JP2009117752A - Weak light detector - Google Patents

Weak light detector Download PDF

Info

Publication number
JP2009117752A
JP2009117752A JP2007291848A JP2007291848A JP2009117752A JP 2009117752 A JP2009117752 A JP 2009117752A JP 2007291848 A JP2007291848 A JP 2007291848A JP 2007291848 A JP2007291848 A JP 2007291848A JP 2009117752 A JP2009117752 A JP 2009117752A
Authority
JP
Japan
Prior art keywords
light
photodetector
input
weak
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007291848A
Other languages
Japanese (ja)
Other versions
JP5164038B2 (en
Inventor
Makoto Akiba
誠 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2007291848A priority Critical patent/JP5164038B2/en
Publication of JP2009117752A publication Critical patent/JP2009117752A/en
Application granted granted Critical
Publication of JP5164038B2 publication Critical patent/JP5164038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a weak light detector which is not easily affected by the sticking of dust and moisture or the like and can obtain multiplied light. <P>SOLUTION: By feeding back signals from the output side to the input side using a photocoupler, the insulation of the input side and the output side is improved. A photodetector for emitting light to be detected is a first photodetector; and the photodetector of the signal feedback is a second photodetector. A circuit configuration for that is as follows. The first photodetector and the second photodetector are serially connected, and a predetermined potential difference is impressed to both ends. The potential of the node of the first photodetector and the second photodetector is input to the inverted input terminal side of an operational amplifier, and a non-inverted input terminal is grounded. The output voltage of the operational amplifier is applied to a light emitting element to emit light. The emitted light is branched in a light branching device, one is input to the second photodetector, and the other is output. The output voltage of the operational amplifier is detected or the intensity of the light output from the light branching means is detected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、光電変換素子を用いて構成し、帰還回路にフォトカプラを用いることで微弱光の検出を高感度に行う微弱光検出器に関している。   The present invention relates to a weak light detector configured to use photoelectric conversion elements and detect weak light with high sensitivity by using a photocoupler in a feedback circuit.

微弱光を検出するための光検出器として、これまでは、例えば、アバランシェフォトダイオード(APD)、光電子増倍管(PMT)あるいはCCDカメラなどが使われて来た。しかしながら、例えばナノテクノロジーの分野やDNA、環境ホルモンなどを扱う生物・化学の最先端の分野では、さらに高感度の光検出が必要とされている。また、上記の光検出器にはその使用方法を制限する幾つかの問題点もある。   Up to now, for example, an avalanche photodiode (APD), a photomultiplier tube (PMT), or a CCD camera has been used as a photodetector for detecting weak light. However, for example, in the field of nanotechnology and the leading-edge fields of biology and chemistry dealing with DNA, environmental hormones, etc., more sensitive light detection is required. The above-described photodetector also has several problems that limit its use.

本発明の微弱光検出器は、これを使用することにより上記の光検出器よりも高感度な光検出が実現できるだけでなく、強度を増倍した光を出力することができるという優れた特性を持っている。   The weak light detector of the present invention not only realizes light detection with higher sensitivity than the above-described light detector, but also has an excellent characteristic that it can output light with increased intensity. have.

既に、本発明の発明者は、特許文献1(特開2006−203050号公報)にて、極微弱光検出器および極微弱光撮像装置に関する発明を開示している。この開示を図5に示す。これは、低速電子を利用したAPD増倍素子を用いたものである。この回路では、増倍率が30以下となるようにバイアス電圧を調整したアバランシェフォトダイオード(APD)に、該APD内部で発生し、増倍されたキャリアを蓄積するための帰還容量素子を接続し、該帰還容量素子の電圧を読取用トランジスタのゲート電極に入力してそのトランジスタの出力を定期的に読み取り、また、読み取る度に該帰還容量素子の電圧を予め決められた電圧にリセット用半導体ダイオードを通じて再設定することによって、上記のAPDに照射される光の強度を検出している。   The inventor of the present invention has already disclosed an invention relating to a very weak light detector and a very weak light imaging apparatus in Japanese Patent Application Laid-Open No. 2006-203050. This disclosure is shown in FIG. This uses an APD multiplication element using low-speed electrons. In this circuit, a feedback capacitance element for accumulating carriers generated and multiplied inside the APD is connected to an avalanche photodiode (APD) whose bias voltage is adjusted so that the multiplication factor is 30 or less, The voltage of the feedback capacitance element is input to the gate electrode of the reading transistor, and the output of the transistor is periodically read. The voltage of the feedback capacitance element is set to a predetermined voltage each time it is read through the reset semiconductor diode. By resetting, the intensity of the light applied to the APD is detected.

