JPH0841519A - 製鋼方法 - Google Patents

製鋼方法

Info

Publication number
JPH0841519A
JPH0841519A JP19365994A JP19365994A JPH0841519A JP H0841519 A JPH0841519 A JP H0841519A JP 19365994 A JP19365994 A JP 19365994A JP 19365994 A JP19365994 A JP 19365994A JP H0841519 A JPH0841519 A JP H0841519A
Authority
JP
Japan
Prior art keywords
furnace
dephosphorization
slag
hot metal
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19365994A
Other languages
English (en)
Inventor
Keiichi Maya
敬一 真屋
Toru Matsuo
亨 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19365994A priority Critical patent/JPH0841519A/ja
Publication of JPH0841519A publication Critical patent/JPH0841519A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 脱燐処理時に高[Cr]濃度の溶銑を安定して
得られる手法を確立し、Cr含有量の高い良品質の鋼を安
価に溶製できる製鋼方法を提供する。 【構成】 上下両吹き機能を有する2基の転炉のうちの
一方を脱燐炉1、他方を脱炭炉2として、前記脱燐炉1
内へ注入した溶銑3に“クロム酸化物を含む化合物又は
混合物(クロム鉱石等)を主成分とする精錬剤”あるい
は“これに加えて前記脱炭炉2で発生した転炉滓4をも
主成分とする精錬剤”と炭材とを添加し、撹拌ガス吹込
みノズル5による底吹きガス撹拌とランス6からの酸素
ガスの上吹きを行いつつ溶銑温度を1400℃以下に保
ちながら精錬を行って溶銑[Cr]の上昇を図り、次いで
得られた脱燐溶銑を脱炭炉2で“通常造滓剤”を主成分
とする精錬剤を添加して精錬する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、転炉を用いた溶銑の
脱燐処理時に精錬剤としてクロム酸化物(クロム鉱石,
鉄−クロム鉱石等)を利用し、これによって得られた
[Cr]濃度の高い溶銑を使用して良品質の鋼を安価に溶
製する製鋼方法に関するものである。
【0002】
【従来技術とその課題】近年、低燐鋼をより一層低いコ
ストで安定溶製する手段の開発を目指し様々な研究がな
されるようになったが、このような状況下にあって、最
近、製鋼ト−タルコストのミニマム化を考慮した溶銑の
予備脱燐法が模索されるようになった。
【0003】本発明者等も、先に、図3に略示したよう
な「上下両吹き機能を有した2基の転炉形式の炉を使用
し、 その一方を脱燐炉1、 他方を脱炭炉2として、 前記
脱燐炉1内へ注入した溶銑3に“前記脱炭炉2で発生し
た転炉滓4を主成分とする精錬剤”を添加すると共に、
攪拌ガス吹き込みノズル5により底吹きガス撹拌を行い
つつランス6より酸素ガスを上吹きすることで脱燐炉1
の溶銑3の温度を1200〜1400℃に保ちながら溶銑脱
燐を行い、 次に処理後の脱燐溶銑を脱炭炉2で脱炭並び
に仕上脱燐するという“脱燐スラグ- メタルの向流的2
段階接触精錬”にて、 極めて少ない量の造滓剤でもって
通常燐レベルの鋼或いは低燐鋼を作業性良く安価に製造
し得るようにした製鋼方法」を確立し、特公平2−14
404号として提案している。
【0004】なお、上記発明は、「全製鋼工程を通じて
の造滓剤の必要量は、 スラグとメタルとを向流的に接触
させる“スラグ- メタル向流精錬”によるときが最も少
なくて良いが、 実際上は該向流精錬の完全な実現は殆ど
不可能であり、 現状において最も労少なく造滓剤の使用
量を抑え得る可能性を秘めた製鋼手段として挙げ得るも
のは、 脱燐工程を2段階に分割し、 その下工程で発生す
るスラグを上工程の脱燐剤として使用する方法以外に見
当たらない」との認識の下に、該“転炉滓再利用による
製鋼法”に関し、作業安定性,脱燐効率或いは設備コス
ト等の面での問題点解消を目指した研究による次の知見
事項(A) 〜(F) を基に完成されたものである。
【0005】(A) 溶銑の脱燐処理では、脱燐効率からみ
て処理温度を出来るだけ低くする方が良いが、該温度が
余りに低くなり過ぎると次工程の処理に不都合を来す
上、処理後スラグへの粒鉄ロスが多くなるという問題が
生じるので、該温度は1200〜1400℃、好ましく
は1300〜1350℃程度が最も良好である。しかし
ながら、実際作業では脱燐剤の添加そのものが処理温度
を低下する大きな要因となるので上記温度を保持するの
は極めて困難であるが、脱燐処理時に少量の酸素ガスを
吹き込むことによって前記処理温度が安定かつ容易に維
持される,(B) フラックスの脱燐能を十分に発揮せしめ
て脱燐能率を上げるには、上述のような処理温度の調整
もさることながら、脱燐平衡状態を達成するための十分
な撹拌を欠くことができないが、高温の溶銑を高能率脱
燐するに十分満足できる効率の良い撹拌を短時間に実現
するためには、処理容器底部から吹き込まれるガスによ
るガス撹拌が最も好ましい,(C) 加えて、効率の良い脱
燐処理を行うためには処理容器にスラグフォ−ミングの
ための十分なフリ−ボ−ド(湯面から容器上端までの距
離)が必要である,(D) スラグによる処理容器耐火物の
溶損を軽減して脱燐作業能率を上げるためには、塩基性
ライニングの使用が好ましい,(E) 2段階脱燐工程を含
む製鋼法において脱燐作業能率を上げるためには処理容
器からの排滓能率を無視することができず、排滓が容易
な処理容器の使用を欠かせない,(F) 高品質鋼を作業性
良く量産するためには十分な排ガス処理設備(集塵機)
が必要である,(G) これらの条件を考慮すると、溶銑脱
燐処理容器としては転炉形式の炉、それも炉底から撹拌
ガスを導入できる上下両吹き機能を有した複合吹錬転炉
が理想的であり、これを使用して前述した“2段階脱燐
工程を含む製鋼法”を実施すると、全製鋼工程を通じて
の造滓剤の使用量が極く少なくても十分に効率の良い脱
燐がなされ、高品質鋼を作業能率良く量産できる。
【0006】そして、この本発明者等が先に提案した方
法は、使用造滓剤量を極力抑えた低コスト操業でもって
低燐鋼を安定して製造することができ、高品質鋼を安価
に提供する上で極めて有利であった。
【0007】一方、益々高まりつつある鋼材の高品質
化,低価格化要求を受けて「高クロム鋼を出来るだけ低
い価格で溶製しようとの研究」も続けられてきており、
例えば「脱燐溶銑を転炉内(前記脱炭炉に相当)で造滓
剤を使用することなく吹錬を行い、 この吹錬中にクロム
鉱石を溶鋼中に添加して溶鉄の精錬終点[Cr]を上昇さ
せる方法(特開昭56−91913号公報)」等のよう
な、溶鉄中[Cr]上昇法も提案されている。
【0008】しかし、この方法を適用した場合でも脱炭
炉でのクロム鉱石の添加可能量には限度があり、要求さ
れる製品の[Cr]値を満たすために相当量の不足[Cr]
分を高価なフェロクロム等の添加で補う必要があった。
【0009】そこで、本発明者等は、更に、上下両吹き
機能を有した2基の転炉形式の炉を脱燐炉と脱炭炉に使
い分けて精錬を行う前記既提案製鋼法の利点を生かしつ
つ脱炭炉での終点[Cr]濃度を効果的に上昇させ得る製
鋼方法として、図4で示したような、「上下両吹き機能
を有する2基の転炉のうちの一方を脱燐炉1、 他方を脱
炭炉2として、 前記脱燐炉1内へ注入した溶銑3に“ク
ロム酸化物を含む化合物又は混合物(クロム鉱石等)”
を主成分とするか、 あるいはこれと共に“前記脱炭炉2
で発生した転炉滓4”をも主成分とする精錬剤を添加
し、 撹拌ガス吹込みノズル5による底吹きガス撹拌とラ
ンス6からの酸素ガスの上吹きを行いつつ溶銑温度を1
400℃以下に保ちながら精錬を行って溶銑[Cr]の上
昇を図り、次いで得られた脱燐溶銑を脱炭炉2で“通常
造滓剤を主成分とする精錬剤”を添加して精錬するとい
う低燐高クロム含有鋼の製造方法」を提案した(特開平
5−86412号:以降“先に提案した高クロム含有鋼
の製造法”と呼ぶ)。
【0010】なお、上記提案は、本発明者等によって続
けられた研究より得られた下記の知見事項を基にしてな
されたものであった。 (a) 上下両吹き機能を有した2基の転炉形式の炉を脱燐
炉と脱炭炉に使い分けて精錬を行う製鋼法において、そ
の脱燐炉でクロム鉱石を必須の精錬剤として吹錬を行う
と、該クロム鉱石も脱燐のための酸化剤として十分に作
用する上、脱燐炉で脱燐された溶銑の[Cr]濃度を大き
く高めることが簡単に可能となる,(b) 通常、溶銑脱燐
用の精錬剤(フラックス)は生石灰,酸化鉄及び蛍石を
主成分としており、中でも酸化鉄は不可欠な成分とされ
ていて、前述の特公平2−14404号として提案した
方法においても「スラグ中のFeOを確保し脱燐を促進す
るために脱燐炉で添加する精錬剤(脱燐剤)中に酸化鉄
を含ませることが不可欠である」と認識されていた(従
って脱燐剤は〔転炉滓+酸化鉄+蛍石〕を主成分とする
ものが良好とされていた)が、この場合、脱燐剤として
酸化鉄を含まない〔転炉滓+クロム鉱石〕を主成分とす
るもの、あるいはこれに蛍石や生石灰を配合したものを
使用しても、クロム鉱石が酸化鉄の代替剤として有効に
作用し良好な脱燐が進行する,(c) 従って、転炉滓以外
の必須成分であった酸化鉄に代えてクロム鉱石を含む精
錬剤を脱燐炉での脱燐剤として使用すれば、酸化鉄添加
に要する費用が削減された上で十分に良好な脱燐を進行
させることができ(クロム鉱石は脱燐促進作用を発揮す
るが、 それ自身が[C]等で還元されて脱燐銑の[Cr]
をも効果的に上昇させる)、この点からの製造コスト低
減効果も確保される,(d) これらの結果、その後に行わ
れる脱炭炉精錬の前での[Cr]がより高くなり、この高
い[Cr]を脱炭炉精錬後にまで維持できることから、脱
炭精錬後のクロム合金鉄添加量を低めて高Cr鋼の製造コ
ストを節減できるようになる。
【0011】しかしながら、その後も数多くの実際操業
を通じて様々な観点から検討を続けていた本発明者等
は、「上記“先に提案した高クロム含有鋼の製造法”を
適用した場合でも転炉へ添加するクロム鉱石量をある限
度以上に増やすことは難しく、そのため脱炭終了時の溶
鉄中のクロム濃度(転炉吹錬終点時の[Cr]値)は高々
0.7 〜0.8 %止まりとなり、需要の多い[Cr]濃度:0.
8 〜1.2 %のクロム含有鋼を提供するには、やはり転炉
終点後に高価なフェロクロムや金属クロム等を添加して
[Cr]調整することが必要である」と認識せざるを得な
かった。
【0012】このようなことから、本発明の目的は、フ
ェロクロムや金属クロム等の高価なクロム源を全く使用
せず、安価なクロム鉱石のみで転炉吹錬終点時の[Cr]
値を0.8 〜1.2 %程度にまで高め得る製鋼手段を確立す
ることに置かれた。
【0013】
【課題を解決するための手段】本発明者等は、上記目的
を達成すべく更に研究を重ねた結果、次のような新しい
知見を得ることができた。即ち、前記“先に提案した高
クロム含有鋼の製造法”では脱燐炉での処理時に少量の
酸素ガスを吹き込んで処理温度の維持を図りはするもの
の、ここで添加するクロム鉱石は還元反応が吸熱反応で
あることから熱的余裕を持って良好な転炉操業を維持す
るためにはどうしてもクロム鉱石の添加量を制限せざる
を得ない。しかるに、脱燐炉での処理の際、クロム鉱石
を含有させた精錬剤に更に炭材を配合して添加し、酸素
を上吹きすると、添加された炭材と上吹き酸素との反応
により発生した熱が溶銑に付与されて溶銑温度の低下が
抑えられるばかりか、溶銑の[C]濃度(炭素含有量)
も高まるためにクロム鉱石の多量配合が可能となり、そ
の後の脱炭終了後の溶鉄中[Cr]濃度を高価なクロム源
の使用なしに十分 0.8〜 1.2%の高位とすることができ
る。
【0014】本発明は上記知見事項等を基にして完成さ
れたものであり、「図1に示すように、 上下両吹き機能
を有する2基の転炉のうちの一方を脱燐炉1、 他方を脱
炭炉2として、 前記脱燐炉1へ注入した溶銑3に、 “ク
ロム酸化物を含有する化合物又は混合物(クロム鉱石
等)を主成分とする精錬剤”あるいは“これと共に前記
脱炭炉2で発生した転炉滓4をも主成分とする精錬剤”
と、炭材とを添加し、 底吹きガス撹拌と酸素ガスの上吹
きを行いつつ溶銑温度を1400℃以下に保ちながら精錬を
行い、 次いで得られた脱燐溶銑を脱炭炉にて“通常造滓
剤を主成分とする精錬剤”を添加して精錬することによ
り、 低燐レベルで高い[Cr]濃度の高品質鋼を安定かつ
安価に製造し得るようにした点」に大きな特徴を有して
いる。
【0015】ここで、上記“精錬剤”を構成する“クロ
ム鉱石,転炉滓以外の成分”としては、例えば生石灰
(CaO) ,蛍石(CaF2),ドロマイト(CaCO3 ・ MgC
3),鉄鉱石(Fe23, Fe34),マンガン鉱石又は鉄マ
ンガン鉱石,石灰石等が挙げられる。
【0016】なお、脱燐炉での処理温度を1400℃以
下に調整する理由は、溶銑処理温度がこれよりも高くな
ると脱炭ばかりが進行してスラグ中の酸化剤量が低くな
ると共に、熱力学的にも1400℃以上では脱燐が悪化
することにある。しかし、余りに低温になるとスラグへ
の粒鉄ロスが増加するので、この点に留意する必要があ
る。
【0017】ところで、クロム鉱石の溶融還元は Cr23 +3[C]→2[Cr]+3CO なる吸熱反応で進行する。従って、クロム鉱石の添加可
能量(溶融還元可能量)は溶銑の温度及び[C]濃度が
高いほど多くなる。そこで、脱燐炉での処理温度は14
00℃以下の領域の中で可能な限り高めに維持するのが
良い。そのため、脱燐炉に注湯する溶銑の温度([C]
濃度も)を出来るだけ高くすることが考えられるが、高
炉の出銑温度や高炉銑の[C]濃度を大きく変えること
は技術的にもコスト的にも問題がある。しかるに、例え
ば[Cr]濃度が 0.8〜 1.2%といったような高クロム含
有鋼を溶製するためには、高炉から出銑される溶銑の温
度及び[C]濃度で決まる熱余裕以上にクロム鉱石を添
加しなければならない。
【0018】そこで、種々検討した結果、脱燐炉で溶銑
の精錬を行う際、精錬剤に加えて炭材を添加すると共に
それに対応する酸素を付与するとクロム鉱石の添加量を
増量することができ、精錬に悪影響を与えることなく
[Cr]濃度を所定値にまで上昇させ得ることが明らかと
なった。その上、炭材を添加することでクロム鉱石の溶
融還元が促進され、[Cr]濃度の上昇速度及び到達値が
共に上昇することも期待された。なお、ここで言う炭材
とはコ−クス等の炭素含有物質を意味するが、炭材とし
て例えば硫黄を多く含有するコ−クスを使用する場合に
は、その鋼種の[S]規格及び脱燐炉での脱硫能により
コ−クス使用量が限定される場合がある。
【0019】前記「上下両吹き機能を有した転炉形式の
炉」としては、現在使われているところの“上下吹き複
合吹錬転炉”が最も好ましいが、特に脱燐炉について
は、精錬条件が脱炭炉よりもマイルドであるため炉自体
を更に小さくしても良いので、脱燐専用に新設してもコ
スト的にそれほどの影響はない。また、脱燐炉で使用す
る上吹き酸素ランスとしては、通常の転炉ランスであっ
て良いことは勿論であるが、脱燐用に新作した小流量ラ
ンスを使用することもできる。
【0020】脱燐炉での使用酸素ガス量は、炭材の添加
量のほか、処理前の溶銑温度や珪素含有量,転炉滓の温
度,脱燐炉の温もり具合,目的とする処理溶銑温度、更
には脱燐炉の規模(寸法)等によって決定されるが、炭
材を添加しない場合の吹錬では概ね5〜10Nm3/ton
(脱炭量:0.5%)であるのに対して、炭材を添加する本
発明法の場合には概ね炭材10kg/tonにつき10Nm3/to
n 程度の酸素量(脱炭量:0.5%)とするのが良い。
【0021】脱燐炉での精錬剤(脱燐剤)としては、
“クロム酸化物を含む化合物又は混合物”を主成分とす
るものが使用されるが、この“クロム酸化物を含む化合
物又は混合物”に加えて“脱炭炉で発生した転炉滓”を
も主成分とするものを使用すれば、造滓剤消費量の著し
い低減や安定した脱燐効率維持,作業性維持にもつなが
るので好ましい。つまり、この精錬剤としては、例えば 転炉滓:40〜80重量%, クロム鉱石:10〜60重量%, 蛍石:0〜30重量% の配合組成のものが推奨される。
【0022】なお、例えば工場での流通バランス事情等
のために脱燐炉で使用すべき“脱炭炉発生の転炉滓”が
不足しているときは、脱燐炉で添加する転炉滓の代替と
して転炉滓に相当する成分の造滓剤混合物(生石灰,蛍
石,鉄鉱石を主成分とするもの)を適用(実作業的には
生石灰,蛍石,鉄鉱石を増配する)しても良いが、この
場合は転炉滓に比べて若干滓化性が悪化するので、蛍石
を更に増配する配慮を講じるのが良い。また、クロム鉱
石は酸化鉄に比して滓化の点で幾分不利であるため、こ
の点からも蛍石は積極的に添加するのが良く、それも酸
化鉄を配合する場合よりも多めとするのが望ましい。
【0023】なお、“クロム酸化物を含む化合物あるい
は混合物”としては、上記クロム鉱石の他、鉄−クロム
鉱石,ステンレス鋼溶製時に生成するクロム酸化物を多
量に含むスラグ等が比較的入手が容易なものと言える。
これらクロム鉱石等の溶融還元(自身は酸化剤として作
用する)量は、添加量によっても異なるが、例えば投入
量10kg/tで[Cr]増加量は0.15〜0.25%程度である。
【0024】勿論、この精錬剤は上記組成に限定される
ものではなく、既述のように、例えば付加的に生石灰を
配合したり、 CaCl2, Na2O・SiO2 , Na2CO3 等を
加えても良い。そして、転炉滓以外のこれら脱燐剤原料
は滓化性の面から小さい粒径程好ましいが、一般に使わ
れている程度のものであれば何ら差し支えない。
【0025】次に、脱燐炉でのクロム酸化物の還元歩留
を高くするための“塩基度の好適範囲”を図2によって
説明する。図2は、 "脱燐炉のスラグ中(Cr)〔実際は
Cr23 の形態であるCr分を重量%で表わしたもの〕と
溶銑[Cr]との比(Cr分配比)”に及ぼす“スラグ塩基
度[(CaO) / (SiO2)] ”の影響を示したものである。
この図2からも明らかなように、スラグ塩基度[(CaO)
/ (SiO2)] が 2.5 ≦ (CaO) / (SiO2) ≦ 4 の時、より顕著には 2.75 ≦ (CaO) / (SiO2) ≦ 3.5 の時に「(Cr)/[Cr]」が低値となり、有効にCr上昇
していることが分かる。即ち、クロム酸化物は弱いなが
らも“塩基性酸化物”であるので、スラグの塩基度を上
げることでスラグ中クロム酸化物を減少させることがで
きる。また、スラグの流動性から考えた場合には、塩基
度が 3.5〜4を超えるとスラグが固化し始めるためクロ
ム酸化物の還元が進行しなくなることも指摘できる。従
って、これらの総合作用が、図2に示されるような好ま
しい塩基度範囲を作り出しているものと考えることがで
きる。
【0026】脱燐炉で使用される精錬剤(脱燐剤)の量
は溶製する鋼の[P]レベルにより決定されるが、通常
は30〜60kg/t程度で良い。さて、脱燐炉で使用され
る精錬剤の主成分として好適な転炉滓としては、脱炭炉
で発生した溶融状態のものが熱経済的にも脱燐フラック
スの滓化性の面からも好ましいが(このように溶融状態
のものを用いる場合には耐火物を内張りした鍋を介して
脱燐炉に注滓される)、取り扱いの容易さ等を考慮して
脱炭炉で得られたものを一旦冷却凝固させ、粒状又は塊
状に破砕してから用いても良い(なお、この時も熱的な
面からスラグの温度は高い程良い)。ただ、この場合、
脱燐炉での滓化性向上のために粒径は小さいほど良好で
あるが、転炉滓は本来滓化性に富んでいることもあって
粒径が100mmを下回る程度でも格別な不都合を来たす
ことがないし、これより大きくても使用可能である。そ
して、使用される転炉滓は、タイミングとしては前回チ
ャ−ジのものが良いが、それ以前に脱炭炉から出たもの
や他の工場の脱炭炉で発生したものでも良いことは言う
までもない。
【0027】炉底から吹き込む撹拌ガスとしてはAr,C
2 ,CO, N2 ,O2 ,空気等の何れであっても良
い。そして、脱燐炉の炉底ガス撹拌の程度は通常の上下
両吹き複合吹錬におけると同程度(0.03〜0.2 Nm3/t )
で良いが、脱燐速度の向上を狙ってこれよりも更に多く
して良いことは勿論である。以上のような条件で脱燐処
理を行うと、通常、20分以内で所望の高[Cr]濃度の
脱燐銑を得ることができる。
【0028】次いで実施される脱炭炉での吹錬は、基本
的には通常の“炉外で脱燐された溶銑”を吹錬する場合
と同様であるが、終点での溶鋼[Cr]を維持或いは上昇
させるべく、生石灰やドロマイトを中心とする造滓剤の
他にクロム鉱石等の“クロム酸化物を含む化合物或いは
混合物”を添加しても良いことは言うまでもない。
【0029】ところで、この発明に係る製鋼法を実施す
る場合には、出来れば適用される溶銑の事前脱硫処理を
行うのが良い。その第一の理由として該製鋼法では脱硫
の進行が極めて鈍いことが挙げられるが、他方では、事
前脱硫していない溶銑を用いた場合には転炉スラグ中の
S含有量が上昇し、次のチャ−ジにおける溶鋼S含有量
を高めることも懸念されるからである。なお、前記事前
脱硫は通常行われている溶銑脱硫方法の何れによっても
良い。
【0030】更に、この方法に適用される原料溶銑のSi
含有量も低いほど好ましい。なぜなら、溶銑中のSi含有
量が多くなるほど前記脱燐炉でのスラグ塩基度が低下し
て脱燐能が落ち、全体での生石灰等の使用量が増加する
ためである。それ故、溶銑のSi含有量は出来れば0.30%
以下、好ましくは0.20%以下に調整しておくのが良策で
ある。なお、脱炭炉の条件から処理後の溶銑温度を少し
でも高くしたいような場合、溶銑のSi含有量は 0.2%程
度の方が有利なこともあり、工場のロ−カル条件によっ
て決定すべきである。
【0031】続いて、実施例により本発明を比較例と対
比して説明する。
【実施例】
〔実施例1〕ト−ピ−ド内で脱硫,脱珪処理した表1の
上段に示す成分の溶銑160トンを脱燐炉として使用す
る上下両吹き複合吹錬転炉に注銑し、これに“同様の形
式の脱炭炉で発生した転炉滓を冷却・凝固して30mm以
下の粒径に破砕したもの”及び同様の粒径を持つ“クロ
ム鉱石”並びに“蛍石”を 転炉滓 :15kg/t, クロム鉱石 :25kg/t, 蛍石 :9kg/t, 生石灰 :15kg/t, 塩基度 :2.5 〜3, なる配合割合で混合して添加すると共に、炭材としてコ
−クスを5kg/tonの割合で添加して、酸素を上吹きしな
がら(酸素量:15Nm3/ton)10分間の脱燐処理を行っ
た。
【0032】
【0033】ここで、使用した“クロム鉱石”及び“脱
炭炉で発生した転炉滓”の成分組成は次の通りであっ
た。 クロム鉱石…Cr23 :30〜40重量%,T.Fe :15〜
20重量%,MgO :10〜15重量%,Al23 :10〜15
重量%,SiO2 :5〜15重量%。 転炉滓…CaO :40〜50重量%,SiO2 :5〜15重
量%。CaF2 :1〜10重量%。MgO :5〜10重量
%,Cr23 :5〜15重量%,MnO :5〜10重量
%,P25 :1重量%。 また、蛍石の成分は、実質的にCaF2:90%,SiO2:1
0%のものであった。なお、使用した脱燐炉並びに脱炭
炉は、何れも炉底よりガス吹込み撹拌が可能な160ト
ン上下両吹き複合吹錬転炉であり、表2に示したような
操業条件が採用された。
【0034】
【0035】このようにして得られた脱燐銑(成分組成
は表1の中段に示す)を、一旦鍋中に出銑してから脱炭
炉に注銑し、下記の造滓剤を添加して主吹錬(約16
分)を実施した。 クロム鉱石 :20kg/t, 生石灰 :10kg/t, 蛍石 :2kg/t。 なお、このとき発生した転炉滓は15kg/tであったが、
「これを次チャ−ジにおける脱燐剤の原料として脱燐炉
に添加し脱燐を行うと言う一連の操作」を繰り返した。
【0036】この結果、表1の下段に示すような鋼中
[P]が 0.010重量%,[Cr]が1.05重量%という溶鋼
が得られた。
【0037】〔比較例1〕実施例1と同様の精錬を行う
際、脱燐炉において脱燐剤(精錬剤)に炭材を配合しな
いで精錬を行なおうとしたが、この場合には熱余裕の関
係からクロム鉱石を12kg/tonまでしか配合することが
できず、そのため酸素供給量を5Nm3/tonにまで下げて
(送酸速度0.5Nm3/min・ton)精錬を行った。そして、こ
れに伴い、脱燐炉における塩基度調整及びスラグの流動
性確保のために生石灰,蛍石の量を変更したが(但し、
脱炭炉からの転炉滓の供給量は同じとした)、それ以外
の条件は実施例1と同じにして溶銑の脱燐・脱炭吹錬を
行った。なお、脱燐炉で使用した精錬剤(脱燐剤)の配
合割合を整理すると下記の通りであった。 転炉滓 :15kg/t, クロム鉱石 :12kg/t, 蛍石 :5kg/t, 生石灰 :10kg/t 塩基度 :2.5 〜3。 この時の溶鉄成分推移の詳細を表3に示す。
【0038】
【0039】表3に示す結果から明らかなように、この
場合における転炉吹錬終点の[Cr]濃度は0.75%であ
り、[Cr]規格が1%を超える鋼種の場合、フェロクロ
ム,金属クロム等といった高価なクロム源の追加を余儀
なくされた。
【0040】
【効果の総括】以上に説明した如く、この発明によれ
ば、効率の良い前処理を採り入れることによって[Cr]
濃度が 0.8〜 1.2%と非常に高い脱燐脱炭溶鉄を安定し
て溶製することができ、Cr含有量の高い高品位鋼をコス
ト安く提供することが可能になるなど、産業上極めて有
用な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明プロセスの概念図である。
【図2】脱燐炉でのCr分配比とスラグ塩基度との関係を
示したグラフである。
【図3】先に提案した製鋼法に係わるプロセスの概念図
である。
【図4】先に提案した高クロム含有鋼の製造法に係わる
プロセスの概念図である。
【符号の説明】
1 脱燐炉 2 脱炭炉 3 溶銑 4 転炉滓 4′脱燐スラグ 5 撹拌ガス吹き込みノズル 6 ランス

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 上下両吹き機能を有する2基の転炉のう
    ちの一方を脱燐炉、他方を脱炭炉として、前記脱燐炉へ
    注入した溶銑に“クロム酸化物を含有する化合物又は混
    合物を主成分とする精錬剤”及び炭材を添加し、底吹き
    ガス撹拌と酸素ガスの上吹きを行いつつ溶銑温度を14
    00℃以下に保ちながら精錬を行い、次いで得られた脱
    燐溶銑を脱炭炉にて“通常造滓剤を主成分とする精錬
    剤”を添加して精錬することを特徴とする、溶鉄中クロ
    ム濃度を上昇させる製鋼方法。
  2. 【請求項2】 脱燐炉に添加する炭材以外の精錬剤とし
    て、“クロム酸化物を含有する化合物又は混合物”及び
    “脱炭炉で発生した転炉滓”を主成分とする精錬剤を用
    いることを特徴とする、請求項1に記載の製鋼方法。
  3. 【請求項3】 脱燐炉へ注入する被処理溶銑としてSi含
    有量0.30重量%以下にまで予備脱珪処理されたものを使
    用することを特徴とする、請求項1又は2に記載の製鋼
    方法。
JP19365994A 1994-07-26 1994-07-26 製鋼方法 Pending JPH0841519A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19365994A JPH0841519A (ja) 1994-07-26 1994-07-26 製鋼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19365994A JPH0841519A (ja) 1994-07-26 1994-07-26 製鋼方法

Publications (1)

Publication Number Publication Date
JPH0841519A true JPH0841519A (ja) 1996-02-13

Family

ID=16311639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19365994A Pending JPH0841519A (ja) 1994-07-26 1994-07-26 製鋼方法

Country Status (1)

Country Link
JP (1) JPH0841519A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220615A (ja) * 2001-01-30 2002-08-09 Kawasaki Steel Corp 転炉製鋼方法
KR101239648B1 (ko) * 2010-12-28 2013-03-11 주식회사 포스코 크롬함유 용선의 탈린 방법 및 이를 이용한 크롬함유 용강의 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220615A (ja) * 2001-01-30 2002-08-09 Kawasaki Steel Corp 転炉製鋼方法
KR101239648B1 (ko) * 2010-12-28 2013-03-11 주식회사 포스코 크롬함유 용선의 탈린 방법 및 이를 이용한 크롬함유 용강의 제조 방법

Similar Documents

Publication Publication Date Title
JPS63195209A (ja) 製鋼方法
JP2912963B2 (ja) 脱硫前処理としてのスラグ改質方法
JPH0841519A (ja) 製鋼方法
WO2003029498A1 (fr) Procede de pretraitement de fer fondu et procede de raffinage
JP4192503B2 (ja) 溶鋼の製造方法
JPH01147011A (ja) 製鋼法
JP2755027B2 (ja) 製鋼方法
JPH0557327B2 (ja)
JPH0471965B2 (ja)
JPS6393813A (ja) 製鋼方法
JP2587286B2 (ja) 製鋼方法
JP2842231B2 (ja) 底吹きガス撹拌による溶銑の予備処理方法
JPS6247417A (ja) スクラツプの溶解精錬方法
JPH0214404B2 (ja)
JPS5847450B2 (ja) 酸素上吹製鋼法における脱燐促進方法
JP2882236B2 (ja) ステンレス製造法
JPH01142009A (ja) 製鋼方法
JPH03122210A (ja) 複合転炉を用いた2段向流精錬製鋼法
JPH01147012A (ja) 製鋼方法
JPH01215917A (ja) ステンレス鋼の溶製方法
JPS6152208B2 (ja)
JPS6214603B2 (ja)
JPH032312A (ja) 低燐銑の製造方法
JPH03153811A (ja) マンガン鉱石の溶融還元を伴う製鋼方法
JPH04257691A (ja) 高マンガン鋼の製造方法