JP3557838B2 - Pyroelectric infrared detector - Google Patents

Pyroelectric infrared detector Download PDF

Info

Publication number
JP3557838B2
JP3557838B2 JP07385297A JP7385297A JP3557838B2 JP 3557838 B2 JP3557838 B2 JP 3557838B2 JP 07385297 A JP07385297 A JP 07385297A JP 7385297 A JP7385297 A JP 7385297A JP 3557838 B2 JP3557838 B2 JP 3557838B2
Authority
JP
Japan
Prior art keywords
operational amplifier
input terminal
turned
capacitor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07385297A
Other languages
Japanese (ja)
Other versions
JPH10267759A (en
Inventor
光輝 畑谷
裕司 高田
慎司 坂本
俊夫 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP07385297A priority Critical patent/JP3557838B2/en
Priority to KR1019970059135A priority patent/KR100301747B1/en
Priority to TW086117123A priority patent/TW350024B/en
Priority to US08/972,867 priority patent/US5949072A/en
Priority to DE69739756T priority patent/DE69739756D1/en
Priority to CN97126420A priority patent/CN1124474C/en
Priority to EP97203603A priority patent/EP0867700B1/en
Publication of JPH10267759A publication Critical patent/JPH10267759A/en
Priority to HK98119232.1A priority patent/HK1015028A1/en
Application granted granted Critical
Publication of JP3557838B2 publication Critical patent/JP3557838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焦電素子を用いて、人体から輻射される赤外線エネルギーを検出し、人体の存在や移動の検知を行なったり、輻射エネルギーや室温を検出することで放射温度計として機能する赤外線検出装置に関し、特にその入力部に用いられる電流電圧変換回路の電源投入時の動作特性を改善したものである。
【0002】
【従来の技術】
本出願人は、焦電型の赤外線検出装置のS/N比を改善させるため、コンデンサのインピーダンス特性を利用した赤外線検出装置を開発していた
が、本発明は、この赤外線検出装置に採用されている電流電圧変換回路の電源投入時における立ち上がり特性を更に改善したものである。
【0003】
この電流電圧変換回路は、焦電素子が赤外線を感知したとき焦電素子に生じる信号電流を、帰還コンデンサを付加した演算増幅器によって電圧信号に変換するもので、演算増幅器には、低域の安定化を図るため直流帰還回路を付加した基本構成をなしている。
【0004】
【従来の技術】
本出願人は、焦電型の赤外線検出装置のS/N比を改善させるため、コンデンサのインピーダンス特性を利用した赤外線検出装置を開発したが、本発明は、この赤外線検出装置に採用されている電流電圧変換回路の電源投入時における立ち上がり特性を改善したものである。
【0005】
1,2は演算増幅器、Vrは演算増幅器1,2の基準電位、Cfは帰還容量、3は焦電素子、Riは高抵抗、R1は抵抗、C1はコンデンサであり、抵抗R1とコンデンサC1及び演算増幅器2によって積分回路による直流帰還回路を構成している。図4は、このような電流電圧変換回路における演算増幅器の入力段の内部回路を示している。
【0006】
この図に見るように、演算増幅器1の入力ノード側と出力ノード側には、同じ特性の入力トランジスタM1,M2(図ではいずれもPMOSトランジスタ)を設けており、入力ノード側には、入力トランジスタのゲート・ソース間容量Cgs、ゲート・ドレイン間容量Cgd、ゲート・バルク間容量Cgbが存在する。通常は、このような入力トランジスタのゲートサイズはフリッカノイズを抑制するために、かなり大きなサイズになっているが、演算増幅器の電源投入時の動作特性を考える上では、ゲート・バルク間容量Cgbを考慮すればよい。したがって、今、このゲート・バルク間容量CgbをCgとして演算増幅器1の入力ゲート容量として規定すると、図5に示したような等価回路で示される。
【0007】
このような電流電圧変換回路における電源投入時の動作を説明すると、入力ノードの電位はすぐに基準電位Vrと同電位になろうとするが、入力ノードの充電は演算増幅器2からの経路を通じてしか存在しない。しかし、演算増幅器1と演算増幅器2との間には高抵抗Riが存在するため、その充電電流は小さく、そのため、電源投入直後は、入力ノードはその他の容量間の充放電により、Vrと同電位に立ち上がる。
【0008】
また、焦電素子3は入力ノードとグランド間に接続されているので、その素子容量Csの入力ノード側にはq1=Cs・Vrの電荷が蓄積される。
【0009】
一方、演算増幅器1の入力ゲート容量Cgは入力ノードとノードBの間に接続されているが、定常状態では入力ノードの電位Vrは、ノードBの電位Vbより低くなるのでq3=Cg・(Vb−Vr)の電荷が入力ノード側に放出され、その過不足分が帰還容量Cfから補足されることになる。すなわち、q2=q1−q3の電荷が帰還容量Cfから入力ノード側に放出され、その結果、出力ノードと入力ノードの間に△V=q2/Cfの電位差が生じる。すると、この電位差により帰還回路が働き、高抵抗Riを介してq2分の電荷が充電され、演算増幅器の入力ノードと出力ノードの電位が一致して定常状態に至り、正常な負帰還動作がなされる。
【0010】
【発明が解決しようとする課題】
しかしながら、このような電流電圧変換回路では、Riに高抵抗を使用しているため、入力ゲート容量の充電に長い時間を要し、そのため電源投入から定常時に至るまでの時間が非常に長くなるという現象が改善すべき問題点として残されている。
【0011】
本発明は、上述のような点に鑑みてなされたものであり、その目的とするところは、焦電型赤外線検出装置の電流電圧変換回路の電源投入時の立ち上がり動作を迅速に行うことにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明では、次のような解決手段を提案している。すなわち、請求項1では、帰還容量を付加した第1の演算増幅器の反転入力端子に焦電素子を接続し、熱線の感知時に焦電素子に生じる信号電流を電圧信号に変換して出力させる電流電圧変換回路を有した焦電型赤外線検出装置において、上記電流電圧変換回路は、上記第1の演算増幅器の非反転入力端子には基準電圧を印加し、かつ、上記第1の演算増幅器の出力端子を、第2の演算増幅器の非反転入力端子に接続するとともに、第2の演算増幅器の反転入力端子には抵抗を介して基準電圧を印加させ、この第2の演算増幅器の出力端子と反転入力端子との間にコンデンサを接続して積分回路を構成し、さらに上記第2の演算増幅器の出力端子を高抵抗を介して、上記第1の演算増幅器の反転入力端子に接続した構成とされており、上記第1の演算増幅器に付加された上記帰還容量にスイッチング素子を並列に接続して、このスイッチング素子を電源投入時にはオンさせて、上記第1の演算増幅器が安定な状態になるまではそのオン状態を保持して上記帰還容量を短絡させる構成としている。