つまり、これまでのように著しいアバランシェ効果を起こすほど高速に加速した電子を使うのではなく、励起断面積が高くなる加速電圧の領域で、低速電子を使用する。一般に、励起散乱断面積は電子が低速になるほど増大するが、新たなキャリア電子を生成するために必要な一定以上の励起エネルギー以下になると急速に減少する。従って、電子速度に対する関数としての散乱断面積は、励起エネルギーの数倍程度の運動エネルギーになる速度のところでピークを持つ。この付近に電子速度が来るようにすれば、高い確率で電子は励起されることになり、光電子は確実に次のキャリア電子を生成する。こうして発生した電子もやはり低速にしかならないようにすれば、確実に更なるキャリア電子を発生させることになり増倍率の揺らぎは小さくなる。   That is, instead of using electrons accelerated at such a high speed as to cause a significant avalanche effect as in the past, low-speed electrons are used in the region of the acceleration voltage where the excitation cross section becomes high. In general, the excitation scattering cross section increases as the electrons become slower, but decreases rapidly when the excitation energy is below a certain level of excitation energy necessary for generating new carrier electrons. Therefore, the scattering cross section as a function of the electron velocity has a peak at a velocity where the kinetic energy is several times the excitation energy. If the electron velocity comes close to this, the electrons will be excited with a high probability, and the photoelectrons will surely generate the next carrier electrons. If the electrons generated in this way are also slow, further carrier electrons are surely generated, and the fluctuation of the multiplication factor is reduced.

また、特許文献1には、全過剰雑音係数が増倍率が30以下のときに、測定値は、計算値を下回っていることが記載されている。このためには、その増倍率が30以下となるようにAPDに印加するバイアス電圧を調整する旨記載されている。   Patent Document 1 describes that when the total excess noise coefficient is a multiplication factor of 30 or less, the measured value is lower than the calculated value. For this purpose, it is described that the bias voltage applied to the APD is adjusted so that the multiplication factor is 30 or less.

本発明と特許文献1の開示との主な違いは、演算増幅器(オペアンプ)の帰還回路にある。特許文献1での開示では積分回路を構成する帰還容量素子を用いているが、本発明ではフォトカプラを用いる。これらの構成の相異に起因して、特許文献1の場合はその帰還容量素子を定期的にリセットするが、本発明の場合は連続的な測定を行うことができる。   The main difference between the present invention and the disclosure of Patent Document 1 is an operational amplifier (op-amp) feedback circuit. In the disclosure in Patent Document 1, a feedback capacitive element constituting an integrating circuit is used, but a photocoupler is used in the present invention. Due to the difference in these configurations, in the case of Patent Document 1, the feedback capacitance element is periodically reset, but in the case of the present invention, continuous measurement can be performed.

また、特許文献2(特開昭59−181680号公報)には、フォトカプラによる帰還回路を用い入力電流に等しい電流を出力するための回路が開示されている。これを図6に示す。また、図6のトランジスタQcのエミッタ電流は、入力電流に比例した電流である。   Japanese Patent Application Laid-Open No. 59-181680 discloses a circuit for outputting a current equal to an input current using a feedback circuit using a photocoupler. This is shown in FIG. Further, the emitter current of the transistor Qc in FIG. 6 is a current proportional to the input current.

