JP4654446B2 - Wavelength spectrum detection method using avalanche photodiode - Google Patents

Wavelength spectrum detection method using avalanche photodiode Download PDF

Info

Publication number
JP4654446B2
JP4654446B2 JP2007084832A JP2007084832A JP4654446B2 JP 4654446 B2 JP4654446 B2 JP 4654446B2 JP 2007084832 A JP2007084832 A JP 2007084832A JP 2007084832 A JP2007084832 A JP 2007084832A JP 4654446 B2 JP4654446 B2 JP 4654446B2
Authority
JP
Japan
Prior art keywords
light
multiplication factor
wavelength
avalanche photodiode
wavelength spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007084832A
Other languages
Japanese (ja)
Other versions
JP2008241578A (en
Inventor
正弘 秋山
和明 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Institute of National Colleges of Technologies Japan
Original Assignee
Toyohashi University of Technology NUC
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC, Institute of National Colleges of Technologies Japan filed Critical Toyohashi University of Technology NUC
Priority to JP2007084832A priority Critical patent/JP4654446B2/en
Publication of JP2008241578A publication Critical patent/JP2008241578A/en
Application granted granted Critical
Publication of JP4654446B2 publication Critical patent/JP4654446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Light Receiving Elements (AREA)

Description

この発明は、波長スペクトルを検出する方法に関し、より詳細には、アバランシェフォトダイオードの増倍率に基づいて波長スペクトルを検出するアバランシェフォトダイオードを用いた波長スペクトル検出方法に関する   The present invention relates to a method for detecting a wavelength spectrum, and more particularly to a wavelength spectrum detection method using an avalanche photodiode that detects a wavelength spectrum based on a multiplication factor of an avalanche photodiode.

通常、波長スペクトラム測定をするために光スペクトラムアナライザが用いられている(たとえば、特許文献1参照)。   Usually, an optical spectrum analyzer is used to measure a wavelength spectrum (see, for example, Patent Document 1).

光スペクトラムアナライザは、モータ等によって角度を変えることができるように支持された回折格子に測定対象光を入射し、その回折光からスリットによって選択した光のレベルを受光器によって検出する光学部を有しており、回折格子の角度を連続的に変えることによりスリットを通過する光の波長を掃引して、入力光の波長毎のスペクトラムを求め、これを表示器の画面に波長軸とともに表示している。表示されるスペクトラムの波長情報は、光学部の機械的な情報、即ち、回折格子の角度情報に基づいて生成されている。   An optical spectrum analyzer has an optical unit that allows light to be measured to enter a diffraction grating supported so that the angle can be changed by a motor or the like, and detects the level of light selected from the diffracted light by a slit using a light receiver. The wavelength of the light passing through the slit is swept by continuously changing the angle of the diffraction grating to obtain the spectrum for each wavelength of the input light, and this is displayed on the display screen along with the wavelength axis. Yes. The wavelength information of the displayed spectrum is generated based on the mechanical information of the optical unit, that is, the angle information of the diffraction grating.

特開2002-168692(第3頁、従来の技術)JP2002-168692 (3rd page, conventional technology)

しかし、上記した光スペクトルアナライザは大きな構造をとるため、持ち運びや設置に問題があった。   However, since the above optical spectrum analyzer has a large structure, there are problems in carrying and installation.

そこで、本発明は上記課題を解決するためになされ、その目的とするところは、小型で持ち運びやすく、設置場所に制限されない装置が実現可能となる、APDを用いた波長スペクトル検出方法を提案することにある。   Accordingly, the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to propose a wavelength spectrum detection method using an APD that can realize a device that is small and easy to carry and is not limited to an installation location. It is in.

本発明にかかるバランシェフォトダイオードを用いた波長スペクトル検出方法は、任意の光の波長スペクトルを検出する方法であって、アバランシェフォトダイオードの増倍率を検出する増倍率検出回路を用いて、単一の前記アバランシェフォトダイオードに複数のバイアス電圧Vnを印加した場合のそれぞれにおいて、予め波長λnが判明している複数の比較用の光をそれぞれ入射させたときの増倍率X[λn,Vn]を検出し、前記単一のアバランシェダイオードに前記任意の光を入射させたときの増倍率M(n)を、前記複数のバイアス電圧Vnを印加した場合のそれぞれにおいて前記増倍率検出回路を用いて検出し、以下の数1の式に基づいて、前記任意の光の波長スペクトルを検出することを特徴とする。
なお、Anは波長λnの光の含有率。nは2以上の整数、X[λn,Vn]は前記単一のアバランシェダイオードに逆バイアス電圧Vnを印加し、波長λnの光を入れた場合の増倍率、M(n)は前記単一のアバランシェフォトダイオードに前記逆バイアス電圧Vnを印加し、前記任意の光を入射した場合の増倍率。
A wavelength spectrum detection method using a balunche photodiode according to the present invention is a method for detecting a wavelength spectrum of an arbitrary light, and uses a multiplication factor detection circuit for detecting a multiplication factor of an avalanche photodiode . In each case where a plurality of bias voltages Vn are applied to the avalanche photodiode, a multiplication factor X [λn, Vn] is detected when a plurality of comparative lights whose wavelengths λn are known in advance are respectively incident. The multiplication factor M (n) when the arbitrary light is incident on the single avalanche diode is detected using the multiplication factor detection circuit in each of the cases where the plurality of bias voltages Vn are applied, The wavelength spectrum of the arbitrary light is detected based on the following equation (1).
An is the content of light having a wavelength λn. n is an integer of 2 or more, X [λn, Vn] is a multiplication factor when a reverse bias voltage Vn is applied to the single avalanche diode and light of wavelength λn is applied, and M (n) is the single unit A multiplication factor when the reverse bias voltage Vn is applied to the avalanche photodiode and the arbitrary light is incident thereon.

Figure 0004654446
Figure 0004654446

本発明にかかるアバランシェフォトダイオードを用いた波長スペクトル検出方法によれば、小型で持ち運びやすく設置場所に制限されない装置が実現可能となる。 According to the wavelength spectrum detection method using the avalanche photodiode according to the present invention, it is possible to realize a small-sized device that is easy to carry and is not limited to the installation location.

アバランシェフォトダイオード(以下、単にAPDと称する場合がある)は入射光の波長により増倍率が変化する特徴を持っている。図1にAPDの入射光の波長と増倍率の依存特性を示している。APDの増倍率検出には増倍率検出回路を用いる。これにより、APDの増倍率を検出することが可能である。   Avalanche photodiodes (hereinafter sometimes simply referred to as APDs) have a characteristic that the multiplication factor varies depending on the wavelength of incident light. Figure 1 shows the dependence of the incident light on the wavelength and gain of the APD. A multiplication factor detection circuit is used for APD multiplication factor detection. Thereby, it is possible to detect the multiplication factor of APD.

図2に増倍率検出回路の具体例を示す。 FIG. 2 shows a specific example of the multiplication factor detection circuit.

全素子の接続関係は、APD11のアノードは直流電源VAPDと接続されている。
APD11のカソードはA点と接続されている。A点は電界効果トランジスタ(以下FETと称することもある)1のソース、コンデンサ6の陽極、FET4のソース、FET3のソースに接続されている。コンデンサ6の陰極はGNDに接続されている。FET1のゲートはパルス電圧源Vres1に接続されている。FET1のドレインは電圧源Vr1に接続されている。FET4のゲートはパルス電圧源Vres2に接続されている。FET4のドレインはD点に接続されており、D点は電圧源Vr1に接続されている。FET3のゲートはC点に接続されている。FET3のドレインはB点に接続されている。C点は、PD12のカソードと、コンデンサ7の陽極、FET2のソースと接続されている。コンデンサ7の陰極はGNDと接続されている。PD12のアノードは直流電源VPDに接続されている。FET2のゲートはパルス電源Vres1に接続されている。FET2のドレインは直流電源Vr1に接続されている。B点は、コンデンサ8の陽極と、FET5のソースとVout端子に接続されている。コンデンサ8の陰極はGNDに接続されている。FET5のゲートはパルス電圧源Vres3に接続されている。FET5のドレインは電圧源Vr2に接続されている。
As for the connection relationship of all elements, the anode of the APD 11 is connected to the DC power source VAPD.
The cathode of APD 11 is connected to point A. Point A is connected to the source of a field effect transistor (hereinafter also referred to as FET) 1, the anode of a capacitor 6, the source of FET 4, and the source of FET 3. The cathode of the capacitor 6 is connected to GND. The gate of the FET1 is connected to the pulse voltage source Vres1. The drain of the FET1 is connected to the voltage source Vr1. The gate of the FET 4 is connected to the pulse voltage source Vres2. The drain of the FET 4 is connected to the point D, and the point D is connected to the voltage source Vr1. The gate of the FET 3 is connected to the C point. The drain of the FET 3 is connected to the point B. Point C is connected to the cathode of PD 12, the anode of capacitor 7, and the source of FET 2. The cathode of the capacitor 7 is connected to GND. The anode of the PD 12 is connected to the DC power source VPD. The gate of the FET2 is connected to the pulse power supply Vres1. The drain of the FET2 is connected to the DC power supply Vr1. The point B is connected to the anode of the capacitor 8, the source of the FET 5, and the Vout terminal. The cathode of the capacitor 8 is connected to GND. The gate of the FET 5 is connected to the pulse voltage source Vres3. The drain of the FET 5 is connected to the voltage source Vr2.

FET1はA点の電位をVr1まで充電するために用いられる。コンデンサ6はAPD11により発生する光信号電流を蓄積するために用いられる。FET2はC点の電位をVr1まで充電するために用いられる。コンデンサ7はPD12により発生する光信号電流を蓄積するために用いられる。FET3はC点とA点の電位を比較し、A点の電位が大きい場合には、B点に電位差分の電荷を移動する役割を持っている。FET4は、A点からB点に行く電荷量を制限する役割がある。この制限によって、B点には増倍率に比例した信号電荷が蓄積されることになる。FET5はB点の電位をVr2まで充電するために用いられる。コンデンサ8はA点からB点に移動する電荷を蓄積するために用いられる。 The FET 1 is used to charge the potential at the point A to Vr1. The capacitor 6 is used for storing the optical signal current generated by the APD 11. The FET 2 is used to charge the potential at the point C to Vr1. The capacitor 7 is used for storing the optical signal current generated by the PD 12. The FET 3 compares the potentials at the points C and A, and when the potential at the point A is large, it has a role of transferring the electric charge of the potential difference to the point B. The FET 4 has a role of limiting the amount of charge going from the point A to the point B. Due to this limitation, signal charges proportional to the multiplication factor are accumulated at the point B. The FET 5 is used to charge the potential at the point B to Vr2. The capacitor 8 is used for accumulating charges moving from the point A to the point B.

「増倍率が1倍の場合」はB点に転送される信号電荷量は0となる。「増倍率が2倍の場合」はB点に転送される信号電荷量は(Vr1−Vres2)/Cである。「増倍率が3倍の場合」はB点に転送される信号電荷量は2×(Vr1−Vres2)/Cである。「増倍率が4倍の場合」はB点に転送される信号電荷量は3×(Vr1−Vres2)/Cである。このように、B点の信号電荷量は(増倍率−1)×(Vr1−Vres2)/Cとなり、増倍率を検出することが可能となる。

When “multiplier is 1”, the amount of signal charge transferred to point B is zero. In “when the multiplication factor is 2”, the signal charge amount transferred to the point B is (Vr1−Vres2) / C. In “when the multiplication factor is 3”, the amount of signal charge transferred to the point B is 2 × (Vr1−Vres2) / C. In “when the multiplication factor is 4”, the signal charge amount transferred to the point B is 3 × (Vr1−Vres2) / C. In this way, the signal charge amount at point B is (multiplication factor-1) × (Vr1-Vres2) / C, and it becomes possible to detect the multiplication factor.

ここで、任意の光(波長スペクトルを求めたい光)がAPDに入射した場合の増倍率は、数式2のように表される。 Here, the multiplication factor when arbitrary light (light whose wavelength spectrum is desired to be obtained) is incident on the APD is expressed as Equation 2.

Figure 0004654446
Figure 0004654446

また、APDは印加電圧によっても増倍率が変化する特徴を持っている。図3にAPDへの印加電圧を変化させた場合の入射光の波長と増倍率の依存特性を示している。 APD also has the feature that the multiplication factor changes depending on the applied voltage. FIG. 3 shows the dependence characteristics of the wavelength of the incident light and the multiplication factor when the voltage applied to the APD is changed.

ここで、「印加電圧をV1からVnに変化させた場合」において、任意の光(波長スペクトルを求めたい光)がAPDに入射した場合の増倍率は、数式3のように表される。 Here, in “when the applied voltage is changed from V1 to Vn”, the multiplication factor when arbitrary light (light whose wavelength spectrum is to be obtained) is incident on the APD is expressed as shown in Equation 3.

Figure 0004654446
Figure 0004654446

数式3を行列に書き換えると数式4のようになる。 When Formula 3 is rewritten into a matrix, Formula 4 is obtained.

Figure 0004654446
Figure 0004654446

数式4を波長スペクトル(A1からAn)を求める形に変形すると数式5のようになる。 When Formula 4 is transformed into a form for obtaining a wavelength spectrum (A1 to An), Formula 5 is obtained.

Figure 0004654446
Figure 0004654446


このように、波長スペクトルは、式5より求めることができる。ここで、Anは波長λnの光比率(含有率)を示している。故に、A1からAnはλ1からλnまでの波長スペクトルを表している。また、X[λn,Vn]はアバランシェフォトダイオード(APD)に「逆バイアス電圧Vnを印加し、波長λnの光を入れた場合」の増倍率を表している。またM(n)はAPDに「逆バイアス電圧Vnを印加し、任意の光(波長スペクトルを求めたい光)を入れた場合」の増倍率を表している。この式より、X[λn,Vn]を予め測定して置けば、「任意の光」の増倍率M(1)からM(n)を求めることで、式4により任意の光の波長スペクトル(A1からAn)を求めることが可能である。 Thus, the wavelength spectrum can be obtained from Equation 5. Here, An indicates the light ratio (content ratio) of the wavelength λn. Therefore, A1 to An represent wavelength spectra from λ1 to λn. X [λn, Vn] represents the multiplication factor of “when reverse bias voltage Vn is applied and light of wavelength λn is applied” to the avalanche photodiode (APD). M (n) represents the multiplication factor of “when reverse bias voltage Vn is applied and arbitrary light (light whose wavelength spectrum is desired to be obtained) is applied” to the APD. From this equation, if X [λn, Vn] is measured in advance, the M (n) is obtained from the multiplication factor M (1) of “arbitrary light”, and the wavelength spectrum of arbitrary light ( A1 to An) can be obtained.

数式5が正しいことを確認した実験を報告する。実験で用いたAPDは浜松フォトニクス製S2381を用いている。ここでは、2つの波長に限定して実験を行う。「2つの波長を持つ光を入射した場合」、数式5は数式6のように変形される。 We report an experiment confirming that Equation 5 is correct. APD used in the experiment is S2381 made by Hamamatsu Photonics. Here, the experiment is limited to two wavelengths. “When light having two wavelengths is incident”, Equation 5 is transformed into Equation 6.

Figure 0004654446
Figure 0004654446

λ1には655nmの光(Kokuyo製赤色レーザポインタ)を用い、λ2には532nmの光(Kokuyo製緑色レーザポインタ)を用いる。またV1には73.0Vを用い、V2には73.1Vの電圧を用いる。その場合、数式6は数式7のように表される。 λ1 uses 655 nm light (Kokuyo red laser pointer), and λ2 uses 532 nm light (Kokuyo green laser pointer). In addition, 73.0V is used for V1, and 73.1V is used for V2. In that case, Equation 6 is expressed as Equation 7.

Figure 0004654446
Figure 0004654446

Xの値を予め測定し、数式7に代入すると数式8のようになる。 When the value of X is measured in advance and substituted into Equation 7, Equation 8 is obtained.

Figure 0004654446
Figure 0004654446

655nmの光と532nmの光を、75% 対 25%の割合で入射した場合、測定結果から数式9を得ることができる。 When 655 nm light and 532 nm light are incident at a ratio of 75% to 25%, Equation 9 can be obtained from the measurement result.

Figure 0004654446
Figure 0004654446

数式9の逆行列を計算すると、数式10を得ることが出来る。 When the inverse matrix of Expression 9 is calculated, Expression 10 can be obtained.

Figure 0004654446
Figure 0004654446

数式10より、A(655nm)とA(532nm)を計算すると数式11を得る。 When A (655 nm) and A (532 nm) are calculated from Expression 10, Expression 11 is obtained.

Figure 0004654446
Figure 0004654446

数式11より、A(655nm)が0.76、A(532nm)が0.24であることが確認できた。これは、入射した光に、655nmの光が76%の割合で含まれており、532nmの光が24%の割合で含まれていることを意味している。元々入射した光の割合は655nmの光が75%で、532nmの光が25%であったことから、ほぼ正しい値が出力されているといえる。 From Formula 11, it was confirmed that A (655 nm) was 0.76 and A (532 nm) was 0.24. This means that the incident light contains 655 nm light at a rate of 76% and 532 nm light at a rate of 24%. The ratio of the originally incident light was 75% for 655 nm light and 25% for 532 nm light, so it can be said that almost correct values were output.

以上本発明につき、好適な実施例を挙げて種々説明したが、本発明はこの実施例に限定されるものではなく、発明の精神を逸脱しない範囲内で多くの改変を施し得るのはもちろんである。   Although the present invention has been described in various manners with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. is there.

図1は、APDの入射光の波長と増倍率の依存特性である。FIG. 1 shows the dependency of the APD incident light on the wavelength and multiplication factor. 図2は、APDの増倍率検出回路の回路図である。FIG. 2 is a circuit diagram of an APD gain detection circuit. 図3は、APDへの印加電圧を変化させた場合の入射光の波長と増倍率の依存特性である。FIG. 3 shows the dependence characteristics of the wavelength of the incident light and the multiplication factor when the voltage applied to the APD is changed.

符号の説明Explanation of symbols

1,2、3、4、5 NチャネルMOSFET
6、7、8 コンデンサ
11 APD
12 PD
1, 2, 3, 4, 5 N-channel MOSFET
6, 7, 8 Capacitor 11 APD
12 PD

Claims (1)

任意の光の波長スペクトルを検出する方法であって、
アバランシェフォトダイオードの増倍率を検出する増倍率検出回路を用いて、単一の前記アバランシェフォトダイオードに複数のバイアス電圧Vnを印加した場合のそれぞれにおいて、予め波長λnが判明している複数の比較用の光をそれぞれ入射させたときの増倍率X[λn,Vn]を検出し、
前記単一のアバランシェフォトダイオードに前記任意の光を入射させたときの増倍率M(n)を、前記複数のバイアス電圧Vnを印加した場合のそれぞれにおいて前記増倍率検出回路を用いて検出し、
以下の数1の式に基づいて、前記任意の光の波長スペクトルを検出することを特徴とするアバランシェフォトダイオードを用いた波長スペクトル検出方法。
なお、Anは波長λnの光の含有率。nは2以上の整数、X[λn,Vn]は前記単一のアバランシェダイオードに逆バイアス電圧Vnを印加し、波長λnの光を入れた場合の増倍率、M(n)は前記単一のアバランシェフォトダイオードに前記逆バイアス電圧Vnを印加し、前記任意の光を入射した場合の増倍率。
Figure 0004654446
A method for detecting a wavelength spectrum of arbitrary light, comprising:
A plurality of comparison wavelengths whose wavelengths λn are known in advance when a plurality of bias voltages Vn are applied to a single avalanche photodiode using a multiplication detection circuit that detects a multiplication factor of the avalanche photodiode. The multiplication factor X [λn, Vn] when each of the light beams enters is detected,
A multiplication factor M (n) when the arbitrary light is incident on the single avalanche photodiode is detected by using the multiplication factor detection circuit in each case where the plurality of bias voltages Vn are applied,
A wavelength spectrum detection method using an avalanche photodiode, wherein the wavelength spectrum of the arbitrary light is detected based on the following equation (1).
An is the content of light having a wavelength λn. n is an integer of 2 or more, X [λn, Vn] is a multiplication factor when a reverse bias voltage Vn is applied to the single avalanche diode and light of wavelength λn is applied, and M (n) is the single unit A multiplication factor when the reverse bias voltage Vn is applied to the avalanche photodiode and the arbitrary light is incident thereon.
Figure 0004654446
JP2007084832A 2007-03-28 2007-03-28 Wavelength spectrum detection method using avalanche photodiode Active JP4654446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084832A JP4654446B2 (en) 2007-03-28 2007-03-28 Wavelength spectrum detection method using avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084832A JP4654446B2 (en) 2007-03-28 2007-03-28 Wavelength spectrum detection method using avalanche photodiode

Publications (2)

Publication Number Publication Date
JP2008241578A JP2008241578A (en) 2008-10-09
JP4654446B2 true JP4654446B2 (en) 2011-03-23

Family

ID=39913100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084832A Active JP4654446B2 (en) 2007-03-28 2007-03-28 Wavelength spectrum detection method using avalanche photodiode

Country Status (1)

Country Link
JP (1) JP4654446B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5445906B2 (en) * 2009-03-23 2014-03-19 独立行政法人国立高等専門学校機構 Wavelength spectrum detection method
FR2968836B1 (en) * 2010-12-14 2013-03-22 Univ Provence Aix Marseille 1 PHOTODETECTOR HAVING SPECTRAL SENSITIVITY
JP5669206B2 (en) * 2011-03-29 2015-02-12 独立行政法人国立高等専門学校機構 Wavelength spectrum detection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243591B2 (en) * 1972-06-14 1977-10-31
JPS61277024A (en) * 1985-05-31 1986-12-08 Sharp Corp Light spectrum detector
JPH0469825B2 (en) * 1984-05-30 1992-11-09 Matsukusu Puranku G Tsua Fueruderunku Deru Uitsusenshafuten Ee Fuau
JPH07262560A (en) * 1994-03-24 1995-10-13 Toshiba Corp Recording and reproducing device
JPH07117458B2 (en) * 1986-06-02 1995-12-18 ミノルタ株式会社 Spectrometer
JP2005010114A (en) * 2003-06-23 2005-01-13 Japan Science & Technology Agency Measuring method of incidence light, and sensor having spectroscopic mechanism using method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243591B2 (en) * 1972-06-14 1977-10-31
JPH0469825B2 (en) * 1984-05-30 1992-11-09 Matsukusu Puranku G Tsua Fueruderunku Deru Uitsusenshafuten Ee Fuau
JPS61277024A (en) * 1985-05-31 1986-12-08 Sharp Corp Light spectrum detector
JPH07117458B2 (en) * 1986-06-02 1995-12-18 ミノルタ株式会社 Spectrometer
JPH07262560A (en) * 1994-03-24 1995-10-13 Toshiba Corp Recording and reproducing device
JP2005010114A (en) * 2003-06-23 2005-01-13 Japan Science & Technology Agency Measuring method of incidence light, and sensor having spectroscopic mechanism using method

Also Published As

Publication number Publication date
JP2008241578A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
US9357122B2 (en) Photoelectric conversion apparatus, focus detecting apparatus, imaging system, and driving method of photoelectric conversion apparatus
US8872095B2 (en) Sensor pixels, arrays and array systems and methods therefor
US10078011B2 (en) Light sensitive circuit, light sensing panel having the light sensitive circuit and display apparatus having the light sensing panel
JP2009159610A (en) Current sampling method and circuit
US20140367550A1 (en) Photoelectric conversion device
JP4654446B2 (en) Wavelength spectrum detection method using avalanche photodiode
EP2998789A1 (en) Vehicle lamp device and abnormality detector of light source thereof
US20160037095A1 (en) Active pixel sensor device and operating method of the same
EP3226548A1 (en) Radiation detector
JP5171157B2 (en) Ranging device
US9151675B2 (en) Dual-switching sensing device, and dual-function switching circuit thereof
US9508402B2 (en) Readout device, dual-function readout device, and detecting circuit thereof
US8330091B2 (en) Image sensor formed by silicon rich oxide material
JP2007057449A (en) Infrared sensor
JP2002171142A (en) Photoreceiver
EP1081858A2 (en) Current-voltage converter
KR20220075421A (en) photoconductor read circuit
CN112729539A (en) Optical sensor
JP4286101B2 (en) Offset suppression circuit for photodetector
KR20170058176A (en) Measurement Apparatus for differential spectral responsivity on photovoltaic cells
JP5164038B2 (en) Weak light detector
JP5273606B2 (en) Optical feedback photodetector
JP4029135B2 (en) Photoelectric conversion element and photoelectric conversion device
JP2009111069A (en) Extremely-feeble light detector
WO2023189856A1 (en) Solid-state imaging device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150