直列接続体と、3つの抵抗が直列接続されて
なり、これら3つの抵抗値の比が第1の直列接続体にお
ける抵抗の抵抗値と基準温度でのガス検知素子と補償素
子の抵抗値の和と他の抵抗の抵抗値の比に順を同じくし
て等しい第2の直列接続体と、電源が並列接続されてな
る回路と、第1の直列接続体の素子接続体と付加抵抗の
各接続点の電圧と対応する第2の直列接続体の各2個の
抵抗の接続点の電圧とを減算する2個の演算回路とこの
演算回路の出力差を分圧して調整出力するための可変抵
抗または増幅して調整出力するための差動増幅器と、こ
の調整出力電圧と素子接続体の素子間の接続点の電圧と
を加算または減算して演算出力とする演算回路とを有す
るガス検知装置であって、検知ガスがガス検知素子と補
償素子に接触していないときには、前記演算出力が前記
2素子の周囲温度に依存しないように、前記可変抵抗の
分圧比または前記差動増幅器の増幅率を調節することと
する。
In this case, it is preferable that the first series connection body has additional resistances having the same resistance value connected to both sides of the element connection body. Alternatively, a first series connection body in which one additional resistance having the same resistance value is connected to both sides of the series connection of the gas detection element and the compensation element and three resistances are connected in series. A second series having the same ratio to the sum of the resistance value of the resistance in the first series connection body and the resistance value of the gas detection element and the compensation element at the reference temperature, and the resistance value of the other resistance in the same order. A circuit in which a connection body and a power supply are connected in parallel, and a connection between two elements of the second series connection body corresponding to the voltage at each connection point of the element connection body of the first series connection body and the additional resistance. Two arithmetic circuits for subtracting the voltage at the point, a variable resistor for dividing and adjusting and outputting the output difference of the arithmetic circuit, or a differential amplifier for amplifying and outputting for adjustment, and the adjusted output voltage and the element The voltage at the connection point between the elements of the connection body is added to or subtracted from the calculation output A gas detection device having an arithmetic circuit for controlling the variable resistance so that the arithmetic output does not depend on the ambient temperature of the two elements when the detection gas is not in contact with the gas detection element and the compensation element. The pressure ratio or the amplification factor of the differential amplifier is adjusted.

【0011】[0011]

【発明の実施の形態】図1 は本発明に係る付加抵抗の両
端の電圧を温度補正に用いる1 付加抵抗のガス検知回路
図であり、(a) は電圧を分圧する場合、(b) は電圧を増
幅する場合である。図2 は本発明に係る付加抵抗の両端
の電圧を温度補正に用いる2 付加抵抗のガス検知回路図
であり、(a) は電圧を分圧する場合、(b) は電圧を増幅
する場合である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a gas detection circuit diagram of one additional resistor in which the voltage across the additional resistor according to the present invention is used for temperature compensation. (A) shows a case where the voltage is divided, and (b) shows This is the case where the voltage is amplified. FIG. 2 is a gas detection circuit diagram of two additional resistors that use the voltage across the additional resistor according to the present invention for temperature correction. (A) shows a case where the voltage is divided and (b) shows a case where the voltage is amplified. .

【0012】図 1では、1 つの付加抵抗14がガス検知素
子D と補償素子C の直列接続( 以下、素子接続体とい
う) の片側に接続され、図 2では2 つの付加抵抗14と素
子接続体の両側に接続されており、これらの直列接続体
には 電源E が並列接続されている。付加抵抗14と電源
E の接続点(アース)の電圧を0 とする。2 つの素子の
接続点をX とし、X の電圧をVxとする。また、付加抵抗
14と素子の接続点をXdとし、Xdの電圧をVdとする。素子
には電流が流れており、素子温度は常に周囲温度より高
い。図 1(a) では、付加抵抗14には可変抵抗15の固定抵
抗側が並列接続されている。可変抵抗15の可変抵抗端子
の分圧比をK11 とする。分圧された電圧を演算回路21に
よりVxに加算または減算し、その出力をV11 とする。図
1(b) では、付加抵抗14の両端の電圧を差動増幅器31に
より増幅率A1で増幅しこの出力電圧を演算回路21により
Vxに加算または減算し、その演算出力をV12 とする。同
様に図 2では、分圧比をK21 、出力をV21 、増幅率をA2
2 、演算出力をV22 とする。Vxには電源電圧の1/2 に対
して、図 2の回路ではオフセットはなく、図 1の回路で
は付加抵抗によるオフセットが生じている。
In FIG. 1, one additional resistor 14 is connected to one side of a series connection (hereinafter referred to as an element connecting body) of the gas detection element D and the compensating element C, and in FIG. 2, two additional resistors 14 and an element connecting body are connected. The power supply E is connected in parallel to these series connections. Additional resistor 14 and power supply
The voltage at the connection point (earth) of E is set to 0. Let X be the connection point between the two elements and Vx be the voltage at X. Also, additional resistance
The connection point between 14 and the element is Xd, and the voltage of Xd is Vd. A current is flowing in the element, and the element temperature is always higher than the ambient temperature. In FIG. 1 (a), the fixed resistor side of the variable resistor 15 is connected in parallel to the additional resistor 14. The voltage division ratio of the variable resistance terminal of variable resistance 15 is K11. The divided voltage is added or subtracted from Vx by the arithmetic circuit 21, and the output is V11. Figure
In 1 (b), the voltage across the additional resistor 14 is amplified by the differential amplifier 31 with the amplification factor A1 and this output voltage is calculated by the arithmetic circuit 21.
Add or subtract to Vx and set the calculated output as V12. Similarly, in Fig. 2, the voltage division ratio is K21, the output is V21, and the amplification factor is A2.
2 、 Calculation output is V22. In the circuit of Fig. 2, Vx has no offset with respect to 1/2 of the power supply voltage, and in the circuit of Fig. 1, there is an offset due to the additional resistance.

【0013】図3 は本発明に係る2 素子の両端の電圧を
2 付加抵抗を温度補正に用いるの2付加抵抗のガス検知
回路図であり、(a) は電圧を分圧する場合、(b) は電圧
を増幅する場合である。図 3(a) では、素子接続体の両
端Xc、Xdに可変抵抗15の固定抵抗側が並列接続されてお
り、可変抵抗15の可変抵抗端子での分圧比をK23 とし、
分圧された電圧を演算回路21によりVxに加算または減算
し、その演算出力をV23 とする。図 3(b) では、素子接
続体の両端Xc、Xdの電圧を差動増幅器31により増幅率A2
4 で増幅し、この増幅出力を演算回路21によりVxに加算
または減算しし、その出力をV24 とする。
FIG. 3 shows the voltage across the two elements according to the present invention.
FIG. 2 is a gas detection circuit diagram of two additional resistors used for temperature compensation, where (a) is a case where the voltage is divided and (b) is a case where the voltage is amplified. In Fig. 3 (a), the fixed resistor side of the variable resistor 15 is connected in parallel to both ends Xc and Xd of the element connection body, and the voltage division ratio at the variable resistor terminal of the variable resistor 15 is K23,
The divided voltage is added to or subtracted from Vx by the arithmetic circuit 21, and the arithmetic output is V23. In Fig. 3 (b), the voltage at both ends Xc and Xd of the element connection body is set to A2 by the differential amplifier 31.
It is amplified by 4, and this amplified output is added or subtracted from Vx by the arithmetic circuit 21, and the output is set as V24.