この特許文献2の開示と本発明の主な相違点は、本発明では入力電流が光検出器による電流である点、演算増幅器の出力を検出出力として用いる点、および、フォトカプラにおける帰還量を可変にしている点などである。   The main difference between the disclosure of Patent Document 2 and the present invention is that in the present invention, the input current is the current from the photodetector, the output of the operational amplifier is used as the detection output, and the feedback amount in the photocoupler is For example, it is variable.

特開2006−203050号公報JP 2006-203050 A 特開昭59−181680号公報JP 59-181680 A

従来の回路方式では、取り扱いが容易ではあるが感度が低い抵抗帰還型回路か、感度は高いが製作および取り扱いが複雑となる容量帰還型回路を必要に応じて選択をしていた。本発明は、帰還回路に光発生器と光検出器を導入し光を使用して結果的に電流を帰還させるのと同じ効果を得る様にしたものである。光を使用することによって、帰還回路の入力と出力の絶縁性を極めて高くする。   In the conventional circuit system, a resistance feedback type circuit that is easy to handle but has low sensitivity or a capacitive feedback type circuit that has high sensitivity but is complicated to manufacture and handle is selected as necessary. In the present invention, a light generator and a light detector are introduced into a feedback circuit, and the same effect as that obtained by using light as a result of current feedback is obtained. By using light, the insulation of the input and output of the feedback circuit is made extremely high.

上記のように帰還回路の入力と出力の絶縁性を極めて高くすることで、例えば、熱雑音を抑制することができる。また、埃や水分の付着などによる影響を受けづらくなり、取り扱いが容易な微弱光検出器を製作することができる。また、増倍した光を得られる。   As described above, by making the input and output insulation of the feedback circuit extremely high, for example, thermal noise can be suppressed. In addition, it is possible to manufacture a weak light detector that is not easily affected by adhesion of dust or moisture and is easy to handle. In addition, the multiplied light can be obtained.

本発明は演算増幅器を用いた微弱光検出器であって、出力側から入力側への信号帰還をフォトカプラを用いて行なうことで、入力側と出力側との絶縁性を高めるものである。概略、検出しようとする光を照射する光検出器は第1光検出器で、上記の信号帰還の光検出器は第2光検出器である。このとき、回路構成は、次のようになる。つまり、第1光検出器と第2光検出器とは直列接続とし、この両端に予め決められた電位差を印加する。第1光検出器と第2光検出器との結節点の電位を演算増幅器の反転入力端子側に入力し、非反転入力端子を接地する。上記演算増幅器の出力電圧を発光素子に印加して発光させる。この発光を光分岐器で分岐して、一方を第2光検出器に入力し、他方を出力する。この構成によって、上記のように、検出しようとする入力光を第1光検出器に入力し、上記演算増幅器の出力電圧を検出するか上記光分岐手段から出力された光の強度を検出するかして上記入力光の強度を検出する。   The present invention is a weak light detector using an operational amplifier, which improves the insulation between the input side and the output side by performing signal feedback from the output side to the input side using a photocoupler. In general, the photodetector that irradiates the light to be detected is a first photodetector, and the signal feedback photodetector is a second photodetector. At this time, the circuit configuration is as follows. That is, the first photodetector and the second photodetector are connected in series, and a predetermined potential difference is applied to both ends thereof. The potential at the node between the first photodetector and the second photodetector is input to the inverting input terminal side of the operational amplifier, and the non-inverting input terminal is grounded. The output voltage of the operational amplifier is applied to the light emitting element to emit light. The emitted light is branched by an optical branching device, one of which is input to the second photodetector and the other is output. With this configuration, as described above, whether the input light to be detected is input to the first photodetector and the output voltage of the operational amplifier is detected or the intensity of the light output from the optical branching means is detected. Then, the intensity of the input light is detected.

