JP3334358B2 - Gas detector - Google Patents

Gas detector

Info

Publication number
JP3334358B2
JP3334358B2 JP21683494A JP21683494A JP3334358B2 JP 3334358 B2 JP3334358 B2 JP 3334358B2 JP 21683494 A JP21683494 A JP 21683494A JP 21683494 A JP21683494 A JP 21683494A JP 3334358 B2 JP3334358 B2 JP 3334358B2
Authority
JP
Japan
Prior art keywords
temperature
output
gas
differential amplifier
gas detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21683494A
Other languages
Japanese (ja)
Other versions
JPH0882611A (en
Inventor
徳美 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21683494A priority Critical patent/JP3334358B2/en
Publication of JPH0882611A publication Critical patent/JPH0882611A/en
Application granted granted Critical
Publication of JP3334358B2 publication Critical patent/JP3334358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、都市ガス、LPガス
あるいは灯油等を燃料とする給湯器等に備えられる不完
全燃焼検知用ガス検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas detector for detecting incomplete combustion provided in a water heater using city gas, LP gas or kerosene as fuel.

【0002】[0002]

【従来の技術】都市ガス、LPガスあるいは灯油等を燃
料とする給湯器等が不完全燃焼する場合には、一酸化炭
素ガスなどの有毒ガスが発生し、ガス中毒事故の原因と
なり兼ねない。そのような事故の防止のためには、給湯
器の煙道中に一酸化炭素ガスセンサを取り付け一酸化炭
素ガス検知を迅速に行うことは有効である。
2. Description of the Related Art When a water heater using city gas, LP gas or kerosene as a fuel burns incompletely, a toxic gas such as carbon monoxide gas is generated, which may cause a gas poisoning accident. In order to prevent such an accident, it is effective to mount a carbon monoxide gas sensor in the flue of the water heater and to quickly detect carbon monoxide gas.

【0003】給湯器の煙道中で一酸化炭素ガス検知をお
こなう場合には、一酸化炭素ガス濃度約3000ppm
に対してガス検知できればよく、検知感度濃度50pp
mと高感度で高価な一酸化炭素ガスセンサは使用できな
いが、家庭用の可燃性ガスセンサである接触燃焼式ガス
センサが使用可能である。家庭用の接触燃焼式ガスセン
サが対象としている温度範囲は−20〜40℃である
が、給湯器に適用される場合の温度範囲は70〜230
℃と高く、広域である。この温度範囲は接触燃焼式ガス
センサに組み込まれている一対のガス検知素子と温度補
償素子の温度補償範囲を越えていて、温度補償は不十分
となる。この温度範囲に対してもガス検知を可能とする
ために、別の測温素子を付加しその出力とブリッジ回路
の出力とを演算して温度補正を行っている。ガス検知素
子と温度補償素子を構成する抵抗体が白金である場合に
は、それらと同じ温度係数の測温素子として、一般温度
測定用である小型の白金薄膜抵抗体が用いられている。
ガス検知素子、温度補償素子および測温素子は、素子間
に温度差が生じないように、給湯器の煙道中に互いに近
接して設置される。
When detecting carbon monoxide gas in the flue of a water heater, the concentration of carbon monoxide gas is about 3000 ppm.
As long as the gas can be detected, the detection sensitivity concentration is 50pp
Although a highly sensitive and expensive carbon monoxide gas sensor cannot be used, a contact combustion type gas sensor which is a flammable gas sensor for home use can be used. The temperature range targeted by the household contact combustion type gas sensor is −20 to 40 ° C., but the temperature range when applied to a water heater is 70 to 230.
It is as high as ℃ and it is a wide area. This temperature range exceeds the temperature compensation range of the pair of gas detection element and temperature compensation element incorporated in the catalytic combustion type gas sensor, and the temperature compensation is insufficient. In order to enable gas detection even in this temperature range, another temperature measuring element is added and the output of the temperature measuring element and the output of the bridge circuit are calculated to perform temperature correction. When the resistors constituting the gas sensing element and the temperature compensating element are platinum, a small platinum thin film resistor for general temperature measurement is used as a temperature measuring element having the same temperature coefficient.
The gas detecting element, the temperature compensating element and the temperature measuring element are installed close to each other in the flue of the water heater so that no temperature difference occurs between the elements.