【0014】以上6 ケースを挙げたが、温度補正の方法
は殆ど同じ形式となるので統一して説明する。これら素
子には通常のブリッジ回路におけるように電圧が印加さ
れ電流を流しておくので素子温度は周囲温度より高い。
ガス検知素子D と補償素子C の周囲温度が基準温度( 室
温あるいは25℃) のときの抵抗値をDo、Co、その温度係
数をそれぞれd 、c とし、使用時の素子周囲温度と基準
温度との差をT とし、そのときの素子の抵抗値をD 、C
とする。電源E の電圧は数式の見やすさのため1 とす
る。Do、Coは数Ω前後である。付加抵抗や可変抵抗がガ
ス感度をあまり落とさないように、付加抵抗の抵抗値r
は素子の抵抗値の約 1/ 10とし、可変抵抗15の固定抵抗
値Rvは素子の抵抗値より2桁以上大きくしておく。ま
た、差動増幅器および演算回路の入力抵抗は高いものと
する。
Although the six cases have been described above, the methods for temperature correction have almost the same form, so they will be described in unification. Since a voltage is applied to these elements as in a normal bridge circuit and a current is passed through them, the element temperature is higher than the ambient temperature.
When the ambient temperature of the gas sensing element D and the compensating element C is the reference temperature (room temperature or 25 ° C), the resistance values are Do and Co, and their temperature coefficients are d and c, respectively. And the resistance of the element at that time is D, C
And The voltage of the power supply E is set to 1 for the sake of clarity of the formula. Do and Co are around several Ω. The resistance value r of the additional resistance is set so that the additional resistance and variable resistance do not significantly reduce the gas sensitivity.
Is about 1/10 of the resistance value of the element, and the fixed resistance value Rv of the variable resistor 15 is larger than the resistance value of the element by two digits or more. The input resistance of the differential amplifier and the arithmetic circuit is high.

【0015】数1 に各素子と付加抵抗の直列接続体の抵
抗値、数2 に各接続点の電圧、数3に演算後の電圧を示
す。但しRv>>D 、C による近似を行ってある。
Equation 1 shows the resistance value of the series connection of each element and additional resistance, Equation 2 shows the voltage at each connection point, and Equation 3 shows the voltage after calculation. However, the approximation by Rv >> D and C is performed.

【0016】[0016]

【数1】 ガス検知素子の抵抗値 D ≡Do*(1+d*T) 補償素子の抵抗値 C ≡Co*(1+c*T) 1抵抗と2素子の直列抵抗値 Rt1 ≡r+C+D 2抵抗と2素子の直列抵抗値 Rt2 ≡2r+(C+D)*Rv/(D+C+Rv)≒2r+C+D[Equation 1] Resistance value of gas detection element D ≡ Do * (1 + d * T) Resistance value of compensation element C ≡ Co * (1 + c * T) 1 resistance and series resistance value of 2 elements Rt1 ≡r + C + D 2 resistance and series resistance value of 2 elements Rt2 ≡2r + (C + D) * Rv / (D + C + Rv) ≒ 2r + C + D

【0017】[0017]

【数2】接続点Xcの電圧 Vc=r/Rti 接続点X の電圧 Vx=(r+D)ti 接続点Xdの電圧 Vd=1-r/Rt Rtiは Rt1(1抵抗の場合i=1)またはRt2(2 抵抗の場合i=
2)
[Equation 2] Voltage at connection point Xc Vc = r / Rti Voltage at connection point X Vx = (r + D) ti Voltage at connection point Xd Vd = 1-r / Rt Rti is Rt1 (i = 1 for 1 resistance) ) Or Rt2 (for two resistors i =
2)

【0018】[0018]

【数3】 1 抵抗の場合 V11=Vx-K11*Vd=((1-K11)*r+D)/Rt1 V12=Vx-A11*Vd=((1-A11)*r+D)/Rt1 2 抵抗の場合 V21=Vx-K21*Vd=(1-K21)*(r/(1-K21)+D)/Rt2 V22=Vx-A22*Vd=(1-A22)*(r/(1-A22)+D)/Rt2 V23=Vx-(K23*(Vc-Vd)+Vd)=-K23+(2*K23*r+D)/Rt2 V24=Vx-A24*(Vc-Vd)=-A24+((1+A24)*r+D)/Rt2 上式は全て 定数+(M*r+D)/Rt の形式であり、第 2項の
温度依存性を無くせば、温度補正は可能である。第 2項
は次式となるから、
[Equation 3] 1 resistance V11 = Vx-K11 * Vd = ((1-K11) * r + D) / Rt1 V12 = Vx-A11 * Vd = ((1-A11) * r + D) / Rt1 For 2 resistors V21 = Vx-K21 * Vd = (1-K21) * (r / (1-K21) + D) / Rt2 V22 = Vx-A22 * Vd = (1-A22) * (r / (1 -A22) + D) / Rt2 V23 = Vx- (K23 * (Vc-Vd) + Vd) =-K23 + (2 * K23 * r + D) / Rt2 V24 = Vx-A24 * (Vc-Vd) =- A24 + ((1 + A24) * r + D) / Rt2 All of the above formulas are in the form of constant + (M * r + D) / Rt, and temperature compensation is possible if the temperature dependence of the second term is eliminated. is there. The second term is

【0019】[0019]

【数4】 (M*r+D)/Rt=(M*r+Do+Do*d*T)/(2r+Do+Co+(Do*d+Co*c)T)
分子と分母が同じ温度依存性であればよく、M および温
度補正後の電圧として次式が得られる。
[Formula 4] (M * r + D) / Rt = (M * r + Do + Do * d * T) / (2r + Do + Co + (Do * d + Co * c) T)
The numerator and denominator should have the same temperature dependence, and the following equation can be obtained as M and the voltage after temperature correction.

【0020】[0020]

【数5】 1 抵抗の場合 M= (r*d+(d-c))*Co)*Do/((Do*d+Co*c)*r) V11=V12=Do*d/(Do*d+Co*c) 2 抵抗の場合 M=(2r*d+(d-c))*Co)*Do/((Do*d+Co*c)*r) V21=V22=r*d/(2r*d+(d-c)*Co)D V23=-Do*Co*(d-c)/(2r*(Do*d+Co*c)) V24=V23+1/2 どの電圧も温度T に依存していない。よって、6 ケース
全てにわたって温度補正ができることが判る。
[Equation 5] 1 resistance M = (r * d + (dc)) * Co) * Do / ((Do * d + Co * c) * r) V11 = V12 = Do * d / (Do * d + Co * c) 2 resistance M = (2r * d + (dc)) * Co) * Do / ((Do * d + Co * c) * r) V21 = V22 = r * d / (2r * d + ( dc) * Co) D V23 = -Do * Co * (dc) / (2r * (Do * d + Co * c)) V24 = V23 + 1/2 No voltage is dependent on temperature T. Therefore, it can be seen that the temperature can be corrected in all 6 cases.