上記微弱光検出器の複数を直列接続し、連続する2段について前段の出力光を後段の入力光とすることで高感度化を図ることができる。   It is possible to increase the sensitivity by connecting a plurality of the weak light detectors in series and using the output light of the preceding stage as the input light of the subsequent stage for two consecutive stages.

光強度検出手段をさらに備え、上記光分岐手段から出力される光の光強度をこの光強度検出手段を用いて行なうことができる。   A light intensity detecting means is further provided, and the light intensity of the light output from the light branching means can be measured using the light intensity detecting means.

上記の光分岐器には、空間型、光ファイバ型、あるいは平面導波型の光分岐器を用いることができる。この分岐における分岐比は、外部から調整できるものであることが望ましい。分岐比の異なる光分岐器と切換えて分岐比を調整してもよい。   As the optical branching unit, a spatial type, an optical fiber type, or a planar waveguide type optical branching unit can be used. It is desirable that the branching ratio in this branching can be adjusted from the outside. The branching ratio may be adjusted by switching to an optical branching unit having a different branching ratio.

また、例えば、第1光検出器と第2光検出器には、逆バイアス電圧が印加された半導体ダイオードを用いることができる。   For example, a semiconductor diode to which a reverse bias voltage is applied can be used for the first photodetector and the second photodetector.

第1光検出器は、例えば、光ダイオード検出素子、アバランシェフォトダイオード、光伝導型ダイオード、あるいは焦電型光検出素子である。   The first photodetector is, for example, a photodiode detection element, an avalanche photodiode, a photoconductive diode, or a pyroelectric detection element.

また、上記発光素子は、抵抗素子と直列接続された発光ダイオードで、上記演算増幅器と予め決められた電位端子との間に接続する。   The light emitting element is a light emitting diode connected in series with a resistance element, and is connected between the operational amplifier and a predetermined potential terminal.

以下の説明においては、同じ機能あるいは類似の機能をもった装置に、特別な理由がない場合には、同じ符号を用いるものとする。   In the following description, devices having the same function or similar functions are denoted by the same reference numerals unless there is a special reason.

図1は、本発明の微弱光検出器101の回路図を示す。これは、演算増幅器を用いた微弱光検出器であって、出力側から入力側への信号帰還をフォトカプラを用いて行なうことで、入力側と出力側との絶縁性を高めるものである。検出しようとする微弱光を照射する光検出器は第1光検出器6で、上記の信号帰還の光検出器は第2光検出器7である。第1光検出器6と第2光検出器7は直列接続とし、この両端に予め決められた電位差を印加する。図1では、一方を接地し、他方に負のバイアス電位を印加している。第1光検出器6と第2光検出器7との結節点の電位を演算増幅器2の反転(あるいは非反転)入力端子側に入力し、非反転(あるいは反転)入力端子を接地する。演算増幅器2の出力電圧を発光素子3に印加して発光させる。演算増幅器2の入力端子を上記の括弧内の様にする場合は、発光素子3の向きを逆にする。この発光素子3の発光を第2光検出器7に入力する。   FIG. 1 shows a circuit diagram of the weak light detector 101 of the present invention. This is a weak light detector using an operational amplifier, and improves the insulation between the input side and the output side by performing signal feedback from the output side to the input side using a photocoupler. The photodetector for irradiating the weak light to be detected is the first photodetector 6, and the signal feedback photodetector is the second photodetector 7. The first photodetector 6 and the second photodetector 7 are connected in series, and a predetermined potential difference is applied to both ends thereof. In FIG. 1, one is grounded and a negative bias potential is applied to the other. The potential at the node between the first photodetector 6 and the second photodetector 7 is input to the inverting (or non-inverting) input terminal side of the operational amplifier 2, and the non-inverting (or inverting) input terminal is grounded. The output voltage of the operational amplifier 2 is applied to the light emitting element 3 to emit light. When the input terminal of the operational amplifier 2 is set in the above parentheses, the direction of the light emitting element 3 is reversed. The light emitted from the light emitting element 3 is input to the second photodetector 7.