【0013】
このような焦電型赤外線検出装置では、電源投入時は、演算増幅器に付加した帰還容量を短絡させて、演算増幅器の入力ノードに直接直流電源を供給して急速に充電させ、定常状態に至った時点で短絡を停止させる。
【0014】
請求項2では、スイッチング素子を、ゲートを有したMOSトランジスタで構成し、かつ直流電源に抵抗とコンデンサとを接続した簡易な構成の遅延回路に接続しているので、電源投入後、コンデンサが所定の電圧レベルに充電されるまでスイッチング素子をオンさせて帰還容量を短絡させ、所定の電圧レベルに達した後は、スイッチング素子を自動的にオフさせることが出来る。
【0015】
【発明の実施の形態】
以下、本発明の一実施例を、回路設計時に行ったシミュレーション結果を用いて説明する。
【0016】
図1は、この実施例を示した回路図であるが、スイッチング素子TA,TBと、遅延回路41とからなる回路4以外の部分は、図3において説明した構成と同じである。
【0017】
すなわち、図1において、Cf=10pF,Ri=1TΩ,R1=2.4GΩ,C1=10nF,Cs=2.68pF,入力トランジスタのサイズW/L=200μm/40μmに設定し、電源投入した時の動作特性をシミュレーションさせた。回路4は帰還容量Cfに並列に付加されている。
【0018】
この回路4は、帰還容量Cfに2つのスイッチング素子TA,TBを並列に接続し、そのスイッチング素子TA,TBのゲートに抵抗RとコンデンサCを接続して構成された遅延回路41を接続し、この遅延回路41に直流電源Vccを供給している。2つのスイッチング素子TA,TBはPMOSトランジスタで構成しているが、これに限定されない。
【0019】
図2は、この実施例の回路における電源投入時のシミュレーション結果を示す。この回路の回路定数は図3のシミュレーション時と同じとした。
【0020】
図2(C)において、Vrは基準電位、Vccは直流電源電位、Vgはスイッチング素子TA,TBのゲート電位を示している。また、図2(B)はスイッチング素子TA,TBに流れる電流iを示し、図2(A)のVoutは出力ノードの電位を、Vinは入力ノードの電位を示している。
【0021】
この実施例の回路では、電源投入直後は、遅延回路41のコンデンサの出力端子の電圧は遅れて立ち上がるので、スイッチング素子であるPMOSトランジスタのゲート電位Vgがオフレベルに達するまでは、オン状態を保持し、それによって入力ゲート容量を急速に充放電する。
【0022】
その結果、図2(A)に見るように、電源が完全に立ち上がった時には、既に、出力ノードの電位Voutも安定していることがわかる。
【0023】
以上のような本発明は、帰還容量を用いた演算増幅器を使用して、焦電素子の出力電流を出力電圧に変換する回路のすべてに適用でき、電源投入時における演算増幅器の入力段の等価容量を、高抵抗を用いて充電放電を行うものに限定されないことはいうまでもない。
【0024】
【発明の効果】
本発明によれば、帰還容量を付加した演算増幅器の入力端子に焦電素子を接続して構成される、既に存在する電流電圧変換回路に、簡易なスイッチング回路を付加するだけで、電源投入時の動作特性の改善されたS/N比の良好な電流電圧変換回路を実現することができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す回路構成図。
【図2】本発明の電源投入時におけるシミュレーション結果を示すグラフであり、(A)は入力、出力ノードの電圧変化を示す図、(B)は各容量についての電荷量の変化を示す図、(C)は電源電位、基準電位、スイッチング素子のゲート電位の変化を示す図。
【図3】帰還容量を付加した演算増幅器を用いて構成した、電流電圧変換回路の基本構成を示す図。
【図4】演算増幅器の入力段の概略構成図。
【図5】演算増幅器の電源立上げ時の動作を説明する等価回路図である。
【符号の説明】
1,2・・・演算増幅器
3・・・焦電素子
TA,TB・・・スイッチング素子
41・・・遅延回路
C・・・コンデンサ
R・・・抵抗
Cs・・・焦電素子の素子容量
Cf・・・帰還容量
Cg・・・演算増幅器の入力ゲート容量
Ri・・・高抵抗
Vcc・・・直流電源
Vr・・・基準電源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses a pyroelectric element, detects infrared energy radiated from the human body, detects the presence or movement of the human body, and detects infrared energy or room temperature to function as a radiation thermometer. The present invention relates to a device in which the operating characteristics of a current-to-voltage conversion circuit used in an input section when the power is turned on are improved.
[0002]
[Prior art]
The present applicant has developed an infrared detector using the impedance characteristic of a capacitor in order to improve the S / N ratio of a pyroelectric infrared detector, but the present invention is applied to this infrared detector. In this case, the rising characteristic of the current-to-voltage converter circuit when the power is turned on is further improved.
[0003]
This current-voltage conversion circuit converts a signal current generated in the pyroelectric element when the pyroelectric element senses infrared rays into a voltage signal by an operational amplifier to which a feedback capacitor is added. It has a basic configuration in which a DC feedback circuit is added to achieve the realization.
[0004]
[Prior art]