【0021】いずれの場合も、温度補正後の電圧には素
子の周囲温度が室温での抵抗値Do、Coの他に、それらの
温度係数d 、が含まれるので、これらの値を予め測定し
て求めておく必要がある。これらが既知であれば、先
ず、数5に代入して得られた電圧になるよう実際に補正
後の電圧を測定しながら、分圧あるいは増幅率を調整
し、また加算か減算かを決める。そしてガスセンサの周
囲温度を所定の温度に上げ補正後の電圧が変化しないこ
とを確認する。以上のように、温度補正は精度良くでき
るので、ガス検知出力の精度は高い。また、測温素子を
用いないで温度補正を行うことができるので、測温素子
の熱容量に起因する温度補正の時間遅れは生じない。
In any case, the temperature-corrected voltage includes resistance values Do and Co at the ambient temperature of the element at room temperature, and their temperature coefficient d. Therefore, these values are measured in advance. Need to ask. If these are known, first, the voltage division or the amplification factor is adjusted while actually measuring the corrected voltage so as to obtain the voltage obtained by substituting into Equation 5, and addition or subtraction is determined. Then, the ambient temperature of the gas sensor is raised to a predetermined temperature and it is confirmed that the corrected voltage does not change. As described above, since the temperature can be corrected with high accuracy, the gas detection output has high accuracy. Further, since the temperature can be corrected without using the temperature measuring element, there is no time delay of the temperature correction due to the heat capacity of the temperature measuring element.

【0022】次に、素子の抵抗値のみ既知で、それらの
温度係数は未知であっても、温度補正が可能なガス検知
回路についてまとめて説明する。図 4は本発明に係る付
加抵抗の電圧と他の抵抗直列体の抵抗の接続点の電圧の
差を温度補正に用いるガス検知回路図であり、(a) は 1
付加抵抗の場合 、(b)は2 付加抵抗の場合である。
Next, a gas detection circuit capable of temperature correction even if only the resistance values of the elements are known and their temperature coefficients are unknown will be collectively described. FIG. 4 is a gas detection circuit diagram in which the difference between the voltage of the additional resistance and the voltage at the connection point of the resistance of another resistance series body according to the present invention is used for temperature correction.
In the case of additional resistance, (b) is the case of 2 additional resistance.

【0023】図 4については2 付加抵抗の場合( 図 4
(a))について説明するが、1 付加抵抗の場合( 図 4(b)
)は付加抵抗14と抵抗16の各1 個とを加えて考えれば
よく、数式は同じ形式である。素子接続体に1 個の抵抗
14を付加した第 1の直列接続体と、抵抗16と可変抵抗17
の接続された第 2の直列接続体と電源E の並列接続回路
である。可変抵抗17を調整することにより、抵抗16、可
変抵抗17の抵抗値の比は、抵抗14、基準温度(室温)で
の素子接続体および抵抗14の抵抗値の比に等しくしてお
くことができる。抵抗14と抵抗16の接続点Xd、Zdの電圧
Vd Vdo の差を差動増幅器31により増幅し、これを素子
間の接続点X の電圧Vxと演算回路21により演算し出力と
する。ガスセンサが基準温度にあるときには各接続点X
d、Xcの電圧Vdo 、Vco は抵抗の接続体の各接続点Zdの
電圧に等しく、ガスセンサが基準温度より高温にあると
きには各接続点Xdの電圧VdはVdo 、Vco とは異なってく
る。従って、各2電圧の減算Vd-Vdoは基準温度では0 で
あり、また温度係数を持つので、これらを用いて、2 素
子の接続点X の電圧Vxの温度補正を行うことができ、温
度補正後の電圧はVxo となる。
Regarding FIG. 4, in the case of 2 additional resistors (see FIG.
(a)) is explained, but in the case of 1 additional resistance (Fig. 4 (b)
) Can be considered by adding one additional resistor 14 and one resistor 16 respectively, and the formula has the same form. 1 resistor per element connection
First series connection with 14 added, resistor 16 and variable resistor 17
It is a parallel connection circuit of the second series connection body connected to and the power supply E. By adjusting the variable resistor 17, the ratio of the resistance values of the resistor 16 and the variable resistor 17 can be made equal to the ratio of the resistance value of the resistor 14, the element connection body at the reference temperature (room temperature) and the resistor 14. it can. Voltage at the connection points Xd and Zd between resistors 14 and 16
The difference between Vd and Vdo is amplified by the differential amplifier 31, and this is calculated by the voltage Vx at the connection point X between the elements and the calculation circuit 21 and output. Each connection point X when the gas sensor is at the reference temperature
The voltages Vdo and Vco of d and Xc are equal to the voltage of each connection point Zd of the connection body of the resistor, and when the gas sensor is higher than the reference temperature, the voltage Vd of each connection point Xd is different from Vdo and Vco. Therefore, the subtraction Vd-Vdo of each two voltages is 0 at the reference temperature and has a temperature coefficient. Therefore, these can be used to correct the temperature of the voltage Vx at the connection point X of the two elements. The latter voltage is Vxo.

【0024】図 5は本発明に係る2 付加抵抗の電圧と他
の抵抗直列体の2 個の抵抗の接続点の電圧の差を温度補
正に用いるガス検知回路図である。図 4(b) と同じく第
1の直列接続体と第 2の直列接続体から構成されている
のでこれらの説明は省略する。この場合は素子に対して
同じ側に接続されている抵抗14と抵抗16の差( 減算)を
先にしておき、それぞれの出力の差を増幅し、増幅出力
と素子間の接続点の電圧Vxと加算または減算する。
FIG. 5 is a gas detection circuit diagram in which the difference between the voltage of the two additional resistors according to the present invention and the voltage at the connection point of two resistors of another resistor series is used for temperature correction. As in Figure 4 (b),
Since it is composed of one series-connected body and a second series-connected body, description thereof will be omitted. In this case, the difference (subtraction) between resistors 14 and 16 connected to the same side of the element is set first, the difference between the outputs is amplified, and the voltage Vx at the connection point between the amplified output and the element is increased. And add or subtract.

【0025】以上の3 つの場合について温度補正の計算
結果のみを数6 に示す。各増幅率A3j(j= 1〜3)には、前
記と同じ形式のM が含まれるので表記しない。
Equation 6 shows only the calculation results of the temperature correction in the above three cases. Since each amplification factor A3j (j = 1 to 3) includes M in the same format as described above, it is not shown.

【0026】[0026]

【数 6】V31=Vx-A31*(Vd-Vdo) V32=Vx-A32*(Vd-Vdo) V33=Vx-A33*(Vd-Vc-Vdo-Vco) 数6 から判るように、V3j(j= 1〜3)の第 2項は素子の周
囲温度が基準温度であればVxo に等しい。Vxo には素子
の抵抗の温度係数は含まれないので、温度係数が未知で
あっても温度補正ができる。
[Equation 6] V31 = Vx-A31 * (Vd-Vdo) V32 = Vx-A32 * (Vd-Vdo) V33 = Vx-A33 * (Vd-Vc-Vdo-Vco) As can be seen from Equation 6, V3j ( The second term of j = 1 to 3) is equal to Vxo if the ambient temperature of the device is the reference temperature. Since Vxo does not include the temperature coefficient of the resistance of the element, temperature correction can be performed even if the temperature coefficient is unknown.