この構成によって、上記のように、検出しようとする入力光を第1光検出器6に入力すると、発光素子3による発光は、導波路10を通って光分岐器13で光量が低下し導波路11を通って第2光検出器7に入射することで、第2光検出器7に電流が流れ、第1光検出器6による電流と第2光検出器7による電流が平衡する。   With this configuration, as described above, when the input light to be detected is input to the first photodetector 6, the light emitted by the light emitting element 3 passes through the waveguide 10, and the amount of light is reduced by the optical splitter 13. By entering the second photodetector 7 through 11, a current flows through the second photodetector 7, and the current from the first photodetector 6 and the current from the second photodetector 7 are balanced.

第3光検出器9に流れる光誘起電流は、例えば、端子T4に接続された電流計で読取ることができる。また、当然のことながら、演算増幅器2の出力電圧を読み取ることでも、入射光の強度を知ることが出来る。   The photo-induced current flowing through the third photodetector 9 can be read with an ammeter connected to the terminal T4, for example. As a matter of course, the intensity of incident light can also be known by reading the output voltage of the operational amplifier 2.

光分岐器13は、発光素子3からの光を、導波路10で光分岐器13に導き、第2光検出器7に接続した導波路11と第3光検出器9に接続した導波路12に分岐するものである。この分岐においては、第3光検出器9への分岐を多めにすることが望ましく、例えば、1対100にすることによって、他にロスがなければ、第1光検出器6への入力光のほぼ100倍の発光が発光素子3から得られる。また、光分岐器13の光量の分割比は、任意に設定できるものであることが望ましい。   The optical branching unit 13 guides the light from the light emitting element 3 to the optical branching unit 13 through the waveguide 10, and the waveguide 11 connected to the second photodetector 7 and the waveguide 12 connected to the third photodetector 9. It branches to. In this branching, it is desirable to increase the number of branches to the third photodetector 9. For example, if there is no other loss by setting one to 100, the input light to the first photodetector 6 Light emission of almost 100 times can be obtained from the light emitting element 3. Moreover, it is desirable that the light intensity division ratio of the optical branching device 13 can be arbitrarily set.

ここで、光分岐器としては、図5(a)、(b)あるいは(c)に示す空間型(バルク型)のものを用いることができる。図5(a)は、導波路11、12に入射する光量をレンズの移動によって調整するものである。図5(b)、(c)は、それぞれビームスプリッタ(ハーフプリズム)や部分透過ミラー(ハーフミラー)の透過率によって調整するものである。また、図5(d)に示す光ファイバ型の光分岐器を用いることもできる。分岐比はコア間の距離と近接している距離(結合長)により調節する。また、図5(e)に示す平面導波路型のものであってもよい。   Here, as the optical branching device, the spatial type (bulk type) shown in FIG. 5A, 5B or 5C can be used. FIG. 5A adjusts the amount of light incident on the waveguides 11 and 12 by moving the lens. 5B and 5C are respectively adjusted by the transmittance of the beam splitter (half prism) and the partial transmission mirror (half mirror). Further, an optical fiber type optical branching device shown in FIG. The branching ratio is adjusted by the distance between the cores and the close distance (coupling length). Further, the planar waveguide type shown in FIG.

また、容易に分かるように、可変抵抗4の抵抗値を変えることによって、発光素子3の発光強度を変えることが出来るので、入力光に対する感度やダイナミックレンジ等を変えることが出来る。   Further, as can be easily understood, by changing the resistance value of the variable resistor 4, the light emission intensity of the light emitting element 3 can be changed, so that the sensitivity to the input light, the dynamic range, and the like can be changed.

これと同様に、光分岐器13の分岐比を変えることに依っても、第1光検出器6への入力光に対する演算増幅器2の出力電圧の比、つまり感度を変えることができることがわかる。光分岐器13は、市販のものであり、分岐比が可変のもあるが、可変で無い場合は、差し換えて分岐比を変える。   Similarly, it can be seen that the ratio of the output voltage of the operational amplifier 2 to the input light to the first photodetector 6, that is, the sensitivity can be changed also by changing the branching ratio of the optical splitter 13. The optical branching device 13 is commercially available, and the branching ratio may be variable, but if it is not variable, the branching ratio is changed by replacing it.

上記の第1光検出器6と第2光検出器7は、例えば、光ダイオード検出素子、アバランシェフォトダイオード、光伝導型ダイオード、あるいは焦電型光検出素子である。   The first photodetector 6 and the second photodetector 7 are, for example, a photodiode detection element, an avalanche photodiode, a photoconductive diode, or a pyroelectric detection element.

図2は、図1の構成における第3光検出器9とその周りの配線等を除去し、代わりに、導波路12を外部に延長した微弱光検出器102である。この微弱光検出器102は、カスケード接続が可能である。例えば、図3に示す様に、初段の微弱光検出器102に測定しようとする光を入射し、その導波路12の出力光を、次段の第1光検出器6に入射する。この段の出力光を、微弱光検出器101で検出するものである。この最終段は、微弱光検出器101でも、あるいは図4に示す光検出器でもよい。このようにカスケード接続によって、光強度は順に増倍されるので、容易に高感度化を図ることができる。   FIG. 2 shows a weak light detector 102 in which the third photodetector 9 and the wiring around the third photodetector 9 in the configuration of FIG. 1 are removed, and instead the waveguide 12 is extended to the outside. This weak light detector 102 can be cascaded. For example, as shown in FIG. 3, light to be measured is incident on the first-stage weak light detector 102, and output light from the waveguide 12 is incident on the first photodetector 6 in the next stage. The weak light detector 101 detects the output light at this stage. This last stage may be the weak light detector 101 or the light detector shown in FIG. As described above, since the light intensity is sequentially increased by the cascade connection, the sensitivity can be easily increased.

第1光検出器として、例えば、半導体放射線検出器を用いることで、本発明を放射線検出器として用いることができる。この場合、放射線強度は、電圧、電流あるいは光強度に変換される。   For example, the present invention can be used as a radiation detector by using a semiconductor radiation detector as the first photodetector. In this case, the radiation intensity is converted into voltage, current or light intensity.

光分岐器を用いた本発明の微弱光検出器の回路図である。It is a circuit diagram of the weak light detector of the present invention using an optical branching device. カスケード接続ができる本発明の微弱光検出器の回路図である。It is a circuit diagram of the weak light detector of the present invention capable of cascade connection. カスケード接続の例を示すブロック図である。It is a block diagram which shows the example of a cascade connection. 光分岐器の例を示す図である。It is a figure which shows the example of an optical splitter. 特許文献1で開示された極微弱光検出器の回路図である。FIG. 10 is a circuit diagram of a very weak photodetector disclosed in Patent Document 1. 特許文献2で開示された電流源回路の回路図である。10 is a circuit diagram of a current source circuit disclosed in Patent Document 2. FIG.

符号の説明Explanation of symbols

2 演算増幅器
3 発光素子
4 可変抵抗
6 第1光検出器
7 第2光検出器
8 導波路
9 第3光検出器
10、11、12 導波路
13 増幅器
101、102 微弱光検出器
T1〜T4 端子
2 Operational Amplifier 3 Light-Emitting Element 4 Variable Resistance 6 First Photodetector 7 Second Photodetector 8 Waveguide 9 Third Photodetector 10, 11, 12 Waveguide 13 Amplifier 101, 102 Weak Photodetector T1-T4 Terminal

Claims (7)