The present applicant has developed an infrared detector using the impedance characteristic of a capacitor in order to improve the S / N ratio of a pyroelectric infrared detector. The present invention is employed in this infrared detector. This is an improvement in the rising characteristics of the current-voltage conversion circuit when the power is turned on.
[0005]
Reference numerals 1 and 2 denote operational amplifiers, Vr denotes a reference potential of the operational amplifiers 1 and 2, Cf denotes a feedback capacitance, 3 denotes a pyroelectric element, Ri denotes a high resistance, R1 denotes a resistor, and C1 denotes a capacitor. The operational amplifier 2 constitutes a DC feedback circuit using an integrating circuit. FIG. 4 shows an internal circuit of an input stage of an operational amplifier in such a current-voltage conversion circuit.
[0006]
As shown in this figure, input transistors M1 and M2 (both are PMOS transistors in the figure) having the same characteristics are provided on the input node side and output node side of the operational amplifier 1, and the input transistor side is provided on the input node side. The gate-source capacitance Cgs, the gate-drain capacitance Cgd, and the gate-bulk capacitance Cgb. Normally, the gate size of such an input transistor is considerably large in order to suppress flicker noise. However, in consideration of the operation characteristics at the time of turning on the power of the operational amplifier, the gate-bulk capacitance Cgb is set to be large. It should be taken into account. Therefore, if the gate-bulk capacitance Cgb is defined as Cg as the input gate capacitance of the operational amplifier 1, an equivalent circuit as shown in FIG. 5 is obtained.
[0007]
The operation at the time of turning on the power in such a current-voltage conversion circuit will be described. The potential of the input node immediately tries to become the same as the reference potential Vr, but the charging of the input node exists only through the path from the operational amplifier 2. do not do. However, since the high resistance Ri exists between the operational amplifier 1 and the operational amplifier 2, the charging current is small. Therefore, immediately after the power is turned on, the input node is charged and discharged between the other capacitors to the same level as Vr. Rise to potential.
[0008]
Further, since the pyroelectric element 3 is connected between the input node and the ground, an electric charge of q1 = Cs · Vr is accumulated on the input node side of the element capacitance Cs.
[0009]
On the other hand, the input gate capacitance Cg of the operational amplifier 1 is connected between the input node and the node B. In a steady state, the potential Vr of the input node becomes lower than the potential Vb of the node B, so that q3 = Cg · (Vb -Vr) is discharged to the input node side, and the excess or deficiency is captured from the feedback capacitance Cf. That is, the charge of q2 = q1-q3 is released from the feedback capacitance Cf to the input node side, and as a result, a potential difference of ΔV = q2 / Cf occurs between the output node and the input node. Then, the feedback circuit operates by this potential difference, and the electric charge for q2 is charged through the high resistance Ri, the potentials of the input node and the output node of the operational amplifier coincide, and a steady state is reached, and a normal negative feedback operation is performed. You.
[0010]
[Problems to be solved by the invention]