【0027】回路の調整は次のように行う。先ず、素子
の周囲温度をを基準温度( 例えば25℃) にしておき、可
変抵抗17を調整してその両端の電圧がそれぞれVdo 、Vc
o に等しくなるようにする。素子間の電圧Vxo を測定し
ておく。素子には電流が流されており素子の温度は周囲
温度より高温である。次に、素子の周囲温度を給湯器に
ガスセンサを取り付けた場合の温度( 例えば150 ℃) に
上げ、Vxを測定しながら、Vxo に等しくなるように、差
動増幅器の増幅率を調整する。以上の手順に従えば素子
の、基準温度での抵抗値も未知であってよい。以上のよ
うに、温度補正は精度良くできるので、ガス検知出力の
精度は高い。また、測温素子を用いないで温度補正を行
うことができるので、測温素子の熱容量に起因する温度
補正の時間遅れは生じない。
The circuit is adjusted as follows. First, the ambient temperature of the device is set to the reference temperature (for example, 25 ° C), and the variable resistor 17 is adjusted so that the voltage across it is Vdo and Vc, respectively.
be equal to o. Measure the voltage Vxo between the elements. The element is energized and the temperature of the element is higher than ambient temperature. Next, the ambient temperature of the element is raised to the temperature when the gas sensor is attached to the water heater (for example, 150 ° C), and while measuring Vx, the amplification factor of the differential amplifier is adjusted so that it becomes equal to Vxo. According to the above procedure, the resistance value of the element at the reference temperature may be unknown. As described above, since the temperature can be corrected with high accuracy, the gas detection output has high accuracy. Further, since the temperature can be corrected without using the temperature measuring element, there is no time delay of the temperature correction due to the heat capacity of the temperature measuring element.

【0028】以上のケースは最も単純で基本的な回路で
あり、Vd、Vcの電圧を温度補正に利用する限り、例えば
Vd、Vcの電圧を別々に増幅あるいは分圧した後、Vxと演
算するなどしても、同じ原理に帰着することは明らかで
ある。また、ガス検知素子と補償素子の位置が入れ替わ
っても同じ動作をすることも明らかである。また、これ
らの回路の電源に、2つの抵抗の直列接続体を並列接続
して、従来のブリッジ回路と同様の回路構成とし、抵抗
間の接続点の電圧をゼロ点出力のオフセット打ち消しあ
るいは警報出力に都合の良いようにオフセットをかける
ように用いても良い。以下に上記の基本回路を応用した
ガス検知装置の実施例を説明する。 実施例1 図6 は本発明に係る実施例のガス検知装置のガス検知回
路図である。
The above case is the simplest and basic circuit, and as long as the voltages of Vd and Vc are used for temperature correction, for example,
It is clear that the same principle can be obtained by separately amplifying or dividing the voltages of Vd and Vc and then calculating Vx. It is also clear that the same operation is performed even if the positions of the gas detecting element and the compensating element are exchanged. In addition, a series connection of two resistors is connected in parallel to the power supply of these circuits to make a circuit configuration similar to that of a conventional bridge circuit, and the voltage at the connection point between the resistors is offset canceled by a zero point output or an alarm output is generated. It may be used by applying an offset for the convenience of the user. An embodiment of a gas detection device to which the above basic circuit is applied will be described below. Embodiment 1 FIG. 6 is a gas detection circuit diagram of a gas detection device according to an embodiment of the present invention.

【0029】本回路は従来の温度補正の回路のないブリ
ッジ回路に素子直列への2 付加抵抗の1 抵抗の電圧を利
用する場合(図2(b)) を応用したものの変形である。各
素子をはじめ接続点の符号は既に記してあるので説明を
省略する。次のように温度補正を行う。計算の簡明のた
め抵抗11 、12は等しくしておく、Y 点の電圧Vyは1/2
である。先にVy-Vd を差動増幅器31により増幅し、その
出力とVxとを演算回路22により演算して温度補正する。
Vyを先に増幅するのでオフセット電圧Ve1 は前記のV22
とは違い、次式となる( 数6 参照) 。
This circuit is a modification of the case where the voltage of one resistance of two additional resistances connected in series with the element (FIG. 2 (b)) is applied to a bridge circuit without a conventional temperature compensation circuit. Since the reference numerals of the connection points including each element have already been described, the description thereof will be omitted. The temperature is corrected as follows. For simplicity of calculation, resistors 11 and 12 are set equal, voltage Vy at Y point is 1/2
It is. First, Vy-Vd is amplified by the differential amplifier 31, and its output and Vx are calculated by the calculation circuit 22 to correct the temperature.
Since Vy is amplified first, the offset voltage Ve1 is
Unlike, it becomes the following equation (see Eq. 6).

【0030】[0030]

【数 7】 Ve1 ≡Vx-A22*(Vd-Vy)=V22+A22/2=V22+(1-1/m)/2 ガス検知素子D として白金コイルにパラジウム触媒を担
持したアルミナ担体を付着させた素子を、補償素子C と
して酸化銅触媒を担持したアルミナ担体を付着させた素
子を、230 ℃の空気中に入れ、温度補正の能力を調べ
た。素子の抵抗値は約2 Ωであり、付加抵抗の抵抗値は
0.3 Ω、バランス抵抗の抵抗値は1 kΩ、電源電圧は1.
1Vとした。
[Equation 7] Ve1 ≡ Vx-A22 * (Vd-Vy) = V22 + A22 / 2 = V22 + (1-1 / m) / 2 As the gas detection element D, an alumina carrier carrying a palladium catalyst is attached to a platinum coil. The element to which the alumina carrier carrying the copper oxide catalyst was attached as the compensating element C was placed in air at 230 ° C., and the temperature correction ability was examined. The resistance value of the element is about 2 Ω, and the resistance value of the additional resistance is
0.3 Ω, resistance value of balance resistor is 1 kΩ, power supply voltage is 1.
It was set to 1V.

【0031】図7 は本発明に係るガス検知装置の実施例
のブリッジ出力の応答性のグラフである。カーブaは本
発明に係る温度補正をしたブリッジ出力であり、カーブ
bは同じ条件で測定した従来の測温素子を用いて温度補
正をしたブリッジ出力である(ブリッジ回路は図13)。
ブリッジ出力の90 %応答時間で比較すると、本発明に係
るブリッジ出力は昇温開始後約6 s で90 %に到達した
が、従来のブリッジ出力は5 min を要している。本発明
の場合は、熱容量の小さい温度ガス検知素子と補償素子
の温度が安定するまでの時間のみであるが、従来の場合
は、熱容量の大きい測温素子の温度が安定するまでの時
間を要しているからである。
FIG. 7 is a graph of the response of the bridge output of the embodiment of the gas detecting device according to the present invention. The curve a is the temperature-corrected bridge output according to the present invention, and the curve b is the temperature-corrected bridge output using the conventional temperature measuring element measured under the same conditions (the bridge circuit is FIG. 13).
Comparing the 90% response time of the bridge output, the bridge output according to the present invention reached 90% about 6 s after the start of temperature rise, but the conventional bridge output required 5 min. In the case of the present invention, it is only the time until the temperature of the temperature gas detection element having a small heat capacity and the temperature of the compensating element are stabilized, but in the case of the conventional case, it takes time until the temperature of the temperature measuring element having a large heat capacity is stabilized. Because they are doing it.

【0032】図8 は本発明に係る実施例の高温定常状態
での出力と25℃での出力の差の周囲温度依存性のグラフ
である。カーブcは本発明の温度補正した場合、カーブ
dは従来の温度補正した場合、カーブeは温度補正しな
い場合である。温度補正しない場合のカーブは温度が高
いほど0 V から大きく外れているが、温度補正した場合
のカーブは0 V で殆ど変動がない。このように、従来用
いていた測温素子を付加することなく、抵抗の付加だけ
で、同じ温度補正ができるようになった。 実施例2 図 9は本発明に係る他の実施例のガス検知装置のガス検
知回路図である。
FIG. 8 is a graph showing the ambient temperature dependence of the difference between the output in the high temperature steady state and the output at 25 ° C. in the example according to the present invention. The curve c is the case where the temperature is corrected according to the present invention, the curve d is the case where the conventional temperature is corrected, and the curve e is the case where the temperature is not corrected. The curve without temperature correction deviates greatly from 0 V as the temperature rises, but the curve without temperature correction shows almost no fluctuation at 0 V. In this way, the same temperature correction can be performed only by adding the resistance without adding the temperature measuring element which is conventionally used. Second Embodiment FIG. 9 is a gas detection circuit diagram of a gas detection device according to another embodiment of the present invention.

【0033】これは、前記の2付加抵抗、素子両端の電
圧の分圧の場合(図3(a)) の変形例であり、従来のブリ
ッジ回路と組み合わされている。温度補正は可変抵抗15
の可変接点P の電圧と抵抗11、12の接続点Y の電圧Vyと
演算回路21により演算し、次にこの出力と素子間の接続
点X の電圧Vxとを同様に演算する。温度補正は可変接点
P 位置だけで定まり、2 つの演算の順にはよらない。抵
抗11、12の接続点Y の電圧Vyはゼロ点出力にオフセット
電圧を加えているだけであり、回路構成が1 電源の場合
( 図9 の場合は正) に電源と異符号の出力が生じないよ
うにするためである。前記のV23 にVyが加算されている
ので、出力電圧Ve2 は次式となる。
This is a modification of the case of the above-mentioned two additional resistors and voltage division across the element (FIG. 3 (a)), and is combined with the conventional bridge circuit. Variable resistor for temperature compensation 15
The voltage of the variable contact P and the voltage Vy of the connection point Y of the resistors 11 and 12 are calculated by the calculation circuit 21, and then this output and the voltage Vx of the connection point X between the elements are calculated in the same manner. Variable contact for temperature compensation
It is determined only by the P position and does not depend on the order of the two operations. The voltage Vy at the connection point Y of the resistors 11 and 12 is only the offset voltage added to the zero point output, and when the circuit configuration is one power supply.
This is to prevent an output with a different sign from that of the power supply (positive in the case of Fig. 9). Since Vy is added to V23, the output voltage Ve2 is given by the following equation.

【0034】[0034]

【数 8】Ve2 ≡Vx-(K23*(Vc-Vd)+Vd-Vy)=V23+Vy 可変接点P の位置を変えることにより、可変接点P の電
圧の温度係数の符号を任意に変えることができる。従っ
て、組み合わされるガス検知素子と補償素子の抵抗の温
度係数の大小に係わらず、演算回路21の演算を差動増幅
器が1個で済む減算回路に限定しておくことができる。
[Equation 8] Ve2 ≡ Vx- (K23 * (Vc-Vd) + Vd-Vy) = V23 + Vy By changing the position of the variable contact P, the sign of the temperature coefficient of the voltage of the variable contact P can be arbitrarily changed. You can Therefore, the arithmetic operation of the arithmetic circuit 21 can be limited to the subtraction circuit which requires only one differential amplifier, regardless of the magnitude of the temperature coefficient of resistance of the gas sensing element and the compensating element to be combined.

【0035】可変抵抗15の全抵抗は、素子を流れる電流
に影響が出ないように10 kΩと高抵抗として、その他は
実施例1と同様にして、この回路による温度補正の能力
を調べた。図10は本発明に係る他の実施例の出力の応答
性のグラフである。カーブfは本発明に係る温度補正を
した出力であり、カーブb は同じ条件で測定した従来の
温度補正をした出力である(ブリッジ回路は図14)。本
発明に係るブリッジ出力は昇温開始後約6 s で90 %に達
したが、従来の温度補正をした出力は5 min を要してい
る。本発明の場合は、熱容量の小さい温度ガス検知素子
と補償素子の温度が安定するまでは短時間であるが、従
来の場合は、熱容量の大きい測温素子の温度が安定する
までに時間を要しているからである。
The total resistance of the variable resistor 15 was set as high as 10 kΩ so as not to affect the current flowing through the device, and the temperature correction ability of this circuit was examined in the same manner as in Example 1 except for the above. FIG. 10 is a graph of output responsiveness of another embodiment according to the present invention. The curve f is the temperature-corrected output according to the present invention, and the curve b is the conventional temperature-corrected output measured under the same conditions (the bridge circuit is FIG. 14). The bridge output according to the present invention reached 90% in about 6 s after the start of temperature rise, but the conventional temperature-corrected output requires 5 min. In the case of the present invention, it takes a short time until the temperatures of the temperature gas detection element having a small heat capacity and the compensating element become stable, but in the conventional case, it takes time until the temperature of the temperature measuring element having a large heat capacity becomes stable. Because they are doing it.

【0036】図11は本発明に係る他の実施例の高温定常
状態での出力と25℃での出力の差の周囲温度依存性のグ
ラフである。カーブgは本発明の温度補正した場合、カ
ーブdは従来の温度補正した場合、カーブeは温度補正
しない場合である。温度補正しない場合のカーブは温度
が高いほど0 V から大きく外れているが、温度補正した
場合のカーブは0 V で殆ど変動がない。このように、従
来用いていた測温素子を負荷すること無く、抵抗の付加
のみで同じ程度の温度補正が達成できるようになった。 実施例3 図12は本発明に係る別の実施例のガス検知装置のガス検
知回路図である。
FIG. 11 is a graph of the ambient temperature dependence of the difference between the output at high temperature steady state and the output at 25 ° C. according to another embodiment of the present invention. The curve g is the case where the temperature is corrected according to the present invention, the curve d is the case where the conventional temperature is corrected, and the curve e is the case where the temperature is not corrected. The curve without temperature correction deviates greatly from 0 V as the temperature rises, but the curve without temperature correction shows almost no fluctuation at 0 V. In this way, it is possible to achieve the same degree of temperature correction only by adding a resistance without loading a temperature measuring element that has been conventionally used. Third Embodiment FIG. 12 is a gas detection circuit diagram of a gas detection device according to another embodiment of the present invention.

【0037】この実施例は、前記の2付加抵抗で素子両
端の電圧の分圧の場合(図6(b)) を従来のブリッジ回路
に適合させている。先ず、可変抵抗17を調整して、接続
点Xcと接続点Zcの電圧を等しくした。次に、差動増幅器
の増幅率を最大とし、2 素子の周囲温度が基準温度のと
き、抵抗11と、可変抵抗12の抵抗値の比を補償素子と抵
抗14の抵抗値の和とガス検知素子と抵抗14の抵抗値の和
の比に等しくなるように、すなわち2 つの出力端子O の
電圧が等しくなるように、可変抵抗12の抵抗値を調整し
た。次に、素子の周囲温度を実際の給湯器に取り付けた
ときと同じに上げて( 例えば150 ℃) 、2 つの出力端子
O 間の電位差が0 となるように差動増幅器31の増幅率を
調整した。
In this embodiment, the case where the voltage across the element is divided by the above-mentioned two additional resistors (FIG. 6 (b)) is adapted to the conventional bridge circuit. First, the variable resistor 17 was adjusted to equalize the voltages at the connection point Xc and the connection point Zc. Next, when the amplification factor of the differential amplifier is maximized and the ambient temperature of the two elements is the reference temperature, the ratio of the resistance values of the resistor 11 and the variable resistor 12 is set to the sum of the resistance values of the compensating element and the resistor 14 and the gas detection. The resistance value of the variable resistor 12 was adjusted so that it became equal to the ratio of the sum of the resistance values of the element and the resistor 14, that is, the voltages of the two output terminals O became equal. Then raise the ambient temperature of the element to the same as when it was installed in the actual water heater (for example 150 ° C) and use the two output terminals.
The amplification factor of the differential amplifier 31 was adjusted so that the potential difference between O 2 was 0.

【0038】調整済のガス検知回路の温度補正能力を調
べた、素子の周囲温度を基準温度から増幅率の調整温度
より高温まで変化させて、調整済のガス検知回路の温度
補正能力を調べたところ、実施例1の図 8と同様変動は
極めて小さかった。前にも記したように、この回路の特
長は、素子の抵抗値とそれらの温度係数が未知であって
も、温度補正の調整が可能なことである。そのため、予
めこれらを精度良く測定しておく必要がなく、ガス検知
装置の製造工程が迅速化した。
The temperature correction ability of the adjusted gas detection circuit was examined. The temperature correction ability of the adjusted gas detection circuit was examined by changing the ambient temperature of the element from the reference temperature to a temperature higher than the adjustment temperature of the amplification factor. However, as in FIG. 8 of Example 1, the variation was extremely small. As described above, the feature of this circuit is that the temperature correction can be adjusted even if the resistance values of the elements and their temperature coefficients are unknown. Therefore, it is not necessary to measure these with high accuracy in advance, and the manufacturing process of the gas detection device is speeded up.

【0039】[0039]

【発明の効果】本発明によれば、ガス検知素子、補償素
子および少なくとも1つの抵抗の直列接続体と電源が並
列接続されてなる回路、またはガス検知素子、補償素子
および少なくとも1つの抵抗の直列接続体とこの直列接
続体と同じ抵抗値の比とした2または3つの抵抗の直列
接続体と電源が並列接続されてなる回路を有するガス検
知装置とし、前者の回路では素子に接続された抵抗に生
ずる電圧を増幅または分圧し、素子の接続点の電圧と加
減算して、後者の回路では素子に接続された抵抗に生ず
る電圧と抵抗の直列接続体の抵抗に生ずる電圧の差を増
幅し、素子の接続点の電圧に加減して、素子の接続点の
電圧の温度補正を行うこととしたため、温度補正の精度
はよく、ガス検知の精度は高い。また、測温素子を用い
ないので、素子自体の温度応答速度より遅くなることは
なく、給湯器の燃焼開始と殆ど同時にガス検知可能であ
り、給湯器の不完全燃焼に関する、安全性は向上する。
According to the present invention, a circuit in which a power source is connected in parallel with a series connection body of a gas sensing element, a compensating element and at least one resistor, or a gas sensing element, a compensating element and at least one resistor in series. A gas detector having a circuit in which a power supply is connected in parallel with a series connection body of a connection body and a series connection body of two or three resistors having the same resistance value ratio as that of the series connection body. In the former circuit, the resistance connected to the element is used. Amplifies or divides the voltage generated at, and adds or subtracts from the voltage at the connection point of the element, and in the latter circuit, amplifies the difference between the voltage generated at the resistance connected to the element and the voltage generated at the resistance of the series connection of the resistance, Since the temperature of the voltage at the connection point of the element is corrected by adjusting the voltage at the connection point of the element, the temperature correction accuracy is good and the gas detection accuracy is high. Further, since the temperature measuring element is not used, the temperature does not become slower than the temperature response speed of the element itself, the gas can be detected almost at the same time as the start of combustion of the water heater, and the safety regarding incomplete combustion of the water heater is improved. .

【0040】また、測温素子を必要としないので、ガス
センサ部はガス検知素子と補償素子の2素子で構成され
ればよく、簡単であり、低価格である。
Further, since the temperature measuring element is not required, the gas sensor portion may be composed of two elements, a gas detecting element and a compensating element, which is simple and inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る付加抵抗の両端の電圧を温度補正
に用いる1 付加抵抗のガス検知回路図、(a) 電圧を分圧
する場合、(b) 電圧を増幅する場合
FIG. 1 is a diagram showing a gas detection circuit of an additional resistance, in which the voltage across the additional resistance according to the present invention is used for temperature correction, (a) When the voltage is divided, (b) When the voltage is amplified.

【図2】本発明に係る付加抵抗の両端の電圧を温度補正
に用いる2 付加抵抗のガス検知回路図、(a) 電圧を分圧
する場合、(b) 電圧を増幅する場合
FIG. 2 is a gas detection circuit diagram of two additional resistors, which uses the voltage across the additional resistor according to the present invention for temperature correction, (a) voltage dividing, (b) voltage amplifying

【図3】本発明に係る2 素子の両端の電圧を2 付加抵抗
を温度補正に用いるの2 付加抵抗のガス検知回路図、
(a) 電圧を分圧する場合、(b) 電圧を増幅する場合
FIG. 3 is a gas detection circuit diagram of two additional resistors, in which the voltage across the two elements according to the present invention is used for the temperature compensation of the two additional resistors,
(a) When dividing the voltage, (b) When amplifying the voltage

【図4】本発明に係る付加抵抗の電圧と他の抵抗直列体
の抵抗の接続点の電圧の差を温度補正に用いるガス検知
回路図、(a) 1 付加抵抗の場合 、(b) 2 付加抵抗の場
FIG. 4 is a gas detection circuit diagram in which the difference between the voltage of the additional resistance according to the present invention and the voltage at the connection point of the resistance of another resistance series body is used for temperature correction; (a) 1 additional resistance; In case of additional resistance

【図5】本発明に係る2 付加抵抗の電圧と他の抵抗直列
体の2 個の抵抗の接続点の電圧の差を温度補正に用いる
ガス検知回路図
FIG. 5 is a gas detection circuit diagram in which the difference between the voltage of two additional resistors according to the present invention and the voltage at the connection point of two resistors of another resistor series is used for temperature correction.

【図6】本発明に係る実施例のガス検知装置のガス検知
回路図
FIG. 6 is a gas detection circuit diagram of a gas detection device according to an embodiment of the present invention.

【図7】本発明に係る実施例の出力の応答性のグラフFIG. 7 is a graph of output responsiveness of an example according to the present invention.

【図8】本発明に係る実施例の高温定常状態での出力と
25℃での出力の差の周囲温度依存性のグラフ
FIG. 8 is a graph of the ambient temperature dependence of the difference between the output in the high temperature steady state and the output at 25 ° C. in the example according to the present invention.

【図9】本発明に係る他の実施例のガス検知装置のガス
検知回路図
FIG. 9 is a gas detection circuit diagram of a gas detection device according to another embodiment of the present invention.

【図10】本発明に係る他の実施例の出力の応答性のグ
ラフ
FIG. 10 is a graph of output responsiveness of another embodiment according to the present invention.

【図11】本発明に係る他の実施例の高温定常状態での
出力と25℃での出力の差の周囲温度依存性のグラフ
FIG. 11 is a graph of the ambient temperature dependence of the difference between the output at high temperature steady state and the output at 25 ° C. in another example according to the present invention.

【図12】本発明に係る別の実施例のガス検知装置のガ
ス検知回路図
FIG. 12 is a gas detection circuit diagram of a gas detection device according to another embodiment of the present invention.

【図13】従来の高温用ガス検知装置の温度補正ガス検
知回路図
FIG. 13 is a temperature correction gas detection circuit diagram of a conventional high temperature gas detection device.

【符号の説明】[Explanation of symbols]

D ガス検知素子 C 補償素子 S 測温素子 E 電源 11 抵抗 12 抵抗 12a 可変抵抗 13 抵抗 14 抵抗 15 抵抗 16 抵抗 17 可変抵抗 P 可変抵抗の可変接点 X 2つの素子の接続点 Xd ガス検知素子と抵抗13の接続点 Xc 補償素子と抵抗14の接続点 Zd 2つの抵抗16、17のガス検知素子側の接続点 Zc 2つの抵抗16、17の補償素子側の接続点 Zz 測温素子と抵抗13の接続点 Y 2つの抵抗11、12の接続点 21 演算回路 22 演算回路 31 差動増幅器 32 差動増幅器 D Gas detection element C Compensation element S Temperature measurement element E Power supply 11 Resistance 12 Resistance 12a Variable resistance 13 Resistance 14 Resistance 15 Resistance 16 Resistance 17 Variable resistance P Variable resistance variable contact X Connection point of two elements Xd Gas detection element and resistance 13 connection point Xc connection point between compensating element and resistor 14 Zd connection point between two resistors 16 and 17 on gas sensing element side Zc connection point between two resistors 16 and 17 on compensating element Zz temperature measuring element and resistor 13 Connection point Y Connection point of two resistors 11 and 12 21 Arithmetic circuit 22 Arithmetic circuit 31 Differential amplifier 32 Differential amplifier

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ガス検知素子と補償素子とが直列された素
子接続体の少なくとも片側に1個の付加抵抗が接続され
た直列接続体と電源が並列接続されてなる回路と、この
付加抵抗の両端の電圧を分圧して調整出力するための可
変抵抗または増幅して調整出力するための差動増幅器
と、この調整出力電圧と素子接続体の素子間の接続点の
電圧とを加算または減算して演算出力とする演算回路と
を有するガス検知装置であって、検知ガスがガス検知素
子と補償素子に接触していないときには、前記演算出力
が前記2素子の周囲温度に依存しないように、前記可変
抵抗の分圧比または前記差動増幅器の増幅率を調節する
ことを特徴とするガス検知装置。
1. A circuit in which a power source is connected in parallel to a series connection body in which one additional resistance is connected to at least one side of an element connection body in which a gas detection element and a compensation element are connected in series, and a circuit in which the additional resistance is connected. A variable resistor for dividing and adjusting output of the voltage at both ends or a differential amplifier for amplifying and outputting for adjustment and this adjusted output voltage and the voltage at the connection point between the elements of the element connection body are added or subtracted. A gas detection device having a calculation circuit for generating a calculation output, wherein the calculation output does not depend on the ambient temperature of the two elements when the detection gas is not in contact with the gas detection element and the compensation element. A gas detection device characterized by adjusting a voltage division ratio of a variable resistor or an amplification factor of the differential amplifier.
【請求項2】前記直列接続体は素子接続体の両側に抵抗
値の等しい付加抵抗が接続されたものであることを特徴
とする請求項1に記載のガス検知装置。
2. The gas detection device according to claim 1, wherein the series connection body is formed by connecting additional resistors having the same resistance value to both sides of the element connection body.
【請求項3】ガス検知素子と補償素子とが直列された素
子接続体の両側に抵抗値の等しい付加抵抗が接続された
直列接続体と電源が並列接続されてなる回路と、前記素
子接続体の両端の電圧を分圧して調整出力するための可
変抵抗または増幅して調整出力するための差動増幅器
と、この調整出力電圧と素子接続体の素子間の接続点の
電圧とを加算または減算して演算出力とする演算回路と
を有するガス検知装置であって、検知ガスがガス検知素
子と補償素子に接触していないときには、前記演算出力
が前記2素子の周囲温度に依存しないように、前記可変
抵抗の分圧比または前記差動増幅器の増幅率を調節する
ことを特徴とするガス検知装置。
3. A circuit in which a power source is connected in parallel with a series connection body in which an additional resistance having the same resistance value is connected to both sides of an element connection body in which a gas detection element and a compensation element are connected in series, and the element connection body. A variable resistor for dividing the voltage across both ends of the output for adjustment and output or a differential amplifier for amplifying and outputting for adjustment, and the addition or subtraction of this adjustment output voltage and the voltage at the connection point between the elements of the element connection body. A gas detection device having a calculation circuit for calculating a calculation output, wherein the calculation output does not depend on the ambient temperature of the two elements when the detection gas is not in contact with the gas detection element and the compensating element, A gas detection device, wherein a voltage division ratio of the variable resistor or an amplification factor of the differential amplifier is adjusted.
【請求項4】ガス検知素子と補償素子とが直列された素
子接続体の少なくとも片側に1個の付加抵抗が接続され
た第1の直列接続体と、素子接続体を1個の抵抗とみな
しときの第1の直列接続体内の抵抗と同数の抵抗が接続
され、これらの抵抗値の比が第1の直列接続体における
付加抵抗の抵抗値と基準温度でのガス検知素子と補償素
子の抵抗値の和との比に等しい第2の直列接続体と、電
源が並列接続されてなる回路と、第1の直列接続体の付
加抵抗と素子接続体の接続点の電圧と、第2の直列接続
体の第1の直列接続体の抵抗に対応する比の抵抗と他の
抵抗の接続点の電圧との差を分圧して調整出力するため
の可変抵抗または増幅して調整出力するための差動増幅
器と、この調整出力電圧と素子接続体の素子間の接続点
の電圧とを加算または減算して演算出力とする演算回路
とを有するガス検知装置であって、検知ガスがガス検知
素子と補償素子に接触していないときには、前記演算出
力が前記2素子の周囲温度に依存しないように、前記可
変抵抗の分圧比または前記差動増幅器の増幅率を調節す
ることを特徴とするガス検知装置。
4. A first series connection body in which one additional resistor is connected to at least one side of an element connection body in which a gas detection element and a compensating element are connected in series, and the element connection body is regarded as one resistance. The same number of resistances as the resistances in the first series connection body are connected, and the ratio of these resistance values is the resistance value of the additional resistance in the first series connection body and the resistance of the gas detection element and the compensation element at the reference temperature. A second series connection body having a ratio equal to the sum of the values, a circuit in which power supplies are connected in parallel, a voltage at a connection point between the additional resistance of the first series connection body and the element connection body, and a second series connection Variable resistor for dividing and adjusting and outputting the difference between the resistance of the ratio corresponding to the resistance of the first series-connected body of the connecting body and the voltage of the connection point of the other resistance or the difference for amplifying and outputting for adjustment. The dynamic amplifier and this adjusted output voltage are added to the voltage at the connection point between the elements of the element connection body. Is a gas detection device having a calculation circuit that subtracts and outputs a calculation output. When the detection gas is not in contact with the gas detection element and the compensation element, the calculation output does not depend on the ambient temperature of the two elements. In addition, the gas detection device is characterized in that the voltage division ratio of the variable resistor or the amplification factor of the differential amplifier is adjusted.
【請求項5】前記第1の直列接続体は素子接続体の両側
に抵抗値の等しい付加抵抗が接続されたものであること
を特徴とする請求項4に記載のガス検知装置。
5. The gas detection device according to claim 4, wherein the first series connection body is formed by connecting additional resistors having the same resistance value to both sides of the element connection body.
【請求項6】ガス検知素子と補償素子の直列接続の両側
に抵抗値の等しい付加抵抗が各1個接続された第1の直
列接続体と、3つの抵抗が直列接続されてなり、これら
3つの抵抗値の比が第1の直列接続体における抵抗の抵
抗値と基準温度でのガス検知素子と補償素子の抵抗値の
和と他の抵抗の抵抗値の比に順を同じくして等しい第2
の直列接続体と、電源が並列接続されてなる回路と、第
1の直列接続体の素子接続体と付加抵抗の各接続点の電
圧と対応する第2の直列接続体の各2個の抵抗の接続点
の電圧とを減算する2個の演算回路とこの演算回路の出
力差を分圧して調整出力するための可変抵抗または増幅
して調整出力するための差動増幅器と、この調整出力電
圧と素子接続体の素子間の接続点の電圧とを加算または
減算して演算出力とする演算回路とを有するガス検知装
置であって、検知ガスがガス検知素子と補償素子に接触
していないときには、前記演算出力が前記2素子の周囲
温度に依存しないように、前記可変抵抗の分圧比または
前記差動増幅器の増幅率を調節することを特徴とするガ
ス検知装置。
6. A first series connection body in which one additional resistance having the same resistance value is connected to each side of the series connection of the gas detection element and the compensation element, and three resistances are connected in series. The ratio of one resistance value is equal to the ratio of the resistance value of the resistance in the first series connection member and the resistance value of the gas detection element and the compensating element at the reference temperature, and the ratio of the resistance values of the other resistances. Two
, A circuit in which power supplies are connected in parallel, two resistors of the second series connection body corresponding to the voltage at each connection point of the element connection body of the first series connection body and the additional resistance. And two differential circuits for subtracting the voltage at the connection point, a variable resistor for dividing and adjusting and outputting the output difference of the arithmetic circuit, or a differential amplifier for amplifying and outputting for adjustment, and the adjusted output voltage. And a voltage at a connection point between the elements of the element connection body are added to or subtracted from each other to obtain a calculation output, which is a gas detection device, wherein the detection gas is not in contact with the gas detection element and the compensation element. The gas detection device is characterized in that the voltage division ratio of the variable resistor or the amplification factor of the differential amplifier is adjusted so that the operation output does not depend on the ambient temperature of the two elements.
JP09784696A 1995-10-25 1996-04-19 Gas detector Expired - Fee Related JP3555799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09784696A JP3555799B2 (en) 1995-10-25 1996-04-19 Gas detector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-277281 1995-10-25
JP27728195 1995-10-25
JP09784696A JP3555799B2 (en) 1995-10-25 1996-04-19 Gas detector

Publications (2)

Publication Number Publication Date
JPH09178687A true JPH09178687A (en) 1997-07-11
JP3555799B2 JP3555799B2 (en) 2004-08-18

Family

ID=26438980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09784696A Expired - Fee Related JP3555799B2 (en) 1995-10-25 1996-04-19 Gas detector

Country Status (1)

Country Link
JP (1) JP3555799B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337339A (en) * 2005-06-06 2006-12-14 Riken Keiki Co Ltd Hydrogen detector
JP2010164405A (en) * 2009-01-15 2010-07-29 Yazaki Corp Gas detector
JP2016050825A (en) * 2014-08-29 2016-04-11 Tdk株式会社 Gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337339A (en) * 2005-06-06 2006-12-14 Riken Keiki Co Ltd Hydrogen detector
JP2010164405A (en) * 2009-01-15 2010-07-29 Yazaki Corp Gas detector
JP2016050825A (en) * 2014-08-29 2016-04-11 Tdk株式会社 Gas sensor

Also Published As

Publication number Publication date
JP3555799B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US5753815A (en) Thermo-sensitive flow sensor for measuring flow velocity and flow rate of a gas
JP2001012988A (en) Thermal fluid sensor, fluid identifier and method thereof, flow sensor, flow rate measuring apparatus and method thereof
US9518954B2 (en) Gas sensor control device
US20070295095A1 (en) Apparatus for providing an output proportional to pressure divided by temperature (P/T)
US5140535A (en) Process, use of the same and apparatus for lambda value detection
CA1316710C (en) Combustible gas detector having temperature stabilization capability
US4609292A (en) Device and method for measuring a temperature difference
JP2810541B2 (en) Lambda sensor internal resistance measurement circuit
WO2003029759A1 (en) Flow rate measuring instrument
JP3555799B2 (en) Gas detector
KR20090083125A (en) Temperature-compensated gas measurement apparatus for nano device gas sensor and method thereof
JP3334358B2 (en) Gas detector
JP3117401B2 (en) Sensor life judgment method
JP2515247B2 (en) Zero shift compensation circuit
JP3086581B2 (en) Gas detector
JP2001188056A (en) Gas detector
JP3523323B2 (en) Gas detection circuit using contact combustion type gas sensor
JP3321315B2 (en) Atmospheric gas detector
JPH11160347A (en) Sensor circuit
JP3538593B2 (en) Gas detector
JPH07209247A (en) Gas detector with temperature compensating function forelectrochemical gas sensor
JPH0861998A (en) Temperature and wind speed measuring device
JP3646898B2 (en) Contact combustion type gas sensor constant current drive circuit
JPH07139985A (en) Thermal air flow measuring instrument
JP2003090751A (en) Flow sensor type flowmeter and calibration method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Effective date: 20040507

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100521

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110521

LAPS Cancellation because of no payment of annual fees