【0004】この様な従来の高温用ガス検知回路図を図
3に示す。ガス検知素子1と温度補償素子2はバランス
用抵抗11、12と共にブリッジ回路の4本の枝辺を成
している。ブリッジ回路には電源Eが接続されている。
測温素子3とバランス抵抗13の直列接続体の両端はブ
リッジ回路の電源Eに接続されている。ブリッジ回路の
ガス検知信号出力は第1の差動増幅器24に接続されて
いる。測温素子3の抵抗13との接続点に生ずる温度信
号と第1の差動増幅器24の出力とは第2の差動増幅器
25に入力される。第2の差動増幅器25の出力がガス
検知信号である。差動増幅器24、25はバッファアン
プであってもよい。
FIG. 3 shows a diagram of such a conventional high-temperature gas detection circuit. The gas detecting element 1 and the temperature compensating element 2 together with the balancing resistors 11 and 12 form four branches of a bridge circuit. A power supply E is connected to the bridge circuit.
Both ends of the series connection of the temperature measuring element 3 and the balance resistor 13 are connected to a power source E of a bridge circuit. The gas detection signal output of the bridge circuit is connected to the first differential amplifier 24. The temperature signal generated at the connection point of the temperature measuring element 3 with the resistor 13 and the output of the first differential amplifier 24 are input to the second differential amplifier 25. The output of the second differential amplifier 25 is a gas detection signal. The differential amplifiers 24 and 25 may be buffer amplifiers.

【0005】第1の差動増幅器24の出力すなわち第1
の温度補償がなされたガス検知信号は高温では温度補
償が不足なので、さらに第2の差動増幅器25に入力さ
れ同時に入力される測温素子からの温度信号と比較演算
される。こうして、第2の温度補償が行われたガス検知
信号が高温用ガス検知回路の出力端子に出力される。一
般に、ガス検知素子が検知対象ガスに接触していないと
きのブリッジ回路またはガス検知回路の出力を0点出力
と言う。通常、25℃で0点出力が0となるように抵抗
11、12、13を調整しておく。実際には、ガス検知
素子と温度補償素子の熱放射率が異なるため、高温にな
るに従って0点出力の0からのずれは大きくなってく
る。
The output of the first differential amplifier 24, ie, the first
Since the temperature compensation is not sufficient in the high temperature range , the gas detection signal subjected to the temperature compensation is compared with the temperature signal from the temperature measuring element which is further input to the second differential amplifier 25 and input simultaneously. Thus, the gas detection signal subjected to the second temperature compensation is output to the output terminal of the high-temperature gas detection circuit. Generally, an output of the bridge circuit or the gas detection circuit when the gas detection element is not in contact with the gas to be detected is referred to as a zero-point output. Normally, the resistances 11, 12, and 13 are adjusted so that the zero point output becomes 0 at 25 ° C. Actually, since the thermal emissivity of the gas detecting element and that of the temperature compensating element are different, the deviation of the zero point output from zero increases as the temperature increases.

【0006】ガス検知動作は、誤報を避けるため、0点
出力が飽和値の90%に達してから開始する。従って、
0点出力が迅速に飽和値に達することおよび0点出力が
使用温度で常に小さいことが望ましい。
The gas detection operation is started after the zero point output reaches 90% of the saturation value in order to avoid false alarms. Therefore,
It is desirable that the zero-point output quickly reach the saturation value and that the zero-point output always be small in the operating temperature range .

【0007】[0007]

【発明が解決しようとする課題】上記の温度補正法で
は、従来ブリッジ回路に測温素子を付加した回路におい
て、ブリッジ回路で行われた第1の温度補償に対して、
これと温度に対する性質の異なる測温素子からの温度信
号を演算して第2の温度補償を行っている。このこと
は、温度に対して異なる性質のカーブの間で温度補償を
おこなうことであり、その結果、0点出力の高温でのず
れが大きくなると言う問題があった。
According to the above-described temperature correction method, in a circuit in which a temperature measuring element is added to a conventional bridge circuit, the first temperature compensation performed by the bridge circuit does not occur.
A second temperature compensation is performed by calculating a temperature signal from a temperature measuring element having a different property with respect to the temperature. This means that temperature compensation is performed between curves having different properties with respect to temperature. As a result, there is a problem that the deviation of the zero-point output at a high temperature becomes large.

【0009】この発明の目的は、前記課題を解決し、温
度補償が充分になされ0点出力の高温でのずれの小さい
ガス検知装置を提供することにある。
It is an object of the present invention to solve the above-mentioned problems and to provide a gas detecting device which has a sufficient temperature compensation and a small deviation at a high temperature of zero point output.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、ガス検知素子と温度補償素子と測温素子とにそれ
ぞれ抵抗を直列接続し、これら直列接続体を共通の電源
に並列接続し、ガス検知素子と測温素子の各々の抵抗と
の接続点に生ずる信号を第1の差動増幅器で演算し、温
度補償素子と測温素子の各々の抵抗との接続点生ずる
信号を第2の差動増幅器で演算し、第1および第2の差
動増幅器の出力を第3の差動増幅器で演算し、その出力
をガス検知信号出力とするものとする。
In order to achieve the above object, resistors are connected in series to the gas detecting element, the temperature compensating element and the temperature measuring element, respectively, and these serially connected bodies are connected in parallel to a common power supply. , a signal generated at a connection point between the resistor of each of the temperature sensing element measuring the gas sensing element calculated by the first differential amplifier, a signal generated at a connection point between the resistor of each of the temperature measuring element and the temperature compensating element first 2, and the outputs of the first and second differential amplifiers are calculated by the third differential amplifier, and the output is used as the gas detection signal output.

【0012】[0012]

【作用】ガス検知装置において、前述のようなガス検知
回路とすれば、ガス検知素子からの信号と測温素子から
の信号とを入力とする差動増幅器出力の対温度カーブ
と、温度補償素子からの信号と測温素子からの信号とを
入力とする差動増幅器出力の対温度カーブとは相似形に
近いので、これらをさらに差動増幅器で演算してその差
を小さくすること、すなわち温度補正を行うことは容易
となる。
In the gas detection device, if the gas detection circuit described above is used, a temperature curve of a differential amplifier output having a signal from the gas detection element and a signal from the temperature measurement element as inputs, and a temperature compensation element Since the temperature curve of the output of the differential amplifier having the signal from the temperature sensor and the signal from the temperature measuring element as input is close to a similar shape, the difference between them is further reduced by calculating with a differential amplifier. It is easy to make corrections.

【0013】[0013]

【実施例】0点出力の温度変動を改善した高温用ガス検
知回路の実施例について説明する。この発明の高温用ガ
ス検知回路図を図1に示す。この回路は、ガス検知素子
1と温度補償素子2と測温素子3にそれぞれ抵抗11、
12、13を直列接続し、これら直列接続体を共通の電
源に並列接続し、ガス検知素子1と測温素子3の各々の
端子に生ずる信号を第1の差動増幅器21で演算し、温
度補償素子2と測温素子3の各々の他の端子に生ずる信
号を第2の差動増幅器22で演算し、第1および第2の
差動増幅器21、22の出力を第3の差動増幅器23で
演算し、その出力をガス検知信号出力とし出力端子31
に出力する。この回路を測温素子として従来の白金測温
抵抗体を用いたガスセンサで組み立て、25℃で0点出
力が0となるようそれぞれの抵抗値を調節した。ガスセ
ンサを測定の温度に設定した恒温槽に入れ、0点出力の
飽和値を測定した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A description will be given of an embodiment of a high-temperature gas detection circuit in which the temperature fluctuation of the zero point output is improved. FIG. 1 shows a high-temperature gas detection circuit diagram of the present invention. In this circuit, a resistance 11, a resistance 11, a temperature compensating element 2, and a
12 and 13 are connected in series, these series-connected bodies are connected in parallel to a common power supply, and a signal generated at each terminal of the gas detecting element 1 and the temperature measuring element 3 is operated by the first differential amplifier 21 to obtain a temperature. A signal generated at each of the other terminals of the compensating element 2 and the temperature measuring element 3 is operated by a second differential amplifier 22, and outputs of the first and second differential amplifiers 21 and 22 are output to a third differential amplifier. 23, the output is used as a gas detection signal output, and the output terminal 31
Output to This circuit was assembled with a gas sensor using a conventional platinum temperature measuring resistor as a temperature measuring element, and the respective resistance values were adjusted so that the zero point output became 0 at 25 ° C. The gas sensor was placed in a thermostatic chamber set at the measurement temperature, and the saturation value of the zero-point output was measured.

【0017】その結果の0点出力の温度依存線図を図2
に示す。横軸は周囲温度(℃目盛り)、縦軸は0点出力
でmVである。カーブcはこの発明の測温素子および従
来の白金薄膜抵抗体測温素子の場合、カーブdは従来の
高温用ガス検知回路の場合である。この図より、例えば
周囲温度250℃では、従来の高温用ガス検知回路では
0点出力は8mVであるのに対し、この発明のそれでは
0点出力は2mVと小さくなり、改善されたことが判
る。
FIG. 2 is a graph showing the temperature dependence of the resulting zero-point output.
Shown in The horizontal axis is the ambient temperature (scale on ° C.), and the vertical axis is mV at zero point output. Curve c shows the case of the temperature measuring element of the present invention and the conventional platinum thin film resistor temperature measuring element, and curve d shows the case of the conventional high-temperature gas detection circuit. From this figure, it can be seen that, for example, at an ambient temperature of 250 ° C., the zero-point output is 8 mV in the conventional high-temperature gas detection circuit, whereas the zero-point output is reduced to 2 mV in the case of the present invention, which is an improvement.

【0019】[0019]

【発明の効果】【The invention's effect】

【0020】前述のようなガス検知回路とすれば、ガス
検知素子からの信号と測温素子からの信号からの信号の
差動増幅器出力と、温度補償素子からの信号と測温素子
からの信号との差動増幅器出力との、互いに対温度相似
カーブにたいして差動増幅器で演算するので、0点出力
の高温でのずれの小さいガス検知装置を得ることができ
る。
With the gas detection circuit described above, the differential amplifier output of the signal from the gas detection element and the signal from the temperature measurement element, the signal from the temperature compensation element and the signal from the temperature measurement element Since the differential amplifier calculates the similarity curve with respect to the temperature of the differential amplifier output from the differential amplifier output from the differential amplifier output, a gas detection device having a zero-point output and a small deviation at high temperature can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高温用ガス検知回路図FIG. 1 is a diagram of a high-temperature gas detection circuit according to the present invention.

【図2】0点出力の温度依存線図FIG. 2 is a temperature dependence diagram of a zero-point output.

【図3】従来の高温用ガス検知回路図FIG. 3 is a diagram of a conventional high-temperature gas detection circuit.

【符号の説明】[Explanation of symbols]

1 ガス検知素子 2 温度補償素子 3 測温素子 11 抵抗 12 抵抗 13 抵抗 21 第1の差動増幅器 22 第2の差動増幅器 23 第3の差動増幅器 14 抵抗 15 抵抗 16 抵抗 24 第1の差動増幅器 25 第2の差動増幅器 31 出力端子 E 電源 a 本発明の測温素子の0点出力 b 従来の測温素子の0点出力 c 本発明の高温用ガス検知回路での0点出力 d 従来の高温用ガス検知回路での0点出力 e 本発明の温度センサの0点出力 f 従来の温度センサの0点出力 DESCRIPTION OF SYMBOLS 1 Gas detection element 2 Temperature compensation element 3 Temperature measuring element 11 Resistance 12 Resistance 13 Resistance 21 First differential amplifier 22 Second differential amplifier 23 Third differential amplifier 14 Resistance 15 Resistance 16 Resistance 24 First difference Dynamic amplifier 25 Second differential amplifier 31 Output terminal E Power supply a 0-point output of temperature measuring element of the present invention b 0-point output of conventional temperature measuring element c 0-point output of high-temperature gas detection circuit of the present invention d 0-point output of conventional high-temperature gas detection circuit e 0-point output of temperature sensor of the present invention f 0-point output of conventional temperature sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガス検知素子と温度補償素子と測温素子と
にそれぞれ抵抗を直列接続し、これら直列接続体を共通
の電源に並列接続し、ガス検知素子と測温素子の各々の
抵抗との接続点に生ずる信号を第1の差動増幅器で演算
し、温度補償素子と測温素子の各々の抵抗との接続点
生ずる信号を第2の差動増幅器で演算し、第1および第
2の差動増幅器の出力を第3の差動増幅器で演算し、そ
の出力をガス検知信号出力とすることを特徴とするガス
検知装置。
A resistor is connected in series to each of a gas detecting element, a temperature compensating element, and a temperature measuring element. of the signal generated at the connection point calculated by the first differential amplifier, it calculates the <br/> generated signal to the connection point of the resistance of each of the temperature measuring element and the temperature compensating element in the second differential amplifier, A gas detection device wherein the outputs of the first and second differential amplifiers are operated by a third differential amplifier, and the output is used as a gas detection signal output.
JP21683494A 1994-09-12 1994-09-12 Gas detector Expired - Fee Related JP3334358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21683494A JP3334358B2 (en) 1994-09-12 1994-09-12 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21683494A JP3334358B2 (en) 1994-09-12 1994-09-12 Gas detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000392299A Division JP3538593B2 (en) 2000-12-25 2000-12-25 Gas detector

Publications (2)

Publication Number Publication Date
JPH0882611A JPH0882611A (en) 1996-03-26
JP3334358B2 true JP3334358B2 (en) 2002-10-15

Family

ID=16694634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21683494A Expired - Fee Related JP3334358B2 (en) 1994-09-12 1994-09-12 Gas detector

Country Status (1)

Country Link
JP (1) JP3334358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838255B1 (en) * 2007-02-02 2008-06-17 충주대학교 산학협력단 Ndir gas sensor with self temperature compensation
CN104443943B (en) * 2014-10-14 2017-03-15 深圳市利恩信息技术有限公司 A kind of beverage bottle recovering device

Also Published As

Publication number Publication date
JPH0882611A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
US11467110B2 (en) Method for operating a sensor device
JP6344101B2 (en) Gas detector
JP3278672B2 (en) Heat conduction detector
US4609292A (en) Device and method for measuring a temperature difference
US20070274868A1 (en) Combustible gas pellistor
JP3334358B2 (en) Gas detector
KR20090083125A (en) Temperature-compensated gas measurement apparatus for nano device gas sensor and method thereof
JP3538593B2 (en) Gas detector
JPH11183422A (en) Gas detector
JP3555799B2 (en) Gas detector
JP3117401B2 (en) Sensor life judgment method
JP3086581B2 (en) Gas detector
JP3523323B2 (en) Gas detection circuit using contact combustion type gas sensor
JPH049574Y2 (en)
JP3166565B2 (en) Infrared detection circuit
JPH11160347A (en) Sensor circuit
EP0599645A2 (en) Zero shift compensation circuit
JP4711332B2 (en) Hydrogen detector
JPH06242046A (en) Temperature correction circuit for gas sensor
JP3113226B2 (en) Combustion state determination device
JP4575862B2 (en) Gas detector
JP3167549B2 (en) Gas detector
JPH095283A (en) Gas concentration detector
CN115452896A (en) Thermal conductivity type hydrogen sensor detection circuit with temperature compensation
JPH0989672A (en) Radiation heat sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees