JPH0835906A - Method and equipment for testing hollow container - Google Patents

Method and equipment for testing hollow container

Info

Publication number
JPH0835906A
JPH0835906A JP7035640A JP3564095A JPH0835906A JP H0835906 A JPH0835906 A JP H0835906A JP 7035640 A JP7035640 A JP 7035640A JP 3564095 A JP3564095 A JP 3564095A JP H0835906 A JPH0835906 A JP H0835906A
Authority
JP
Japan
Prior art keywords
pressure
test chamber
hollow container
chamber
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7035640A
Other languages
Japanese (ja)
Other versions
JP2854534B2 (en
Inventor
Martin Lehmann
マーチン・レーマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/551,792 external-priority patent/US5170660A/en
Application filed by Individual filed Critical Individual
Publication of JPH0835906A publication Critical patent/JPH0835906A/en
Application granted granted Critical
Publication of JP2854534B2 publication Critical patent/JP2854534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3404Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level
    • B07C5/3408Sorting according to other particular properties according to properties of containers or receptacles, e.g. rigidity, leaks, fill-level for bottles, jars or other glassware
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3263Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers using a differential pressure detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3281Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators removably mounted in a test cell
    • G01M3/329Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators removably mounted in a test cell for verifying the internal pressure of closed containers

Abstract

PURPOSE: To provide a simple testing method and a testing device with excellent reliability for a hollow container capable of carrying out the pressure deformation test of the container. CONSTITUTION: At least one hollow container 1 is arranged in a test chamber 3 having the volume to be determined according to the volume of the hollow container 1, the inside of a reference chamber 29 of the prescribed volume is pressurized to the prescribed pressure, the prescribed pressure is discharged from the reference chamber 29 to the test chamber 3, and the strength S(P3 ) corresponding to the pressure P3 (a), P3 (b) in the test chamber 3 is measured to evaluate the volumetric change of the hollow container 1 before and after pressurization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少なくとも1つの空容
器の密封試験及び空容器の圧力荷重に応じた容積変化を
検出する方法と装置に関し、例えばコーヒー包装のよう
な弾力的な空容器について試験する方法と装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for detecting a sealing test of at least one empty container and detecting a volume change of the empty container in response to a pressure load, for example, for an elastic empty container such as coffee packaging. A method and apparatus for testing.

【0002】[0002]

【従来の技術】例えばジュース、コーヒーのような特定
の飲食物又は例えば発泡錠剤のような薬品を包装する
際、包装された製品が大気中の湿気によって汚染される
のを防止するため、包装容器を周囲から密封することが
重要である。その際、容器は、缶や袋のような、一般に
定形又は弾力的な中空容器であり、蓋又は密閉部を備え
ている。これらの蓋又は密閉部は開放可能であるが、閉
じた状態では中空容器内部を密封して閉鎖する必要があ
る。
2. Description of the Related Art When packaging a specific food or drink such as juice or coffee or a chemical such as effervescent tablet, a packaging container is provided in order to prevent the packaged product from being contaminated by atmospheric moisture. It is important to seal the from the surroundings. In that case, the container is a generally fixed or elastic hollow container such as a can or a bag, and is provided with a lid or a sealed portion. These lids or hermetically sealed parts can be opened, but in the closed state, it is necessary to hermetically close the inside of the hollow container.

【0003】[0003]

【発明が解決しようとする課題】この種の容器の製造に
は、例えば溶接方法等の種々の製造法が採用される。こ
のような中空容器の密封度の他に、定形の容器の場合
は、壁特に連結部の剛性が容器の耐久性の重要な基準と
なる。例えば中空容器に溶接継目のような堅い、又は弱
い箇所が存在すると、容器使用中に例えば剛性が異なる
部位が連結された領域で亀裂が生ずる場合がある。本発
明は、簡単な方法で、高い信頼性を以てこのような容器
の試験が可能である中空容器試験方法及び装置を提供す
ることを課題としている。
Various kinds of manufacturing methods such as a welding method are adopted for manufacturing this kind of container. In addition to the degree of sealing of such a hollow container, in the case of a regular container, the rigidity of the wall, particularly the connecting portion, is an important criterion for durability of the container. The presence of hard or weak points, such as welded seams, in a hollow container can lead to cracking during use of the container, for example, in areas where differently rigid parts are connected. It is an object of the present invention to provide a hollow container test method and device capable of testing such a container with a simple method and high reliability.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る中空容器の試験方法は、少なくとも1
つの中空容器を、この中空容器の体積に応じて決められ
た容積を有する試験室内に配置する一方、一定容積の基
準室内を一定圧力まで加圧し、前記基準室から前記試験
室へ所定の圧力を放出した後、前記試験室内の圧力に対
応する強度を測定し、加圧前後の中空容器の体積変化を
評価することを特徴とする。
In order to solve the above problems, at least one method for testing a hollow container according to the present invention is used.
The two hollow containers are arranged in a test chamber having a volume determined according to the volume of the hollow container, while the reference chamber having a constant volume is pressurized to a constant pressure, and a predetermined pressure is applied from the reference chamber to the test chamber. After discharging, the strength corresponding to the pressure in the test chamber is measured, and the volume change of the hollow container before and after pressurization is evaluated.

【0005】また、本発明に係る中空容器の試験装置
は、試験すべき中空容器の体積に応じて決められた容積
を有する試験室と、遮断手段を介して前記試験室に接続
された基準室と、前記基準室内に所定の圧力を供給する
ための圧力供給機構と、前記試験室内の圧力を測定し前
記中空容器の体積変又は体積を検出するための圧力測定
機構とを具備することを特徴とする。
Further, the hollow container testing apparatus according to the present invention comprises a test chamber having a volume determined according to the volume of the hollow container to be tested, and a reference chamber connected to the test chamber via a shutoff means. And a pressure supply mechanism for supplying a predetermined pressure into the reference chamber, and a pressure measurement mechanism for measuring the pressure in the test chamber and detecting the volume change or volume of the hollow container. And

【0006】前記課題は本発明に基づき、試験室内の空
容器に、空容器内圧と試験室内の圧力との正又は負の差
圧を加え、試験室内の圧力の状態から空容器の密封度及
び(又は)容積変化を判定することにより達成される。
According to the present invention, according to the present invention, a positive or negative differential pressure between the internal pressure of an empty container and the pressure inside the test chamber is applied to the empty container inside the test chamber to determine the degree of sealing of the empty container from the pressure state inside the test chamber. (Or) Achieved by determining volume change.

【0007】場合によって、内容物が充填された中空容
器を試験室内に入れ、試験室内に中空容器の内圧との正
又は負の差圧を、好適には空気である試験用気体の形態
で加え、中空容器の密封度又は漏れ度に従って試験室の
圧力と中空容器の内圧との均圧が生じる過程を観察し、
その時間的経緯から、場合によって存在する漏れの程度
を評価する。更に、中空容器の体積の増加又は減少も試
験室内の圧力に影響を及ぼすので(増加は中空容器内部
から外部へと向かう差圧が加えられた場合、減少は試験
室から中空容器内部へと向かう差圧が加えられた場
合)、試験室内圧から、中空容器壁の弾性が判断でき
る。
Optionally, a hollow container filled with the contents is placed in a test chamber and a positive or negative differential pressure from the internal pressure of the hollow container is added to the test chamber, preferably in the form of a test gas, which is air. , Observing the process of pressure equalization between the pressure in the test chamber and the internal pressure of the hollow container according to the degree of sealing or leakage of the hollow container,
Based on the time history, the degree of leakage that may be present is evaluated. Furthermore, an increase or decrease in the volume of the hollow container also affects the pressure inside the test chamber (when an increase is applied, a decrease pressure goes from the test chamber to the inside of the hollow container when a differential pressure is applied from the inside of the hollow container to the outside). If a differential pressure is applied), the elasticity of the hollow container wall can be determined from the pressure in the test chamber.