However, in such a current-voltage conversion circuit, since a high resistance is used for Ri, it takes a long time to charge the input gate capacitance, and therefore the time from power-on to a steady state becomes extremely long. The phenomenon remains as a problem to be improved.
[0011]
The present invention has been made in view of the above points, and an object of the present invention is to quickly perform a startup operation at the time of turning on a power supply of a current-voltage conversion circuit of a pyroelectric infrared detection device. .
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following solution. That is, according to the first aspect, a pyroelectric element is connected to an inverting input terminal of the first operational amplifier to which a feedback capacitance is added, and a signal current generated in the pyroelectric element when a heat ray is detected is converted into a voltage signal and output. In the pyroelectric infrared detector having a voltage conversion circuit, the current-voltage conversion circuit applies a reference voltage to a non-inverting input terminal of the first operational amplifier, and outputs an output of the first operational amplifier. A terminal is connected to the non-inverting input terminal of the second operational amplifier, and a reference voltage is applied to the inverting input terminal of the second operational amplifier via a resistor. A capacitor is connected between the input terminal and the input terminal to form an integrating circuit, and the output terminal of the second operational amplifier is connected to the inverting input terminal of the first operational amplifier via a high resistance. And the above A switching element is connected in parallel to the above-mentioned feedback capacitor added to the operational amplifier, and the switching element is turned on when the power is turned on, and is kept on until the first operational amplifier is in a stable state. Then, the feedback capacitance is short-circuited.
[0013]
In such a pyroelectric infrared detection device, when the power is turned on, the feedback capacitance added to the operational amplifier is short-circuited, DC power is directly supplied to the input node of the operational amplifier, and rapid charging is performed. Stop the short circuit at the point of time.
[0014]
According to claim 2, the switching elements, and a MOS transistor having a gate, and since the connection to the delay circuit of a simple structure that connects the resistor and the capacitor to the DC power source, after power capacitors predetermined The switching element is turned on until the battery is charged to the predetermined voltage level, the feedback capacitance is short-circuited, and after reaching the predetermined voltage level, the switching element can be automatically turned off.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described using the results of a simulation performed during circuit design.
[0016]
FIG. 1 is a circuit diagram showing this embodiment. The configuration other than the circuit 4 including the switching elements TA and TB and the delay circuit 41 is the same as the configuration described in FIG.
[0017]
That is, in FIG. 1, when Cf = 10 pF, Ri = 1 TΩ, R1 = 2.4 GΩ, C1 = 10 nF, Cs = 2.68 pF, the size of the input transistor W / L = 200 μm / 40 μm, and the power is turned on. The operating characteristics were simulated. The circuit 4 is added in parallel to the feedback capacitance Cf.
[0018]
In this circuit 4, two switching elements TA and TB are connected in parallel to a feedback capacitance Cf, and a delay circuit 41 configured by connecting a resistor R and a capacitor C to the gates of the switching elements TA and TB is connected. The DC power supply Vcc is supplied to the delay circuit 41. Although the two switching elements TA and TB are constituted by PMOS transistors, they are not limited to this.
[0019]
FIG. 2 shows a simulation result when the power is turned on in the circuit of this embodiment. The circuit constants of this circuit were the same as in the simulation of FIG.
[0020]
In FIG. 2C, Vr represents a reference potential, Vcc represents a DC power supply potential, and Vg represents a gate potential of the switching elements TA and TB. FIG. 2B shows the current i flowing through the switching elements TA and TB. Vout in FIG. 2A shows the potential of the output node, and Vin shows the potential of the input node.
[0021]
In the circuit of this embodiment, immediately after the power is turned on, the voltage at the output terminal of the capacitor of the delay circuit 41 rises with a delay. As a result, the input gate capacitance is rapidly charged and discharged.
[0022]
As a result, as shown in FIG. 2A, it is understood that the potential Vout of the output node is already stable when the power supply is completely turned on.
[0023]
The present invention as described above can be applied to all circuits that convert the output current of a pyroelectric element to an output voltage by using an operational amplifier using a feedback capacitor, and is equivalent to the input stage of the operational amplifier when power is turned on. It goes without saying that the capacity is not limited to the one that performs charging and discharging using a high resistance.
[0024]
【The invention's effect】
According to the present invention, when a power supply is turned on simply by adding a simple switching circuit to an existing current-voltage conversion circuit configured by connecting a pyroelectric element to an input terminal of an operational amplifier to which a feedback capacitance is added, And a current-voltage conversion circuit having an improved S / N ratio and an improved S / N ratio can be realized.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of the present invention.
FIGS. 2A and 2B are graphs showing simulation results at the time of power-on according to the present invention; FIG. 2A is a diagram showing voltage changes at input and output nodes; FIG. FIG. 6C is a diagram showing changes in a power supply potential, a reference potential, and a gate potential of a switching element.
FIG. 3 is a diagram showing a basic configuration of a current-to-voltage conversion circuit configured using an operational amplifier to which a feedback capacitance is added.
FIG. 4 is a schematic configuration diagram of an input stage of an operational amplifier.
FIG. 5 is an equivalent circuit diagram for explaining the operation of the operational amplifier when the power is turned on.
[Explanation of symbols]
1, 2,... Operational amplifier 3, pyroelectric elements TA, TB, switching element 41, delay circuit C, capacitor R, resistance Cs, element capacitance Cf of pyroelectric element ... Feedback capacitance Cg ... Input gate capacitance Ri of operational amplifier ... High resistance Vcc ... DC power supply Vr ... Reference power supply

Claims (2)

帰還容量を付加した第1の演算増幅器の反転入力端子に焦電素子を接続し、熱線の感知時に焦電素子に生じる信号電流を電圧信号に変換して出力させる電流電圧変換回路を有した焦電型赤外線検出装置において、
上記電流電圧変換回路は、上記第1の演算増幅器の非反転入力端子には基準電圧を印加し、かつ、上記第1の演算増幅器の出力端子を、第2の演算増幅器の非反転入力端子に接続するとともに、第2の演算増幅器の反転入力端子には抵抗を介して基準電圧を印加させ、この第2の演算増幅器の出力端子と反転入力端子との間にコンデンサを接続して積分回路を構成し、さらに上記第2の演算増幅器の出力端子を高抵抗を介して、上記第1の演算増幅器の反転入力端子に接続した構成とされており
上記第1の演算増幅器に付加された上記帰還容量にスイッチング素子を並列に接続して、このスイッチング素子を電源投入時にはオンさせて、上記第1の演算増幅器が安定な状態になるまではそのオン状態を保持して上記帰還容量を短絡させる構成とした焦電型赤外線検出装置。
A pyroelectric element having a pyroelectric element connected to an inverting input terminal of a first operational amplifier to which a feedback capacitance is added, and a current-to-voltage conversion circuit for converting a signal current generated in the pyroelectric element at the time of detection of a heat ray into a voltage signal for output In the electric infrared detector,
The current-voltage conversion circuit applies a reference voltage to a non-inverting input terminal of the first operational amplifier, and connects an output terminal of the first operational amplifier to a non-inverting input terminal of a second operational amplifier. In addition, a reference voltage is applied to the inverting input terminal of the second operational amplifier via a resistor, and a capacitor is connected between the output terminal and the inverting input terminal of the second operational amplifier to form an integrating circuit. And the output terminal of the second operational amplifier is connected to the inverting input terminal of the first operational amplifier via a high resistance .
A switching element is connected in parallel to the feedback capacitor added to the first operational amplifier. The switching element is turned on when the power is turned on, and is turned on until the first operational amplifier is in a stable state. A pyroelectric infrared detection device configured to short-circuit the feedback capacitance while maintaining a state.
請求項1において、
上記スイッチング素子は、ゲートを有したMOSトランジスタで構成され、かつ直流電源に抵抗とコンデンサとを直列に接続し、コンデンサ側をグランドに接続した遅延回路が付加されており、
上記抵抗と上記コンデンサとの接続点を上記スイッチング素子のゲートに接続して、電源投入時の所定時間の間は、上記スイッチング素子をオンさせることによって上記帰還容量を短絡保持する構成としている焦電型赤外線検出装置。
In claim 1,
The switching element is constituted by a MOS transistor having a gate, and further includes a delay circuit in which a resistor and a capacitor are connected in series to a DC power supply , and a capacitor side is connected to the ground.
A connection point between the resistor and the capacitor is connected to the gate of the switching element, and the feedback capacitance is short-circuited by turning on the switching element for a predetermined time when power is turned on. Type infrared detector.
JP07385297A 1997-03-26 1997-03-26 Pyroelectric infrared detector Expired - Lifetime JP3557838B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP07385297A JP3557838B2 (en) 1997-03-26 1997-03-26 Pyroelectric infrared detector
KR1019970059135A KR100301747B1 (en) 1997-03-26 1997-11-11 Pyroelectric infrared ray sensor
TW086117123A TW350024B (en) 1997-03-26 1997-11-17 Thermoelectric infrared checking device
US08/972,867 US5949072A (en) 1997-03-26 1997-11-18 Pyroelectric infrared ray sensor
DE69739756T DE69739756D1 (en) 1997-03-26 1997-11-19 Pyroelectric infrared sensor
CN97126420A CN1124474C (en) 1997-03-26 1997-11-19 Hot electric infrared sensor
EP97203603A EP0867700B1 (en) 1997-03-26 1997-11-19 Pyroelectric infrared ray sensor
HK98119232.1A HK1015028A1 (en) 1997-03-26 1998-12-30 Pyroelectric infrared ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07385297A JP3557838B2 (en) 1997-03-26 1997-03-26 Pyroelectric infrared detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002151493A Division JP2003014540A (en) 2002-05-24 2002-05-24 Pyroelectric infrared detection apparatus