予め決められた電位差が印加される第1光検出器と第2光検出器との直列接続回路と、
第1光検出器と第2光検出器との結節点の電位を反転入力(あるいは非反転)端子側に入力し、非反転(あるいは反転)入力端子を接地した演算増幅器と、
上記演算増幅器の出力電圧の印加で発光する発光素子と、
上記発光素子の光を分岐する光分岐手段と、
上記光分岐手段で分岐された光を第2光検出器に入力する入力手段と、
上記光分岐手段で分岐された光を出力する手段とを備え、
検出しようとする入力光を第1光検出器に入力し、上記演算増幅器の出力電圧を検出するか上記光分岐手段から出力された光の強度を検出するかして上記入力光の強度を検出することを特徴とする微弱光検出器。
A series connection circuit of a first photodetector and a second photodetector to which a predetermined potential difference is applied;
An operational amplifier in which the potential of the node between the first photodetector and the second photodetector is input to the inverting input (or non-inverting) terminal, and the non-inverting (or inverting) input terminal is grounded;
A light emitting element that emits light upon application of an output voltage of the operational amplifier;
A light branching means for branching the light of the light emitting element;
Input means for inputting the light branched by the light branching means to the second photodetector;
Means for outputting the light branched by the light branching means,
The input light to be detected is input to the first photodetector and the intensity of the input light is detected by detecting the output voltage of the operational amplifier or the intensity of the light output from the optical branching means. A weak light detector.
請求項1に記載の微弱光検出器の複数を直列接続したものであって、連続する2段について前段の出力光を後段の入力光とすることを特徴とする微弱光検出器。 A weak light detector, wherein a plurality of the weak light detectors according to claim 1 are connected in series, and the output light of the preceding stage is used as the input light of the subsequent stage for two consecutive stages. 光強度検出手段をさらに備え、
上記光分岐手段から出力される光の光強度を上記光強度検出手段を用いて行なうことを特徴とする請求項1あるいは2のいずれかに記載の微弱光検出器。
A light intensity detecting means;
3. The feeble light detector according to claim 1, wherein the light intensity of the light output from the light branching means is measured using the light intensity detecting means.
上記の光分岐器は、空間型、光ファイバ型、あるいは平面導波型の光分岐器であることを特徴とする請求項1から3のいずれか1つに記載の微弱光検出器。 The weak light detector according to any one of claims 1 to 3, wherein the optical branching unit is a spatial, optical fiber, or planar waveguide type optical branching unit. 第1光検出器と第2光検出器は、逆バイアス電圧が印加された半導体ダイオードであることを特徴とする請求項1から4のいずれか1つに記載された微弱光検出器。 The weak photodetector according to any one of claims 1 to 4, wherein the first photodetector and the second photodetector are semiconductor diodes to which a reverse bias voltage is applied. 第1光検出器は、光ダイオード検出素子、アバランシェフォトダイオード、光伝導型ダイオード、あるいは焦電型光検出素子であることを特徴とする請求項1から4のいずれか1つに記載の微弱光検出器。 5. The weak light according to claim 1, wherein the first photodetector is a photodiode detection element, an avalanche photodiode, a photoconductive diode, or a pyroelectric detection element. Detector. 上記発光素子は、抵抗素子と直列接続された発光ダイオードで、上記演算増幅器と予め決められた電位端子との間に接続されていることを特徴とする請求項1から6のいずれか1つに記載の微弱光検出器。 7. The light emitting device according to claim 1, wherein the light emitting device is a light emitting diode connected in series with a resistance device, and is connected between the operational amplifier and a predetermined potential terminal. The weak light detector described.
JP2007291848A 2007-11-09 2007-11-09 Weak light detector Expired - Fee Related JP5164038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291848A JP5164038B2 (en) 2007-11-09 2007-11-09 Weak light detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291848A JP5164038B2 (en) 2007-11-09 2007-11-09 Weak light detector

Publications (2)

Publication Number Publication Date
JP2009117752A true JP2009117752A (en) 2009-05-28
JP5164038B2 JP5164038B2 (en) 2013-03-13

Family

ID=40784509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291848A Expired - Fee Related JP5164038B2 (en) 2007-11-09 2007-11-09 Weak light detector