【0008】そこで実施形態の一つにおいては、試験室
内の圧力を一定時間経過後に一定に調整し、そのために
導入された調整圧力値を評価する方法が提案される。試
験される中空容器に漏れがある場合、試験室内の圧力を
一定に維持するためには、試験室へ又は試験室から調整
圧力値として特定量の圧力媒体が時間単位毎に供給又は
排出されるため、この媒体流量が中空容器の漏れ又は弾
性の尺度となる。すなわち、試験室内へ流入する圧力媒
体量、又は中空容器内から外部に向かう差圧の場合に
は、試験室から流出する時間単位毎の圧力媒体量が測定
量として評価される。
Therefore, in one of the embodiments, a method is proposed in which the pressure in the test chamber is adjusted to a constant value after a lapse of a fixed time, and the adjusted pressure value introduced for that purpose is evaluated. If there is a leak in the hollow container to be tested, in order to maintain a constant pressure in the test chamber, a certain amount of pressure medium is supplied or discharged every hour as a regulated pressure value to or from the test chamber. Therefore, this medium flow rate is a measure of leakage or elasticity of the hollow container. That is, in the case of the amount of pressure medium flowing into the test chamber or the differential pressure from the inside of the hollow container to the outside, the amount of pressure medium flowing out of the test chamber per time unit is evaluated as the measured amount.

【0009】本発明では、試験室に所定の圧力値を初期
値として付与し、試験室内の圧力の推移を前述の判定基
準に沿って判定するため、別個に設けられた基準室に所
定の圧力を加え、次に前記基準室と試験室とを連通させ
て、試験室内と中空容器内との間に差圧を誘発させるこ
とが提案される。試験室内の圧力は、2つの室が連結さ
れると、両方の室の圧力差および容積の差により決定さ
れる。測定信号を強めるために、試験室にはあらかじめ
大気圧に関する正又は負の圧力を加えておいてもよい。
According to the present invention, a predetermined pressure value is given to the test chamber as an initial value, and the transition of the pressure in the test chamber is judged according to the above-mentioned judgment standard. Then, it is proposed that the reference chamber and the test chamber are communicated with each other to induce a differential pressure between the test chamber and the hollow container. The pressure in the test chamber is determined by the pressure and volume differences between the two chambers when the two chambers are connected. In order to enhance the measurement signal, a positive or negative pressure related to atmospheric pressure may be applied to the test chamber in advance.

【0010】試験室の圧力を評価するため、規定の基準
圧を生成し、次にこの基準圧を基準とした差圧測定に基
づいて評価を行うことが可能である。そのための手段と
して評価に先立ち、先ず試験室と基準圧力保持部とを連
結し、次に基準圧力保持部を試験室から遮断することに
より、基準圧力保持部内の圧力を試験室の圧力変化測定
のための基準圧として使用することが提案される。
In order to evaluate the pressure in the test chamber, it is possible to generate a defined reference pressure and then carry out the evaluation based on a differential pressure measurement with this reference pressure as a reference. As a means for that, prior to the evaluation, the test chamber and the reference pressure holding unit are first connected, and then the reference pressure holding unit is cut off from the test chamber, so that the pressure inside the reference pressure holding unit is measured by measuring the pressure change in the test chamber. It is proposed to use as a reference pressure for

【0011】基準圧力保持部を試験室と連結することに
より、基準圧力保持部内に試験室内と同一の圧力が生ず
る。次に基準圧力保持部を試験室から遮断すると、その
遮断時の試験室内にある圧力値が基準圧力保持部内に残
留され、評価する際の差圧測定用の基準圧となる。
By connecting the reference pressure holding portion to the test chamber, the same pressure as in the test chamber is generated in the reference pressure holding portion. Next, when the reference pressure holding unit is shut off from the test chamber, the pressure value in the test chamber at the time of shutting off remains in the reference pressure holding unit and becomes the reference pressure for differential pressure measurement at the time of evaluation.

【0012】試験室内の圧力の評価を、所定の時点でポ
イント方式で行うことによって、極めて簡易に中空容器
を評価することが可能である。所定の時点で、試験室の
内圧が、例えば密封された中空容器に関して予め検出さ
れた目標室内圧と対応するか否かが吟味される。現在の
試験室の内圧を2つ以上の時点で、これらの時点に対応
する目標圧力値と比較することにより、又は、圧力の連
続的な時間推移を目標圧の時間推移と比較することによ
って、特に極めて小さい漏れがある場合に、例えば比較
結果、又は目標値と現在値との差を積算することによ
り、評価の正確さが高まる。
By evaluating the pressure in the test chamber by a point system at a predetermined time point, it is possible to evaluate the hollow container very easily. At a given time, it is examined whether the internal pressure of the test chamber corresponds to a pre-detected target internal pressure, for example for a sealed hollow container. By comparing the internal pressure of the current test chamber at two or more time points with the target pressure values corresponding to these time points, or by comparing a continuous time course of pressure with a time course of the target pressure, Especially when there is a very small leak, the accuracy of the evaluation is increased by, for example, integrating the comparison result or the difference between the target value and the current value.

【0013】更に好ましくは、一定目標力値又は目標圧
力推移が記憶手段により記憶され、前述の試験の際、比
較値として、記録される現在値と比較され、漏れが大き
すぎ、又は堅すぎるかたわみ過ぎる壁部に起因する中空
容器の欠陥が判定される。
More preferably, the constant target force value or the target pressure change is stored by the storage means, and is compared with the recorded current value as a comparison value in the above-mentioned test, and whether the leak is too large or too hard. Defects in the hollow container due to over-deflected walls are determined.

【0014】[0014]

【実施例】図1は、参考例として本発明に関連する技術
を示す概略図である。中空容器1は密封度、漏れ、及び
壁の弾性変形により、圧力荷重に応じて容積が変化する
態様を試験する必要がある。中空容器1は、例えば蓋5
によって密閉可能な入口を通して試験室3内に入れられ
る。その際、中空容器1の内部には通常周囲圧Puと対
応する内圧Pi1がかかっている。試験室3を気密に閉鎖
した後、試験室3には圧力媒体源7と接続されることに
より圧力が加えられる。圧力媒体としては、気体、好適
には空気が採用される。それによって試験室3内には中
空容器1内の内圧Pi1に対する正又は負の差圧が生ず
る。
1 is a schematic view showing a technique related to the present invention as a reference example. The hollow container 1 needs to be tested for a mode in which the volume changes in response to a pressure load due to the degree of sealing, leakage, and elastic deformation of the wall. The hollow container 1 has, for example, a lid 5
It is put into the test chamber 3 through a sealable inlet. At that time, the internal pressure P i1 corresponding to the ambient pressure Pu is usually applied inside the hollow container 1. After closing the test chamber 3 in an airtight manner, pressure is applied to the test chamber 3 by being connected to a pressure medium source 7. Gas, preferably air, is used as the pressure medium. As a result, a positive or negative differential pressure with respect to the internal pressure P i1 in the hollow container 1 is generated in the test chamber 3.

【0015】試験室3内の圧力は図1ではP3 の記号で
示されている。試験室3と試験されるべき中空容器1か
ら成る系は、例えば遮断弁9によって圧力媒体源7から
遮断され、放置される。中空容器1が使用される気体に
対して気密であり、その壁が、P3 とPi1との差圧から
生ずる力により壁に顕著な変形が起きないような剛さで
ある場合は、図1で概略的に符号11で示した圧力検出
器、例えば圧電圧力検出器のような機械/電気変換器に
よって、図2で定性的に示した出力信号S(P3)が記
録される。
The pressure in the test chamber 3 is indicated by the symbol P 3 in FIG. The system consisting of the test chamber 3 and the hollow container 1 to be tested is shut off from the pressure medium source 7 by means of a shut-off valve 9, for example, and left unattended. If the hollow container 1 is airtight against the gas used and its wall is stiff such that the wall is not significantly deformed by the force resulting from the differential pressure between P 3 and P i1 , The output signal S (P 3 ) qualitatively shown in FIG. 2 is recorded by a mechanical / electrical converter, such as a piezoelectric pressure detector, indicated generally by the numeral 1 at 11, for example a piezoelectric pressure detector.

【0016】図2,図3には時間tの経過に応じて、信
号S(P3) に対応する試験室3内の圧力並びに中空容
器1内の内圧Pi1が定性的に記載されている。時点
1、即ち、中空容器1が試験室3内に入れられた時点
では、P3とPi1は周囲圧Puと等しい。t1 の時点
で、試験室3に圧力源7により圧力がかかり始め、試験
室3内の圧力が上昇する。上記の場合は、中空容器の壁
が堅く気密であるので、内圧Pi1は試験室3内の圧力変
化によって影響は受けない。t2 の時点で圧力源7は試
験室3から遮断され、本例の場合は試験室の圧力P
3(a) は少なくとも略一定を保ち、又、中空容器1内
の内圧Pi1(a)も同様である。
2 and 3, the pressure in the test chamber 3 and the internal pressure P i1 in the hollow container 1 corresponding to the signal S (P 3 ) are qualitatively described with the passage of time t. . At time t 1 , that is, when the hollow container 1 is placed in the test chamber 3, P 3 and P i1 are equal to the ambient pressure Pu. At time t 1 , the pressure source 7 starts to apply pressure to the test chamber 3, and the pressure in the test chamber 3 rises. In the above case, since the wall of the hollow container is rigid and airtight, the internal pressure P i1 is not affected by the pressure change in the test chamber 3. At time t 2 , the pressure source 7 is shut off from the test chamber 3, and in this example, the pressure P in the test chamber is
3 (a) is kept at least substantially constant, and the internal pressure P i1 (a) in the hollow container 1 is also the same.

【0017】中空容器1の壁が前述の意味に於いて完全
に堅くなく、少なくとも特定の箇所で、加えられた差圧
ΔP及びその偏差に従って内外にたわむ時には、中空容
器内部に差圧が向かう場合には鎖線で記入した定性的曲
線P3(b)ないしPi1(b)が生ずる。試験室3の方
法に差圧が向かう場合にも同様の状態が生ずる。このよ
うな定性的な特性曲線からわかるように、両方の圧力は
短時間又は長時間の後に、漸近的に異なる一定の限界値
へと接近する傾向を有する。
In the case where the wall of the hollow container 1 is not completely rigid in the above-mentioned sense and is deflected inward / outward according to the applied pressure difference ΔP and its deviation at least at a specific point, the pressure difference goes inside the hollow container. Results in qualitative curves P 3 (b) to P i1 (b) marked with chain lines. A similar situation occurs when the differential pressure is directed to the test chamber 3 method. As can be seen from such a qualitative characteristic curve, both pressures tend to approach asymptotically different constant limits after a short or long time.

【0018】図3には図2と同様なグラフで、中空容器
1に種々の漏れがある場合の状態が示してある。漏れが
比較的小さい場合は、中空容器1の内圧と、試験室3と
中空容器1の間の圧力は定性曲線P(c)に基づきゆっ
くりと均圧され、漏れが大きくなると例えば曲線P
(d)で示すように均圧の速度が増す。一般に、無傷の
気密中空容器1の場合に、差圧荷重による中空容器1の
場合により生ずる容量変化を考慮しつつ、例えばP
3(b)に示す目標推移P3が知られれば、検出器11の
出力側では、現在推移と目標推移とを比較することによ
って試験中の中空容器の密封度ないし欠陥品として評価
すべきか否かが判定される。
FIG. 3 is a graph similar to that of FIG. 2, showing a state where the hollow container 1 has various leaks. When the leak is relatively small, the internal pressure of the hollow container 1 and the pressure between the test chamber 3 and the hollow container 1 are slowly equalized based on the qualitative curve P (c).
The speed of pressure equalization increases as shown in (d). Generally, in the case of an airtight hollow container 1 which is intact, for example, P
3 If the target transition P 3 shown in (b) is known, whether or not the output side of the detector 11 should be evaluated as a sealing degree of the hollow container under test or a defective product by comparing the current transition with the target transition. Is determined.

【0019】そのため、図1に基づき、圧力P3が例え
ば大気圧Puと対比して測定され、そこで後述する通
り、一定基準圧に対する圧力P3 の差圧測定が行われ
る。しかし図4に示す別の参考例においては、試験室3
内の圧力が一定に調整され、更に試験室3に流入又は試
験室3から流出する圧力媒体量又は気体量が一定時間毎
に、又は所定時間連続的に測定値として検出される。
Therefore, based on FIG. 1, the pressure P 3 is measured in comparison with, for example, the atmospheric pressure Pu, and as described later, the differential pressure of the pressure P 3 with respect to a constant reference pressure is measured. However, in another reference example shown in FIG.
The internal pressure is adjusted to a constant value, and the amount of pressure medium or gas flowing into or out of the test chamber 3 is detected as a measurement value at regular time intervals or continuously for a predetermined time.

【0020】図4の参考例では、試験すべき中空容器1
を試験室3内に密閉した後、試験室3に圧力媒体源7で
空気を供給あるいは排気し、正圧又は負圧を印加する。
試験室3の内圧の測定値Wは、差圧比較器13によって
基準圧Xあるいは基準圧と対応する信号と比較され、差
圧比較器13は比較結果に対応して標準差圧Δを出力
し、この標準差圧Δは圧力供給源7の制御入力S7 に伝
達される。これにより、比較結果である標準差圧Δに基
づき、試験室3内の圧力は常に、自動制御装置15が発
生する目標値Xに自動調整される。試験室3に供給され
る時間単位毎の媒体容量は流量計17によって計測さ
れ、この流量計17は、例えば所定の時間間隔毎に流量
を積算した信号S(Δv/Δt)を出力する。この信号
S(Δv/Δt)が中空容器1の評価に用いられる。
In the reference example of FIG. 4, the hollow container 1 to be tested is
After being sealed in the test chamber 3, air is supplied to or exhausted from the test chamber 3 by the pressure medium source 7, and a positive pressure or a negative pressure is applied.
The measured value W of the internal pressure of the test chamber 3 is compared with the reference pressure X or a signal corresponding to the reference pressure by the differential pressure comparator 13, and the differential pressure comparator 13 outputs the standard differential pressure Δ corresponding to the comparison result. , The standard differential pressure Δ is transmitted to the control input S 7 of the pressure supply source 7. As a result, the pressure in the test chamber 3 is always automatically adjusted to the target value X generated by the automatic control device 15 based on the standard differential pressure Δ that is the comparison result. The medium capacity supplied to the test chamber 3 for each time unit is measured by a flow meter 17, and the flow meter 17 outputs a signal S (Δv / Δt) obtained by integrating the flow rate at predetermined time intervals, for example. This signal S (Δv / Δt) is used for evaluation of the hollow container 1.

【0021】図5は、図1の参考例を改良した別の参考
例を示す図である。前記各参考例と共通する構成要素に
は同一符号を伏して説明を簡略化する。試験室3は、第
1導管19を介して例えば圧電検出器のような差圧検出
器21の第1入力E19と連結される。また、試験室3
は、遮断弁25を備えた第2導管23を介して、差圧検
出器21の第2入力E23と連結されている。このような
構成によれば、図3に示すtR の時点で遮断弁25を閉
じると、遮断弁25と入力E23の間の導管部分23a内
が基準圧力保持部になり、この導管部分23aに前記遮
断時における試験室3内の圧力と等しい圧力が留まる。
FIG. 5 is a diagram showing another reference example obtained by improving the reference example of FIG. The same reference numerals are given to the same constituent elements as those of the above-described reference examples to simplify the description. The test chamber 3 is connected via a first conduit 19 to a first input E 19 of a differential pressure detector 21, for example a piezoelectric detector. Also, test room 3
Is connected to a second input E 23 of the differential pressure detector 21 via a second conduit 23 with a shutoff valve 25. With such a configuration, when the shutoff valve 25 is closed at time t R shown in FIG. 3, the inside of the conduit portion 23a between the shutoff valve 25 and the input E 23 becomes the reference pressure holding portion, and the conduit portion 23a. At the same time, the pressure equal to the pressure inside the test chamber 3 at the time of the shutoff remains.

【0022】導管部分23a内の前記圧力は基準圧とし
て差圧検出器21に作用する一方、導管19は遮断後も
開いた状態に留まるので、差圧検出器21により、tR
の時点での試験室3内の圧力PR (基準圧)と実際の試
験室3内の圧力との差圧が測定される。図3を参照する
と明らかであるように、遮断を行うtR の時点は場合に
応じてtR’,tR”へ変更してもよく、その時点で生ず
る基準圧はそれぞれPR’,PR”となる。
The pressure in the conduit portion 23a acts on the differential pressure detector 21 as a reference pressure, while the conduit 19 remains open after the interruption, so that the differential pressure detector 21 causes t R to rise.
The differential pressure between the pressure P R (reference pressure) in the test chamber 3 at the point of time and the actual pressure in the test chamber 3 is measured. As will be apparent with reference to FIG. 3, the time t R at which the shutoff is performed may be changed to t R ′, t R ″ depending on the case, and the reference pressures generated at that time are P R ′ and P R ′, respectively. R ”.

【0023】次に本発明の実施例を添付図面を参照しつ
つ詳細に説明する。図6は、図5の参考例に、試験室3
に圧力を印加するための好適な実施形態を加えた本発明
に係る中空容器の試験装置の一実施例を示している。こ
の実施例では、例えばポンプ等の試験用圧力気体源7a
が、遮断弁27を介して基準室29内の基準容積と連結
されている。基準室29は、別の遮断弁31を介して試
験室3と連結されている。
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 6 shows the reference example of FIG.
1 shows an example of a hollow container testing device according to the present invention to which a preferred embodiment for applying pressure to is added. In this embodiment, a test pressure gas source 7a such as a pump is used.
Are connected to the reference volume in the reference chamber 29 via the shutoff valve 27. The reference chamber 29 is connected to the test chamber 3 via another shutoff valve 31.

【0024】試験を行うには、先ず弁27を開き、弁3
1を閉じた状態で圧力気体源7aから基準室29に試験
用の気体を充填する。基準室29の内部では圧力検出器
33を用いて圧力が測定される。圧力検出器33により
測定された圧力が、基準信号源35で調整された基準圧
に達すると、弁27が閉じられる。次に、遮断弁31が
開かれ、試験室3と基準室29が連通され、基準室29
内と試験室3内の容積に応じて試験用気体の圧力が平衡
する。この平衡段階の後に、図3中の時点t1〜t2
間、図5について前述したように、差圧検出器21によ
って差圧の推移が測定される。あるいは、図3に示す所
定の測定時点tm において、目標差圧と現在差圧との差
が記録される。
To carry out the test, the valve 27 is first opened and the valve 3
With 1 closed, the reference chamber 29 is filled with the test gas from the pressure gas source 7a. Inside the reference chamber 29, the pressure is measured using the pressure detector 33. When the pressure measured by the pressure detector 33 reaches the reference pressure adjusted by the reference signal source 35, the valve 27 is closed. Next, the shutoff valve 31 is opened, the test chamber 3 and the reference chamber 29 are communicated with each other, and the reference chamber 29 is opened.
The pressure of the test gas is equilibrated according to the internal volume and the internal volume of the test chamber 3. After this equilibration stage, during the time t 1 -t 2 in FIG. 3, the differential pressure detector 21 measures the course of the differential pressure, as described above with reference to FIG. Alternatively, the difference between the target differential pressure and the current differential pressure is recorded at the predetermined measurement time point t m shown in FIG.

【0025】図6に示されている通り、差圧検出器21
の出力は差圧比較器37の第2入力へ伝達される。差圧
比較器37の第1入力には、コンピュータのような記憶
装置39の出力が接続されており、この記憶出力装置3
9からは、その中に予め記憶されている圧力目標値の推
移に対応した信号(標準曲線)が伝達される。これによ
り、差圧比較器37からは、任意の時点での目標値と実
測値との偏差が出力される。この偏差に基づいて、中空
容器1の完璧さ又は欠陥の有無を判定可能である。勿
論、前述したように、連続的な変化を比較する代わり
に、tmに対応する所定の時点で、差圧検出器21が出力
する現在差圧値と記憶装置39に記憶された目標値とを
準ポイント方式で比較することも可能である。クロック
制御装置41は、基準室29内が一定圧力に達すると解
除され、その後、入力される時間間隔Tに基づいて遮断
弁31,25並びに、場合によっては目標値制御装置S
39を制御する。
As shown in FIG. 6, the differential pressure detector 21
Is transmitted to the second input of the differential pressure comparator 37. The output of a storage device 39 such as a computer is connected to the first input of the differential pressure comparator 37.
From 9 is transmitted a signal (standard curve) corresponding to the transition of the pressure target value stored in advance therein. As a result, the differential pressure comparator 37 outputs the deviation between the target value and the actual measurement value at any time. Based on this deviation, it is possible to determine the perfectness of the hollow container 1 or the presence or absence of defects. Of course, as described above, instead of comparing the continuous changes, the current differential pressure value output by the differential pressure detector 21 and the target value stored in the storage device 39 are compared with each other at a predetermined time point corresponding to t m. It is also possible to compare by the quasi-point method. The clock control device 41 is released when the inside of the reference chamber 29 reaches a certain pressure, and then the shutoff valves 31, 25 and the target value control device S depending on the time interval T are input.
Control 39 .

【0026】本発明に係る中空容器の密封度試験方法及
び装置によれば、中空容器に生じた広い範囲の漏れを確
実且つ迅速に検知することが可能である。更にそれによ
って、図2に基づいて説明したように、例えば壁部が許
容し得ない程堅い、又は過剰に弾力的である場合のよう
に、期待される状態とは異なる中空容器の形状変化状態
も検知可能である。
According to the method and apparatus for testing the degree of sealing of a hollow container according to the present invention, it is possible to reliably and quickly detect a wide range of leakage occurring in the hollow container. Furthermore, this allows the shape change state of the hollow container to be different from the expected state, as explained with reference to FIG. 2, eg when the wall is unacceptably stiff or overly elastic. Can also be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に関連した中空容器試験装置の参考例を
示す概略図である。
FIG. 1 is a schematic view showing a reference example of a hollow container testing device related to the present invention.

【図2】試験室圧力が中空容器内圧よりも高く、かつ中
空容器が圧力で弾性変形する場合における、中空容器内
圧と試験室内圧の経時変化を示すグラフである。
FIG. 2 is a graph showing changes over time in the internal pressure of the hollow container and the internal pressure of the test chamber when the test chamber pressure is higher than the internal pressure of the hollow container and the hollow container is elastically deformed by the pressure.

【図3】中空容器内に種々の漏れがある場合における、
中空容器内圧と試験室内圧の経時変化を示すグラフであ
る。
FIG. 3 shows various leaks in the hollow container,
It is a graph which shows the time-dependent change of the hollow container internal pressure and the test chamber pressure.

【図4】本発明に関連した中空容器試験装置の別の参考
例を示す概略図である。
FIG. 4 is a schematic view showing another reference example of the hollow container testing device related to the present invention.

【図5】本発明に関連した中空容器試験装置の別の参考
例を示す概略図である。
FIG. 5 is a schematic view showing another reference example of the hollow container testing device related to the present invention.

【図6】本発明に係る中空容器の試験装置の一実施例を
示す概略図である。
FIG. 6 is a schematic view showing an embodiment of a hollow container testing device according to the present invention.

【符号の説明】[Explanation of symbols]

1 中空容器 3 試験室 7,7a 圧力媒体源 19,23 導管(通路) 21 差圧検出器 23a 基準圧力保持部 25,27,31 遮断弁 29 基準室 33 圧力検出器 35 基準信号源 37 差圧比較器 39 記憶装置 41 制御装置 1 hollow container 3 test chamber 7, 7a pressure medium source 19, 23 conduit (passage) 21 differential pressure detector 23a reference pressure holding part 25, 27, 31 shutoff valve 29 reference chamber 33 pressure detector 35 reference signal source 37 differential pressure Comparator 39 Storage device 41 Control device

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1つの中空容器(1)を、こ
の中空容器(1)の体積に応じて決められた容積を有す
る試験室(3)内に配置する一方、一定容積の基準室
(29)内を一定圧力まで加圧し、前記基準室(29)
から前記試験室(3)へ所定の圧力を放出した後、前記
試験室(3)内の圧力(P3(a),P3(b))に対応
する強度(S(P3))を測定し、加圧前後の中空容器
(1)の体積変化を評価することを特徴とする中空容器
の試験方法。
1. At least one hollow container (1) is arranged in a test chamber (3) having a volume determined according to the volume of the hollow container (1), while a reference chamber (29) of constant volume is provided. ) The inside of the reference chamber (29) is pressurized to a constant pressure.
After releasing a predetermined pressure to the test chamber (3) from the pressure of the test chamber (3) in (P 3 (a), P 3 (b)) intensity corresponding to the (S (P 3)) A method for testing a hollow container, which comprises measuring and evaluating a volume change of the hollow container (1) before and after pressurization.
【請求項2】 前記試験室(3)内において、前記中空
容器(1)を前記中空容器(1)内部の圧力(Pi1)と
前記中空容器(1)外部の圧力(P3)との差圧に曝す
とともに、前記試験室(3)内の圧力を圧力検出器(2
1)で検出することを特徴とする請求項1記載の中空容
器の試験方法。
2. The difference between the pressure (P i1 ) inside the hollow container (1) and the pressure (P3) outside the hollow container (1) in the hollow chamber (1) in the test chamber (3). The pressure in the test chamber (3) is detected by the pressure detector (2
The method for testing a hollow container according to claim 1, wherein the detection is performed in 1).
【請求項3】 前記試験室(3)に基準圧力保持部(2
3a)を接続し、この基準圧力保持部(23a)に、一
定時点での前記試験室(3)内の圧力を試験室(3)か
ら隔離して保持することを特徴とする請求項2記載の中
空容器の試験方法。
3. A reference pressure holding part (2) is provided in the test chamber (3).
3a) is connected, and the pressure in the test chamber (3) at a certain time is isolated from the test chamber (3) and held in the reference pressure holding portion (23a). Test method for hollow containers.
【請求項4】 前記圧力検出器(21)として差圧検出
器(21)を使用し、この差圧検出器(21)の一対の
入力を前記試験室(3)に並列に接続し、前記試験室
(3)から前記入力の一方に至る通路(23)に基準圧
力保持部(23a)を設け、この基準圧力保持部(23
a)を前記試験室(3)と連通させた後に前記試験室
(3)との間を遮断することにより、前記基準圧力保持
部(23a)内に、前記遮断時における前記試験室
(3)内の圧力を基準圧力として保持することを特徴と
する請求項3記載の中空容器の試験方法。
4. A differential pressure detector (21) is used as the pressure detector (21), and a pair of inputs of the differential pressure detector (21) are connected in parallel to the test chamber (3). A reference pressure holding portion (23a) is provided in a passage (23) from the test chamber (3) to one of the inputs, and the reference pressure holding portion (23) is provided.
The test chamber (3) is communicated with the test chamber (3), and then the test chamber (3) is shut off, so that the test chamber (3) at the time of shutoff is provided in the reference pressure holding portion (23a). The method for testing a hollow container according to claim 3, wherein the internal pressure is maintained as a reference pressure.
【請求項5】 前記差圧検出器(21)の前記一方の入
力に直接接続された前記通路(23)の一部(23a)
を前記基準圧力保持部として使用し、この一部(23
a)を前記試験室(3)から遮断することにより、前記
一部(23a)内に遮断時における前記試験室(3)内
の圧力を基準圧力として保持することを特徴とする請求
項4記載の中空容器の試験方法。
5. A portion (23a) of the passage (23) directly connected to the one input of the differential pressure detector (21).
Is used as the reference pressure holding part, and a part of this (23
The pressure in the test chamber (3) at the time of interruption is kept as a reference pressure in the part (23a) by shutting off a) from the test chamber (3). Test method for hollow containers.
【請求項6】 前記中空容器(1)の体積に応じた容積
を有する試験室(3)内の圧力を、中空容器(1)の体
積変化の強度として評価することを特徴とする請求項1
〜5のいずれかに記載の中空容器の試験方法。
6. The pressure in the test chamber (3) having a volume corresponding to the volume of the hollow container (1) is evaluated as the strength of the volume change of the hollow container (1).
6. The method for testing a hollow container according to any one of to 5.
【請求項7】 前記圧力検出器(21)の出力信号を、
前記遮断から一定時間後に、あるいは一定時間毎に複数
回に亙って、あるいは連続的に評価することを特徴とす
る請求項2〜6のいずれかに記載の中空容器の試験方
法。
7. The output signal of the pressure detector (21) is
The method for testing a hollow container according to any one of claims 2 to 6, wherein the method is evaluated after a certain period of time from the interruption, or a plurality of times every certain period of time, or continuously.
【請求項8】 前記評価された圧力強度を、予め記憶さ
れている圧力又は圧力変化についての目標値(39)と
比較し、この比較結果から、中空容器(1)に欠陥があ
るか否かを判定することを特徴とする請求項1〜7のい
ずれかに記載の中空容器の試験方法。
8. The evaluated pressure intensity is compared with a target value (39) for a pressure or a pressure change stored in advance, and whether or not the hollow container (1) has a defect is determined from the comparison result. The method for testing a hollow container according to any one of claims 1 to 7, wherein
【請求項9】 前記中空容器(1)は、コーヒー容器で
あることを特徴とする請求項1〜8のいずれかに記載の
中空容器の試験方法。
9. The method for testing a hollow container according to claim 1, wherein the hollow container (1) is a coffee container.
【請求項10】 試験すべき中空容器(1)の体積に応
じて決められた容積を有する試験室(3)と、遮断手段
(31)を介して前記試験室(3)に接続された基準室
(29)と、前記基準室(29)内に所定の圧力を供給
するための圧力供給機構(7a)と、前記試験室(3)
内の圧力を測定し前記中空容器(1)の体積変化又は体
積を検出するための圧力測定機構(21)とを具備する
ことを特徴とする中空容器の試験装置。
10. A test chamber (3) having a volume determined according to the volume of a hollow container (1) to be tested, and a reference connected to said test chamber (3) via a breaking means (31). Chamber (29), pressure supply mechanism (7a) for supplying a predetermined pressure into the reference chamber (29), and the test chamber (3)
A hollow container testing device, comprising: a pressure measuring mechanism (21) for measuring the internal pressure and detecting the volume change or volume of the hollow container (1).
JP7035640A 1987-10-28 1995-02-23 Test method and apparatus for hollow body Expired - Lifetime JP2854534B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP87115839A EP0313678B1 (en) 1987-10-28 1987-10-28 Method and device for testing the tightness of a hollow body and utilisation of the method
CH87115839.0 1987-10-28
US47416490A 1990-02-02 1990-02-02
US07/551,792 US5170660A (en) 1987-10-28 1990-07-12 Process and apparatus for volume-testing a hollow body
US07/599,424 US5029464A (en) 1987-10-28 1990-10-18 Method and apparatus for leak testing a hollow body
US07/693,586 US5239859A (en) 1987-10-28 1991-04-30 Method and apparatus for leak testing a hollow body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62287220A Division JPH0781927B2 (en) 1987-10-28 1987-11-13 Hollow container sealing method and device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8331184A Division JP3001820B2 (en) 1987-10-28 1996-12-11 Container leak test method and apparatus

Publications (2)

Publication Number Publication Date
JPH0835906A true JPH0835906A (en) 1996-02-06
JP2854534B2 JP2854534B2 (en) 1999-02-03

Family

ID=27513498

Family Applications (3)

Application Number Title Priority Date Filing Date
JP62287220A Expired - Fee Related JPH0781927B2 (en) 1987-10-28 1987-11-13 Hollow container sealing method and device
JP7035640A Expired - Lifetime JP2854534B2 (en) 1987-10-28 1995-02-23 Test method and apparatus for hollow body
JP8331184A Expired - Lifetime JP3001820B2 (en) 1987-10-28 1996-12-11 Container leak test method and apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62287220A Expired - Fee Related JPH0781927B2 (en) 1987-10-28 1987-11-13 Hollow container sealing method and device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP8331184A Expired - Lifetime JP3001820B2 (en) 1987-10-28 1996-12-11 Container leak test method and apparatus

Country Status (11)

Country Link
US (2) US5029464A (en)
EP (4) EP0313678B1 (en)
JP (3) JPH0781927B2 (en)
AT (4) ATE107025T1 (en)
AU (2) AU606096B2 (en)
CA (2) CA1335540C (en)
DE (4) DE3750043D1 (en)
DK (2) DK0466657T3 (en)
ES (4) ES2055935T3 (en)
GR (1) GR3004948T3 (en)
HK (2) HK1002539A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514622A (en) * 2006-12-29 2010-05-06 三星重工業株式会社 Soundness evaluation method for secondary barrier of liquefied gas tank
JP2020038095A (en) * 2018-09-03 2020-03-12 株式会社小島製作所 Leakage testing device

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2055935T3 (en) 1987-10-28 1994-09-01 Martin Lehmann PROCEDURE AND USE OF A PROVISION TO CHECK THE VOLUME BEHAVIOR OF AT LEAST ONE HOLLOW BODY.
US5150605A (en) * 1989-12-01 1992-09-29 Simpson Edwin K Package integrity detection method
DE4017853C2 (en) * 1990-06-02 1993-12-23 Martin Lehmann Connection for filling a container and device for checking the volume of containers
US5345814A (en) * 1990-12-28 1994-09-13 Whirlpool Corporation Method and apparatus for testing vacuum insulation panel quality
US5226316A (en) * 1992-03-20 1993-07-13 Oscar Mayer Foods Corporation Package leak detection
US5513516A (en) * 1992-05-01 1996-05-07 Visi-Pack, Inc. Method and apparatus for leak testing a container
US5546789A (en) * 1992-08-03 1996-08-20 Intertech Development Company Leakage detection system
CH685887A5 (en) * 1992-08-12 1995-10-31 Martin Lehmann Container leakage testing device
US6662634B2 (en) 1994-06-15 2003-12-16 Martin Lehmann Method for testing containers, use of the method, and a testing device
DE4230025C2 (en) * 1992-09-10 1995-03-09 Jagenberg Ag Method and device for checking the tightness of filled containers sealed with a sealed or welded-on lid
AT405459B (en) * 1992-12-09 1999-08-25 Freiherr Von Leonhardi Vertrie DETECTION AND RECORDING DEVICE
US5625141A (en) * 1993-06-29 1997-04-29 Varian Associates, Inc. Sealed parts leak testing method and apparatus for helium spectrometer leak detection
GB9403184D0 (en) * 1994-02-18 1994-04-06 Boc Group Plc Methods and apparatus for leak testing
CH688424A5 (en) * 1994-04-13 1997-09-15 Witschi Electronic Ag Method and apparatus for Dichtigkeitspruefung housings.
EP0786654A3 (en) 1997-05-07 1997-12-10 Martin Lehmann Installation for leak testing of containers
EP0791814A3 (en) * 1997-05-26 1997-11-26 Martin Lehmann Method for leak testing and leak testing apparatus
US6082184A (en) * 1997-05-27 2000-07-04 Martin Lehmann Method for leak testing and leak testing apparatus
US6038915A (en) * 1997-07-25 2000-03-21 Questech Packaging, Inc. Liquidating Trust Automated testing apparatus and method, especially for flexible walled containers
US6167751B1 (en) * 1997-11-26 2001-01-02 Thermedics Detection, Inc. Leak analysis
AU2900399A (en) * 1998-03-11 1999-09-27 True Technology, Inc. Method and apparatus for detection of leaks in hermetic packages
DE19846800A1 (en) 1998-10-10 2000-04-13 Leybold Vakuum Gmbh Film leakage detector comprises two film sections which are tensioned in a frame, where each consists of two plastic sections
US6316949B1 (en) * 1999-01-19 2001-11-13 Nidec-Read Corporation Apparatus and method for testing electric conductivity of circuit path ways on circuit board
FR2799280B1 (en) * 1999-10-05 2001-11-23 Courval Verreries METHOD FOR MEASURING THE VOLUME OF CONTAINERS AND INSTALLATION FOR ITS IMPLEMENTATION
EP1222449B1 (en) 1999-10-19 2011-12-07 Benthos Inc. Multiple sensor in-line container inspection
US6584828B2 (en) 1999-12-17 2003-07-01 Atc, Inc. Method and apparatus of nondestructive testing a sealed product for leaks
US6308556B1 (en) * 1999-12-17 2001-10-30 Atc, Inc. Method and apparatus of nondestructive testing a sealed product for leaks
US6526809B2 (en) 2000-03-30 2003-03-04 Cincinnati Test Systems, Inc. Method for identifying leaks in a sealed package having a liquid therein
US6595036B1 (en) * 2002-02-27 2003-07-22 Bel Japan, Inc. Method and apparatus for measuring amount of gas adsorption
JP3820168B2 (en) * 2002-03-15 2006-09-13 オリンパス株式会社 Leak tester
EP1585983B1 (en) 2002-10-31 2008-08-13 Martin Lehmann Method and apparatus for manufacturing and ultrasonic testing of bonding region of sealed foodstuff containers
DE102004017535A1 (en) * 2004-04-08 2005-10-27 Richter, Günter Container for receiving media and method for producing and checking the tightness of the container
US7266993B2 (en) * 2004-06-04 2007-09-11 Air Logic Power Systems, Inc. Container leak detection apparatus and method
DE102004036133B4 (en) * 2004-07-24 2006-07-06 Festo Ag & Co. Test gas volume determining method for e.g. container, involves determining pressure-measured values of two volumes, total pressure-measured value of two volumes, determining one volume value based on measured valves
DE102004039210C5 (en) * 2004-08-12 2012-11-15 Rudolf Wild Gmbh & Co. Kg Method for evaluating product shelf life in a packaging
US20070157457A1 (en) * 2004-09-10 2007-07-12 Lance Fried Assembly Method and Machinery for Waterproof Testing of Electronic Devices
DE102004045803A1 (en) * 2004-09-22 2006-04-06 Inficon Gmbh Leak test method and leak tester
CN100554930C (en) * 2007-05-30 2009-10-28 王欣 The detection method of underground mine use negative pressure endurance capability of gas exhausting tubing
US7707871B2 (en) * 2007-09-24 2010-05-04 Raytheon Company Leak detection system with controlled differential pressure
US20090139911A1 (en) * 2007-11-30 2009-06-04 Nova Chemicals Inc. Method of detecting defective containers
US8692186B2 (en) 2010-08-10 2014-04-08 Wilco Ag Method and apparatus for leak testing containers
US20120037795A1 (en) 2010-08-10 2012-02-16 Martin Lehmann Method and apparatuses for quality evaluation and leak testing
FR2982668B1 (en) * 2011-11-16 2014-10-10 Asc Instr APPARATUS FOR MEASURING THE SEALING OF A PACKAGING
DE102013100926B4 (en) * 2013-01-30 2021-06-10 Continental Automotive Gmbh Method for detecting an impact by means of an elastically deformable hollow body and pressure sensors
DE102014211228A1 (en) 2014-06-12 2015-12-17 Inficon Gmbh Differential pressure measurement with foil chamber
TWI543636B (en) * 2014-06-20 2016-07-21 致伸科技股份有限公司 Sealed speaker leak test system and method
DE102015203552A1 (en) 2015-02-27 2016-09-01 Robert Bosch Gmbh Arrangement and method for checking the tightness of a container
US9976929B2 (en) * 2015-10-20 2018-05-22 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Apparatus for verifying the integrity of the confinement boundary of a spent nuclear fuel dry storage canister in operation
JP6732536B2 (en) * 2016-05-24 2020-07-29 株式会社フクダ Evaluation method and evaluation device for sealed inspection target
GB2551378A (en) * 2016-06-16 2017-12-20 Bentley Motors Ltd Method of assessing damage to composite members
ES2762865T3 (en) 2016-09-26 2020-05-26 Boehringer Ingelheim Int Procedure to test the tightness of a bag in the interior of a container
TWI666616B (en) * 2016-10-20 2019-07-21 星喬科技股份有限公司 Waterproof and dustproof device and method
EP3563133A4 (en) * 2016-12-27 2020-08-12 Packaging Technologies & Inspection LLC Dynamic vacuum decay leak detection method and apparatus
CN108760512A (en) * 2018-03-22 2018-11-06 天津航天瑞莱科技有限公司 A kind of air pressure static test system of aero-engine Middle casing support plate covering
US11248985B2 (en) * 2019-02-15 2022-02-15 Eugene SCHREIBER Production method and production system that detect the integrity of the hermetic seal of a container containing a product
CN112432745B (en) * 2019-08-26 2022-02-08 中国烟草总公司郑州烟草研究院 Nondestructive testing method for cigarette packet packaging tightness
WO2022128097A1 (en) 2020-12-17 2022-06-23 Vestel Elektronik Sanayi Ve Ticaret A.S. Leak testing apparatus and method
CN114985301B (en) * 2022-05-05 2023-01-17 芜湖中氢新能源科技有限公司 Hydrogen purification device for hydrogen production by water electrolysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100186A (en) * 1972-03-30 1973-12-18
JPS62231127A (en) * 1986-03-22 1987-10-09 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Airtight control and controller for package

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2784373A (en) * 1953-03-02 1957-03-05 Nat Res Corp High-vacuum device
US2936611A (en) * 1959-01-16 1960-05-17 Mat Lee E Le Leak testing system
US3060735A (en) * 1959-12-04 1962-10-30 Owens Illinois Glass Co Volumetric measurement
CH712563A4 (en) * 1963-06-06 1966-02-28
FR1474553A (en) * 1966-04-04 1967-03-24 Capacitance testing device in synthetic material or others
US3800586A (en) * 1972-04-24 1974-04-02 Uson Corp Leak testing apparatus
CH534350A (en) * 1972-06-27 1973-02-28 Felix Leu Hans Method and device for checking gas tightness
JPS50109785A (en) * 1974-02-04 1975-08-29
IT1047349B (en) * 1975-10-07 1980-09-10 Gastaldo R PROCEDURE AND AUTOMATIC DEVICE FOR SEALING CAVITY TEST
US4019370A (en) * 1975-10-24 1977-04-26 Farm Stores, Inc. Leak testing device and method for plastic bottles
JPS5321867A (en) * 1976-08-13 1978-02-28 Shin Meiwa Ind Co Ltd Means for preventing clogging of holes in compacter
SU795538A1 (en) * 1978-07-05 1981-01-15 Предприятие П/Я М-5729 Method of testing gas-filled vessels for hermetic sealing
FR2453395A1 (en) * 1979-04-06 1980-10-31 Bertin & Cie METHOD AND DEVICE FOR PNEUMATIC MEASUREMENT OF INTERIOR VOLUME OF VIALS
DE2945356A1 (en) * 1979-11-09 1981-05-21 Siemens AG, 1000 Berlin und 8000 München METHOD AND DEVICE FOR MEASURING THE FILL VOLUME IN A CLOSED CONTAINER
US4350038A (en) * 1980-05-19 1982-09-21 The Stellhorn Company Fluidic type leak testing machine
DE3110575A1 (en) * 1981-03-18 1982-09-30 Siemens AG, 1000 Berlin und 8000 München METHOD AND DEVICE FOR TIGHTNESS TESTING OF ELECTRICAL COMPONENTS
JPS57165732A (en) * 1981-04-03 1982-10-12 Cosmo Keiki:Kk Device for measuring amount of leakage
JPS5834337A (en) * 1981-08-25 1983-02-28 Dainippon Printing Co Ltd Inspecting device for leakage of vessel
US4490800A (en) * 1981-12-14 1984-12-25 Powers Manufacturing, Inc. Dual head gauger apparatus with automatic adjustment for pressure variation
US4430891A (en) * 1981-12-21 1984-02-14 Holm Albert E Method and apparatus for measuring volume
FR2528730A1 (en) * 1982-06-17 1983-12-23 Chauchat Jean Claude Automatic flow line sorter for wine bottles - uses clock and counter to measure time for pressure in bottle to reach defined value
US4478070A (en) * 1982-11-10 1984-10-23 The Aro Corporation Vacuum package tester and method
GB8330583D0 (en) * 1983-11-16 1984-01-18 Schlumberger Electronics Uk Pressure sensors
US4542643A (en) * 1983-11-25 1985-09-24 S. Himmelstein And Company Fluid leak testing method
NL8401150A (en) * 1984-04-11 1985-11-01 Douwe Egberts Tabaksfab PRESSURE MEASUREMENT IN VACUUM PACKS.
JPS61107126A (en) * 1984-10-30 1986-05-26 Nippon Sanso Kk Apparatus for measuring vacuum degree of vacuum pack type heat insulating material
DD232550A1 (en) * 1984-12-07 1986-01-29 Medizin Labortechnik Veb K DEVICE FOR TESTING FABRIC CONTAINS FROM FILM FOR LEAKAGE
JPS6238339A (en) * 1985-08-13 1987-02-19 Omron Tateisi Electronics Co Inspection device for airtightness of sealed type electric appliance
JPS6238338A (en) * 1985-08-13 1987-02-19 Omron Tateisi Electronics Co Inspection device for airtightness of sealed type electric appliance
JPS62163946A (en) * 1986-01-14 1987-07-20 Daido Steel Co Ltd Airtightness inspection of capsule
US4942758A (en) * 1986-12-04 1990-07-24 Cofield Dennis H High speed leak tester
US4763518A (en) * 1987-03-23 1988-08-16 Frigo France Method for measuring net internal volume of a receptacle containing an unknown volume of residual liquid
DE3736375C1 (en) * 1987-10-27 1989-02-02 Muenchner Medizin Mechanik Method of checking a gas steriliser for leaks and gas steriliser for performing the method
ES2055935T3 (en) 1987-10-28 1994-09-01 Martin Lehmann PROCEDURE AND USE OF A PROVISION TO CHECK THE VOLUME BEHAVIOR OF AT LEAST ONE HOLLOW BODY.
FR2646238B1 (en) * 1989-04-20 1994-01-14 Peugeot Automobiles PRESSURIZATION GAUGE SYSTEM FOR FUEL TANK

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100186A (en) * 1972-03-30 1973-12-18
JPS62231127A (en) * 1986-03-22 1987-10-09 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Airtight control and controller for package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514622A (en) * 2006-12-29 2010-05-06 三星重工業株式会社 Soundness evaluation method for secondary barrier of liquefied gas tank
JP2020038095A (en) * 2018-09-03 2020-03-12 株式会社小島製作所 Leakage testing device

Also Published As

Publication number Publication date
CA1335540C (en) 1995-05-16
GR3004948T3 (en) 1993-04-28
US5239859A (en) 1993-08-31
ES2033284T3 (en) 1993-03-16
JPH09178604A (en) 1997-07-11
EP0763722A3 (en) 1998-09-16
JP2854534B2 (en) 1999-02-03
ATE156589T1 (en) 1997-08-15
DK0466657T3 (en) 1997-11-17
JPH0781927B2 (en) 1995-09-06
EP0432143B1 (en) 1994-06-08
ES2055935T3 (en) 1994-09-01
EP0466657A2 (en) 1992-01-15
CA1340901C (en) 2000-02-15
EP0432143A2 (en) 1991-06-12
JP3001820B2 (en) 2000-01-24
ES2106069T3 (en) 1997-11-01
DE69127144D1 (en) 1997-09-11
DK0763722T3 (en) 2003-11-03
DE69133306D1 (en) 2003-10-02
ATE77480T1 (en) 1992-07-15
EP0313678B1 (en) 1992-06-17
ATE248353T1 (en) 2003-09-15
AU623994B2 (en) 1992-05-28
ATE107025T1 (en) 1994-06-15
EP0763722A2 (en) 1997-03-19
DE69133306T2 (en) 2004-06-24
EP0432143A3 (en) 1991-09-25
EP0466657B1 (en) 1997-08-06
EP0313678A1 (en) 1989-05-03
ES2204987T3 (en) 2004-05-01
DE3750043D1 (en) 1994-07-14
DE3779920D1 (en) 1992-07-23
EP0466657A3 (en) 1992-12-09
EP0763722B1 (en) 2003-08-27
HK1022349A1 (en) 2000-08-04
DE69127144T2 (en) 1998-03-05
JPH01142430A (en) 1989-06-05
US5029464A (en) 1991-07-09
HK1002539A1 (en) 1998-08-28
AU606096B2 (en) 1991-01-31
AU5503190A (en) 1990-09-13
AU8120187A (en) 1989-05-04

Similar Documents

Publication Publication Date Title
JPH0835906A (en) Method and equipment for testing hollow container
CA2122250C (en) Method for testing containers, use of the method, and a testing device
US5915270A (en) Method for testing containers, use of the method, and a testing device
US6662634B2 (en) Method for testing containers, use of the method, and a testing device
JPWO2007080972A1 (en) Leak inspection device abnormality detection method, leak inspection device
US5170660A (en) Process and apparatus for volume-testing a hollow body
JP2583880B2 (en) Pack airtightness inspection method and apparatus
FR2905176A1 (en) Article e.g. glove, tightness testing device, has chamber receiving article, measuring unit measuring fluid flow and fluid pressure in chamber, and detecting unit detecting variations of flow and pressure of fluid in chamber
JP2002168725A (en) Method and device for inspecting liquid container
JP3983479B2 (en) Battery leakage inspection device
JPS60127438A (en) Method and apparatus for leakage inspection of sealed container
JP3715543B2 (en) Airtight performance test method
JP2000088694A (en) Inspection apparatus for sealing performance of airtight container
US10545068B2 (en) Arrangement and method for testing the tightness of a container
JP3854284B2 (en) Bag-making seal inspection device
JP4154077B2 (en) Air leak detection method for sealed containers
JPH09115555A (en) Inspection method and inspection device for air tightness of battery
US6526809B2 (en) Method for identifying leaks in a sealed package having a liquid therein
JP2005037268A (en) Flow rate inspection device
SU1493901A1 (en) Method for testing multi-space articles for air-tightness
SU1619085A1 (en) Method of checking air-tightness of articles
Decker A reliable and tracer gas independent leak detector for food packages
JPH11237300A (en) Drum can leakage inspection device due to differential pressure method
JP3328203B2 (en) Container leakage inspection method and apparatus using differential pressure change rate
JPH01253628A (en) Method and apparatus for measuring leak from package

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term