Publications (2)

Publication Number Publication Date
JPH10267759A JPH10267759A (en) 1998-10-09
JP3557838B2 true JP3557838B2 (en) 2004-08-25

Family

ID=13530105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07385297A Expired - Lifetime JP3557838B2 (en) 1997-03-26 1997-03-26 Pyroelectric infrared detector

Country Status (1)

Country Link
JP (1) JP3557838B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797366B2 (en) * 2004-11-25 2011-10-19 パナソニック電工株式会社 Pyroelectric infrared detector
JP4631537B2 (en) * 2005-05-23 2011-02-16 株式会社デンソー Sensor circuit of capacitive physical quantity sensor
JP4669740B2 (en) * 2005-05-31 2011-04-13 理研計器株式会社 Pyroelectric infrared gas detector
JP5685727B2 (en) * 2011-03-28 2015-03-18 パナソニックIpマネジメント株式会社 Infrared detection type human body detection device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60137392U (en) * 1984-02-23 1985-09-11 松下電工株式会社 Amplification circuit for hot wire detector
JPH0581670U (en) * 1992-04-13 1993-11-05 オプテックス株式会社 Infrared detector
JPH0953985A (en) * 1995-08-18 1997-02-25 Murata Mfg Co Ltd Signal processing circuit for charge generation type detection element
JP3414085B2 (en) * 1995-11-27 2003-06-09 松下電工株式会社 Infrared detector
JP3470546B2 (en) * 1997-02-25 2003-11-25 松下電工株式会社 Infrared detector
JP3472907B2 (en) * 1997-04-09 2003-12-02 松下電工株式会社 Pyroelectric infrared detector
JP3472906B2 (en) * 1997-04-09 2003-12-02 松下電工株式会社 Pyroelectric infrared detector
JP3399314B2 (en) * 1997-04-09 2003-04-21 松下電工株式会社 Pyroelectric infrared detector
JP3736026B2 (en) * 1997-04-23 2006-01-18 松下電工株式会社 Current-voltage conversion circuit in pyroelectric infrared detector
JP3472908B2 (en) * 1997-05-15 2003-12-02 松下電工株式会社 Pyroelectric infrared detector
JP3773623B2 (en) * 1997-06-25 2006-05-10 松下電工株式会社 Pyroelectric element
JP3367876B2 (en) * 1997-09-12 2003-01-20 松下電工株式会社 Infrared detector

Also Published As

Publication number Publication date
JPH10267759A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
US11652458B2 (en) Amplification interface, and corresponding measurement system and method for calibrating an amplification interface
JP3505120B2 (en) Switched capacitor bias circuit that generates a reference signal proportional to absolute temperature, capacitance and clock frequency
CN104568169B (en) The infrared focal plane read-out circuit of function is eliminated with imbalance
JP3071654B2 (en) Power-on reset circuit
CN106330105A (en) High-linearity dynamic range photoelectric sensor applied to blood oxygen detection
JP2000310561A5 (en)
JP3557838B2 (en) Pyroelectric infrared detector
CN107517354B (en) Infrared focal plane reading circuit and feedback control loop thereof
JP3736026B2 (en) Current-voltage conversion circuit in pyroelectric infrared detector
JP2003014540A (en) Pyroelectric infrared detection apparatus
JP3729819B2 (en) Power element protection circuit and semiconductor device having the same
CN108989711B (en) High-dynamic infrared image sensor reading circuit and signal acquisition method thereof
JP3787067B2 (en) Infrared detector
US6911849B2 (en) Chopper type comparator having input voltage conversion circuit outputting converted input voltage lower than withstand voltage of inverter
JPS62269512A (en) Voltage comparator
JPH0351724Y2 (en)
JP5685727B2 (en) Infrared detection type human body detection device
JP3635356B2 (en) Voltage comparison circuit device
US6417702B1 (en) Multi-mode current-to-voltage converter
JP2942418B2 (en) Photoelectric conversion compression circuit and photoelectric conversion circuit
JPH0514158A (en) Power-on reset pulse control circuit
US20240210254A1 (en) Temperature sensor based on a charge-injection cell arrangement
JP4797366B2 (en) Pyroelectric infrared detector
JPH11234088A (en) Switched capacitor circuit
JPH10332748A (en) Full wave peak detector

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

EXPY Cancellation because of completion of term