Country Status (1)

Country Link
JP (1) JP5164038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135389A (en) * 2008-12-02 2010-06-17 National Institute Of Information & Communication Technology Optical feedback type photodetector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194372A (en) * 1988-01-29 1989-08-04 Sumitomo Electric Ind Ltd Light brightness modulation circuit
JPH01293584A (en) * 1988-05-20 1989-11-27 Nec Corp Light-amplifying device
JPH0843201A (en) * 1994-07-27 1996-02-16 Murata Mfg Co Ltd Pyroelectric infrared sensor circuit
JPH08304175A (en) * 1995-04-28 1996-11-22 Noritz Corp Optical sensor
JP2004239651A (en) * 2003-02-04 2004-08-26 National Institute Of Information & Communication Technology Light detecting device
JP2006203050A (en) * 2005-01-21 2006-08-03 National Institute Of Information & Communication Technology Extremely feeble photodetector and extremely feeble light imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01194372A (en) * 1988-01-29 1989-08-04 Sumitomo Electric Ind Ltd Light brightness modulation circuit
JPH01293584A (en) * 1988-05-20 1989-11-27 Nec Corp Light-amplifying device
JPH0843201A (en) * 1994-07-27 1996-02-16 Murata Mfg Co Ltd Pyroelectric infrared sensor circuit
JPH08304175A (en) * 1995-04-28 1996-11-22 Noritz Corp Optical sensor
JP2004239651A (en) * 2003-02-04 2004-08-26 National Institute Of Information & Communication Technology Light detecting device
JP2006203050A (en) * 2005-01-21 2006-08-03 National Institute Of Information & Communication Technology Extremely feeble photodetector and extremely feeble light imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135389A (en) * 2008-12-02 2010-06-17 National Institute Of Information & Communication Technology Optical feedback type photodetector

Also Published As

Publication number Publication date
JP5164038B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
US8415608B2 (en) Frequency selective communications system
GB2492489A (en) Nonlinear optical surface sensing with a single thermo-electric detector
Akiba et al. Ultrahigh-sensitivity single-photon detection with linear-mode silicon avalanche photodiode
WO2018102093A1 (en) All-digital noise cancellation method for solid state spin-based sensors
JP5164038B2 (en) Weak light detector
JP2006203050A (en) Extremely feeble photodetector and extremely feeble light imaging device
US8907265B2 (en) Frequency selective electromagnetic detector
US8957363B2 (en) Differential photodiode integrator circuit for absorbance measurements
US20190036617A1 (en) Receiving Unit For Optical Communication, Optical Communication Apparatus And Optical Communication Method
JP5273606B2 (en) Optical feedback photodetector
JP4654446B2 (en) Wavelength spectrum detection method using avalanche photodiode
Nadeev et al. Comparison of an avalanche photodiode and a photomultiplier tube as photodetectors of near-infrared radiation in the photon-counting mode
Tanabe et al. Absolute optical responsivity down to the photon counting level with a photomultiplier tube
Vilella et al. Dynamic range extension of SiPM detectors with the time-gated operation
JP3155191B2 (en) Low light measurement device
JP2001004445A (en) Light measuring instrument
WO2023276299A1 (en) Imaging device and information processing system
Cominelli et al. Accurate non-invasive measurement of the turn-on transition of fast gated single photon avalanche diodes
Billotta et al. SiPM detectors for the ASTRI project in the framework of the Cherenkov telescope array
KR20160090560A (en) Photon detecting circuit using photodiode and detecting device with the same
JP2018044838A (en) Distance measuring device
Antonova et al. SiPM timing characteristics under conditions of a large background for lidars
Liu et al. Ultra-Low Level Light Detection Based on the Poisson Statistics Algorithm and a Double Time Windows Technique With Silicon Photomultiplier
JP2007212157A (en) Optical range finder
US20210318417A1 (en) Light detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees