JPS60127438A - Method and apparatus for leakage inspection of sealed container - Google Patents
Method and apparatus for leakage inspection of sealed containerInfo
- Publication number
- JPS60127438A JPS60127438A JP23475483A JP23475483A JPS60127438A JP S60127438 A JPS60127438 A JP S60127438A JP 23475483 A JP23475483 A JP 23475483A JP 23475483 A JP23475483 A JP 23475483A JP S60127438 A JPS60127438 A JP S60127438A
- Authority
- JP
- Japan
- Prior art keywords
- container
- lid surface
- displacement
- pressure
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/36—Investigating fluid-tightness of structures by using fluid or vacuum by detecting change in dimensions of the structure being tested
- G01M3/363—Investigating fluid-tightness of structures by using fluid or vacuum by detecting change in dimensions of the structure being tested the structure being removably mounted in a test cell
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、紙、プラスチック、アルミニウム箔等を積層
した複合材料等よりなる容器に、果汁。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides fruit juice in a container made of a composite material such as paper, plastic, aluminum foil, etc. laminated.
コーヒ等の飲食品を充填し、その口部に、アルミニウム
箔ちるいはアルミニウム箔とプラスチックフィルムを積
層した可撓性材料を基材とする蓋をヒートシールした密
封容器のピンホールあるいはシール不良等にもとづく漏
洩を検査する方法及びその装置に関する。特に、数日乃
至数週間経過した後に漏洩を検知できるような微少なピ
ンホールあるいはシール不良等にもとづく漏洩を、容器
をカートンケース等に納めた′1まの状態で検査する方
法及びその装置に関する。Pinholes or poor sealing in sealed containers filled with food or drinks such as coffee and heat-sealed with a lid made of aluminum foil or a flexible material laminated with aluminum foil and plastic film at the mouth. The present invention relates to a method and apparatus for inspecting leakage based on the present invention. In particular, it relates to a method and an apparatus for inspecting a container in its initial state, such as a carton case, for leakage caused by minute pinholes or defective seals, which can be detected after several days or weeks have elapsed. .
近年、多用されるようになった紙、プラスチック、アル
ミニウム箔等を積層した複合材料よりなる密封容器の、
ピンホールあるいはシール不良にもとづく漏洩の検査は
、ピンホール等が大きく漏洩の大きい場合には、飲食品
等を充填して密封した直後にシーても胴部の没入変形量
を検知してなし得ることは、本出願人が既に開示してい
る。Sealed containers made of composite materials laminated with paper, plastic, aluminum foil, etc. have become widely used in recent years.
Inspection for leaks due to pinholes or poor seals can be performed by detecting the amount of immersion deformation of the body immediately after filling and sealing the container, if the pinholes are large and the leakage is large. This has already been disclosed by the applicant.
しかし、漏洩の中には、ピンホール等が微少であり、飲
食品等を充填して密封してから数日乃至数週間経過後に
漏洩を検知し得るものもある。このような場合、飲食品
等を充填した容器はカートンケースに収納されている場
合がほとんどであるため、効率よく漏洩の検査を行なう
には、容器をカートンケースに収納したままで、L=か
もカートンケースの蓋を開くことなく行なう必要がある
。However, some leaks include minute pinholes and the like, and can be detected several days to several weeks after the container is filled with food or drink and sealed. In such cases, containers filled with food and beverages, etc. are often stored in carton cases, so in order to efficiently test for leakage, leave the containers stored in the carton case and This must be done without opening the carton case lid.
したがって、通常は、漏洩による蓋の変形を利用した検
査方法が考えられる。Therefore, an inspection method that utilizes the deformation of the lid due to leakage is usually considered.
従来、金属缶やガラス壜に(1,2+mlI乃至帆3簡
程度の厚さのブリキやアルミニウム板からなる蓋を施し
た容器のピンホール等によって生じる漏洩検査は、蓋面
に力学的作用によって衝撃を与え、これによって発生し
た自由振動と容器内圧との相関性を利用した打検法によ
るものが最も一般的である。【7かし、厚みが0.1鯛
以下のアルミニウム箔を基材とした蓋には弾力的性質が
ほとんどなく、衝撃を与えても自由振動が発生しないた
め、上述したアルミニウム箔を蓋の基材とした容器に、
打検法を適用するのは不可能であった。Conventionally, leakage tests that occur due to pinholes in metal cans or glass bottles (containers with lids made of tin or aluminum plates with a thickness of about 1,2+ml to 3 sails) have been carried out by mechanical impact on the lid surface. The most common method is the percussion method, which takes advantage of the correlation between the free vibrations generated by this and the internal pressure of the container. The lid has almost no elasticity and does not vibrate freely even when subjected to impact.
It was impossible to apply the percussion method.
寸だ、従来の別個の漏洩検査方法として、容器内圧力に
応じて弾力的あるいは可撓的な蓋面を漸次湾曲変形させ
、この蓋面の湾曲変形を利用して漏洩を検査するものも
ある。しかし、紙、プラスチック等の積層材によって可
撓的胴部を形成する容器においては、容器内部の減圧開
始時に蓋面が没入すると、その後は胴部が容易に変形し
てしまうため容器内を大きく減圧させることができない
。In fact, as a separate conventional leakage testing method, there is one that gradually deforms an elastic or flexible lid surface in response to the internal pressure of the container, and uses this curved deformation of the lid surface to test for leaks. . However, for containers with flexible bodies made of laminated materials such as paper and plastic, if the lid surface sinks in when the pressure inside the container begins to decrease, the body easily deforms after that, making it difficult to expand the interior of the container. Unable to reduce pressure.
そのため、容器の内外圧の差がきわめて小さく、漏洩の
有無によって蓋面の湾曲程度に検知し得るような差異を
生ぜず、検査は不可能であった。Therefore, the difference between the internal and external pressures of the container was extremely small, and there was no detectable difference in the degree of curvature of the lid surface depending on the presence or absence of leakage, making inspection impossible.
本発明は、胴部が紙、プラスチック、アルミニウム箔等
を積層した複合材料からなり、蓋がアルミニウム箔を基
材とした可撓性材料からなる密封容器にかける、微少な
ピンホール等にもとづく僅かな漏洩を検査するもので、
特に、一つのカートンケースに収納されている個々の容
器の漏洩検査を、出荷時等においてカートンケースを閉
じたままの状態で確実に行なえるよう圧した密封容器の
漏洩検査方法とその装置の提供を目的とする。The present invention is a sealed container whose body is made of a composite material laminated with paper, plastic, aluminum foil, etc., and whose lid is made of a flexible material based on aluminum foil. This is to check for leaks.
In particular, to provide a method and device for leakage testing of sealed containers that are pressurized so that leakage testing of individual containers stored in a single carton case can be reliably performed while the carton case remains closed during shipping. With the goal.
まず、本発明の原理について説明する。 First, the principle of the present invention will be explained.
通常、飲料は90℃乃至95℃程度の高温状態で容器に
充填、密封され、その後常温まで冷却される。したがっ
て、飲料と容器の熱膨張率の違いから、容器の内部は減
圧状態となっている。この場合、容器の胴部壁面に、手
、指等で押潰すような力を加えると容器内の圧力は上昇
するが、ピンホール等を有する不良容器にあっては、容
器内に空気が吸引されていて減圧状態が保たれず、容器
内外の圧力差が零に近いため、きわめて少ない押潰しで
容器内部の圧力が容器外部の大気圧よりも高くなってし
まう。そのため、僅かな力を加えるたけで容器の蓋面を
突出させる。これに対し、ピンホール等のない正常容器
は減圧状態を保持しているので、大きな力で容器の胴部
壁面を押潰さないと蓋面を突出させることができない。Usually, beverages are filled into containers at a high temperature of about 90° C. to 95° C., sealed, and then cooled to room temperature. Therefore, due to the difference in coefficient of thermal expansion between the beverage and the container, the inside of the container is under reduced pressure. In this case, if you apply crushing force to the body wall of the container with your hands or fingers, the pressure inside the container will increase, but if the container is defective and has pinholes, air will be sucked into the container. Because the pressure difference between the inside and outside of the container is close to zero, the pressure inside the container becomes higher than the atmospheric pressure outside the container even with a very small amount of crushing. Therefore, the lid surface of the container can be protruded by applying only a slight force. On the other hand, since a normal container without pinholes etc. maintains a reduced pressure state, the lid surface cannot be made to protrude unless the body wall surface of the container is crushed with a large force.
蓋面の突出、すなわち蓋面の凹形から凸形への変化は一
瞬にして行なわれ、また逆の、凸形から凹形への変化も
一瞬にして行なわれる。この現象をフリップという。そ
して、蓋面がフリップする際にかける容器の胴部壁面の
押潰し嵐は、きわめて小さい。したがって、容器の外部
X圧力を加え、蓋面がフリップしたことを検知すれば、
そのときの加圧力と容器内圧力とがほぼ等しいとみるこ
とができる。The protrusion of the lid surface, that is, the change of the lid surface from a concave shape to a convex shape, occurs instantaneously, and the reverse change from a convex shape to a concave shape also occurs instantaneously. This phenomenon is called a flip. The crushing force on the wall of the body of the container when the lid is flipped is extremely small. Therefore, if you apply external X pressure to the container and detect that the lid has flipped,
It can be seen that the applied pressure at that time and the pressure inside the container are approximately equal.
以上の事実を、実験データにもとづいて説明する。なお
、第1図は本実験装置の一部断面図であり、第2図は実
験データである。The above facts will be explained based on experimental data. Note that FIG. 1 is a partial sectional view of this experimental apparatus, and FIG. 2 is experimental data.
実験の対象となる容器1011d、厚みが帆3調の基材
紙の外側に50μのポリエチレン、内側に30μのポリ
エチレンと15μのアルミニウム箔、さらに最内層に5
0μのポリエチレンをそれぞれ接着積層した、巾171
m 、高さ130胴の長方形のシート材を、直径53
mmのほぼ円筒形に丸めて熱接着した胴部と、厚みが1
00μのアルミニウム箔を基材とし、内側に50μのポ
リエチレンを積層し、外側に5μのエポキシフェノール
系塗料を塗布したシートを円形皿状にプレス成形した蓋
とがらなり、この蓋を円筒形胴部の両端に熱接着して形
成しである。また、胴部には、容器内の圧力が減圧した
際、胴部の断面積がほぼ正六角形となるように、予め胴
部の縦方向に六本の折目が等間隔に予備加工しである。Container 1011d to be tested, 50μ polyethylene on the outside of the base paper with a thickness of 3, 30μ polyethylene and 15μ aluminum foil on the inside, and 5μ thick polyethylene on the inside, and 5μ thick polyethylene on the inside.
Width: 171, laminated with 0μ polyethylene adhesive.
m, a rectangular sheet material with a height of 130 mm and a diameter of 53 mm.
The body is rolled into an approximately cylindrical shape of mm and is heat-bonded, and the thickness is 1 mm.
The lid is press-molded into a circular dish shape from a sheet made of 00μ aluminum foil, laminated with 50μ polyethylene on the inside, and coated with 5μ epoxy phenol paint on the outside. It is formed by thermally bonding both ends. In addition, six folds are pre-processed at equal intervals in the longitudinal direction of the body so that when the pressure inside the container is reduced, the cross-sectional area of the body becomes almost a regular hexagon. be.
実験装置は、容器101の上部蓋面102と対向して渦
電流形変位計103を配置するととも忙、容器10]と
渦電流形変位計103をペルジャー形真空槽104の内
部に収納してbる。この真空槽104は、内部の真空度
を測定するために圧力計105を備え、排気口106に
は図示せざる真空ポンプを接続しである。まだ、渦電流
形変位計103及び圧力計105の出力信号は、それぞ
れの専用アンプ107 、108を介してX−Yレコー
ダ109のY軸及びX軸に送られる。In the experimental apparatus, an eddy current displacement meter 103 is placed opposite the upper lid surface 102 of the container 101, and the container 10 and the eddy current displacement meter 103 are housed inside a Pelger vacuum chamber 104. Ru. This vacuum chamber 104 is equipped with a pressure gauge 105 to measure the degree of vacuum inside, and a vacuum pump (not shown) is connected to an exhaust port 106. Still, the output signals of the eddy current displacement gauge 103 and the pressure gauge 105 are sent to the Y-axis and X-axis of the X-Y recorder 109 via dedicated amplifiers 107 and 108, respectively.
この実験装置において、真空ポンプを運転し、排気口1
06から徐々に吸引しながら渦電流形変位計103と圧
力計105の出力信号をX−Yレコーダ109に記録し
たものが第2図に示すデータである。In this experimental equipment, the vacuum pump is operated and the exhaust port 1 is
The data shown in FIG. 2 is obtained by recording the output signals of the eddy current type displacement meter 103 and the pressure gauge 105 on the X-Y recorder 109 while gradually suctioning from 06 onwards.
すなわち、第2図におけるグラフの横■軸は、圧力計1
05で測定した真空槽104の真空度を表わし、縦ω軸
は変位計103で測定した蓋面102の上下動変位の相
対値を表わしている。そして、曲線(a)は正常容器、
曲線(b)乃至(e)はピンホール等による漏洩のある
各種不良容器の測定例であり、それぞれの曲線は重なり
合わないようにするため原点をY軸方向に移動しである
。In other words, the horizontal ■ axis of the graph in FIG.
05, and the vertical ω axis represents the relative value of the vertical displacement of the lid surface 102 measured by the displacement meter 103. And curve (a) is a normal container,
Curves (b) to (e) are measurement examples of various defective containers with leakage due to pinholes, etc., and the origin of each curve was moved in the Y-axis direction to prevent them from overlapping.
このデータから理解できるように、正常容器の場合には
容器内の空隙が無いか、あるいは空隙がわったとしても
きわめて少ないので、真空槽104内をかなり大きく減
圧しても蓋面102のフリップは生じない。これに対し
不良容器の場合は、ピンホール等の部分から吸引された
空気によって太きな空隙を有しているために、真空槽1
04内の減圧につれて容器101の内部圧力の方が相対
的に高くなり、その瞬間に蓋面102がフリップする。As can be understood from this data, in the case of a normal container, there are no voids inside the container, or even if there are, there are very few voids, so even if the pressure inside the vacuum chamber 104 is significantly reduced, the lid surface 102 will not flip. Does not occur. On the other hand, in the case of defective containers, the vacuum chamber 1
As the pressure inside the container 101 decreases, the internal pressure of the container 101 becomes relatively high, and at that moment the lid surface 102 flips.
この現象は、容器103の胴部においても生じるはずで
あるが、胴部に較べ鉛面の方がはるかに柔軟性を有する
ため、実際には胴部にほとんど変形を生じなho
このように、本発明の原理にもとづき、本発明の目的を
充分達し得ることが理解できる。This phenomenon should also occur in the body of the container 103, but since the lead surface is much more flexible than the body, in reality, almost no deformation occurs in the body. It can be seen that the objectives of the invention can be fully achieved based on the principles of the invention.
しかして、本発明は、飲料等の内容物を充填した可撓的
蓋面を有する容器をチャンバの内部に収納し、チャンバ
内を所定圧力まで減圧もしくは加圧して、この間におけ
る容器蓋面の変位を、容器蓋面に対応してチャンバ内に
設けた非接触式の変位計で測定し、その変位の変化率を
演算装置で演算し、演算の結果蓋面の変位の変化率が大
きい場合に該容器を不良容器と判別することを特徴とし
た密封容器の漏洩検査方法と、アルミニウム箔等を基材
とした可撓的な蓋面を有する密封容器の漏洩を検査する
装置にかいて、飲料等の内容物を熱間充填し、その後冷
却した容器を収納するチャンバと、このチャンバ内の圧
力を所定圧力まで減圧もしくは加圧するポンプと、チャ
ンバ内において容器の蓋面と対応して配置された減圧も
しくは加圧時における蓋面の変位を測定する非接触式の
変位計と、変位計からの信号を演算して蓋面変位の変化
率を算出する演算装置と、演算装置からの出力によって
不良容器の判別を行なう不良容器判別装置とを備えたこ
とを特徴とする笛封容器の漏洩検査装置とよりなってい
る。Therefore, the present invention stores a container having a flexible lid surface filled with contents such as a beverage inside a chamber, reduces or increases the pressure in the chamber to a predetermined pressure, and changes the displacement of the container lid surface during this time. is measured by a non-contact displacement meter installed in the chamber corresponding to the container lid surface, and the rate of change in displacement is calculated by a calculation device. A method for inspecting leakage of sealed containers characterized by determining the container as a defective container, and an apparatus for inspecting leakage of sealed containers having a flexible lid surface made of aluminum foil or the like as a base material, A chamber that stores a container that has been hot-filled with contents such as, and then cooled; a pump that reduces or increases the pressure in this chamber to a predetermined pressure; There is a non-contact displacement meter that measures the displacement of the lid surface during depressurization or pressurization, a calculation device that calculates the rate of change in lid surface displacement by calculating the signal from the displacement meter, and an output from the calculation device that detects defects. The present invention comprises a leakage inspection device for whistle-sealed containers, characterized in that it is equipped with a defective container discriminating device for discriminating containers.
本発明の一実施例を第3図にもとづいて説明する。 An embodiment of the present invention will be described based on FIG.
301−+ 、 301−2 、・・・、301−nは
カートンケース310に配列収納された容器で、内部に
飲食品が充填しである。一般に直径50闘程度の容器で
は5行×6列の合計30個を1ケースとすることが多い
が、4行×5列あるいは5行×5列など種々の場合があ
り得る。303はチャンバたる真空槽であり、床部30
4の所定位置にカートンケース310を出し入れするた
め図示せざる開閉装置によって開閉動作を行なう。30
5−+ 、 305−2 、 ・・−、305−nは非
接触式の渦電流形変位計で、真空槽303の内部におい
て各容器301−1,301〜2.・・・、301−n
の蓋面302−s 、 302−2 、 ・−、302
−nと対向して配設されており、それぞれの蓋面302
−t 、 302−2 、・・・。301-+, 301-2, . . . , 301-n are containers arranged and housed in a carton case 310, and are filled with food and drinks. Generally, for containers with a diameter of about 50 mm, one case is often made up of a total of 30 containers in 5 rows and 6 columns, but various cases such as 4 rows and 5 columns or 5 rows and 5 columns are possible. 303 is a vacuum tank serving as a chamber;
In order to take the carton case 310 in and out of the predetermined position of 4, an opening and closing operation is performed by an opening and closing device (not shown). 30
5-+, 305-2, . ..., 301-n
Lid surface 302-s, 302-2, ・-, 302
−n, and each lid surface 302
-t, 302-2,...
302−nまでの距離に比例しだ電圧を発生する。A voltage is generated proportional to the distance to 302-n.
真空槽303は、回部304と接触する口部にパツキン
306を取付けるとともに、適所に排気口307が設け
である。排気口307は電磁弁308を介して図示せざ
る真空ポンプと接続し、真空槽303内の圧力を加減す
る。電磁弁308は、真空槽303の閉止と同期して電
磁弁制御回路326によって開かれる。309は圧力計
であり、真空槽303内の圧力を測定し、圧力の変化に
比例した電圧を発生する。The vacuum chamber 303 has a gasket 306 attached to its mouth that contacts the rotating section 304, and is provided with an exhaust port 307 at an appropriate location. The exhaust port 307 is connected to a vacuum pump (not shown) via a solenoid valve 308 to adjust the pressure inside the vacuum chamber 303. The solenoid valve 308 is opened by the solenoid valve control circuit 326 in synchronization with the closing of the vacuum chamber 303 . A pressure gauge 309 measures the pressure inside the vacuum chamber 303 and generates a voltage proportional to a change in pressure.
320は高速切換器であり、各変位計305−1 。320 is a high speed switch, and each displacement meter 305-1.
305−2 、・・・、 305−n及び圧力計308
の出力電圧信号を順次切換えてアナログ−ディジタル変
換器321に送る。322はアナログ−ディジタル変換
器321でディジタル化された各信号を各チャネルMl
、 M2 、・・・、 Mn 、 Mpに記憶するメ
モリである。305-2,..., 305-n and pressure gauge 308
The output voltage signals of are sequentially switched and sent to the analog-to-digital converter 321. 322 converts each signal digitized by the analog-to-digital converter 321 into each channel Ml.
, M2, . . . , Mn, Mp.
各チャネルMs 、 M2 、・・・、 Mn には、
第2図に示すような信号が記憶される。なお、この場合
、チャネル数は容器30個分と圧力計用の1個を加え、
31チヤネルとしである。323は微分演算を行なう演
算装置で、チャネルMl、 M2 、・・・、Mn 内
の信号に対してチャネルMp 内の信号による二階微分
を演算して各容器301−1.301−2 、 ・−、
301−nの蓋面302−+ 、 302−2 、 ・
= 、 302−nの7リツプの有無を調べる。For each channel Ms, M2,..., Mn,
A signal as shown in FIG. 2 is stored. In this case, the number of channels is 30 containers plus one for the pressure gauge,
31 channel. Reference numeral 323 denotes an arithmetic unit that performs differential calculations, which calculates second-order differentials of the signals in channels Ml, M2, . ,
Lid surface 302-+ of 301-n, 302-2, ・
=, 302-n checks for the presence of 7 lips.
324は演算装置323の出力にもとづいて容器の不良
判別を行なう不良容器判別装置たる負ノくルス検出回路
であり、演算装置323から負のパルスが出力された際
に不良判別信号324aを出力する。Reference numeral 324 denotes a negative pulse detection circuit which is a defective container discriminating device that discriminates whether a container is defective based on the output of the arithmetic device 323, and outputs a defective discrimination signal 324a when a negative pulse is output from the arithmetic device 323. .
325は負パルス検出回路324からの不良判別信号3
24aを記憶するメモリで、検査が終了して真空槽30
3が開いた際に、図示せざる不良容器排出装置に信号を
送って作動させる。電磁弁制御回路326は、負パルス
検出回路324からの信号324aによって電磁弁30
8を閉じて真空槽303内へ外気を導入し、それ以上の
真空度の上昇を停止させ、不良容器からの内容物の漏出
による周囲容器の汚染を防止する。また、電磁弁制御回
路326は比較器327からの信号によっても電磁弁3
08を閉じて外気を真空槽303内へ導入する。これは
、容器がすべて正常である場合には、真空槽303内圧
力が一303Hg以上に達つしても、不良判別信号32
4aを発つしないので、真空槽303の内部圧が予め設
定器328に設定した圧力に達つしたときに、電磁弁制
御回路326に信号を送って検査を終了させるためであ
る。325 is the defect determination signal 3 from the negative pulse detection circuit 324
24a is stored in the vacuum chamber 30 after the inspection is completed.
3 opens, a signal is sent to a defective container discharge device (not shown) to activate it. The solenoid valve control circuit 326 controls the solenoid valve 30 by a signal 324a from the negative pulse detection circuit 324.
8 is closed to introduce outside air into the vacuum chamber 303, stopping the degree of vacuum from increasing any further, and preventing contamination of surrounding containers due to leakage of contents from the defective container. Further, the solenoid valve control circuit 326 also controls the solenoid valve 3 based on the signal from the comparator 327.
08 is closed and outside air is introduced into the vacuum chamber 303. This means that if all the containers are normal, even if the internal pressure of the vacuum chamber 303 reaches 1303Hg or more, the failure determination signal 32
4a, so when the internal pressure of the vacuum chamber 303 reaches the pressure preset in the setting device 328, a signal is sent to the solenoid valve control circuit 326 to end the inspection.
次に、上記装置を用いた検査方法圧ついて説明する。Next, an inspection method using the above device will be explained.
飲食品を充填して密封した容器301−1.301−2
。Container 301-1.301-2 filled with food and drink and sealed
.
・・・、301−n を多数収納したカートンケース3
10を床部304の所定位置に載置する。次りで、真空
槽303を閉じて各容器301−1.301−2、−・
、 301−n c7)蓋面302−1.302−2
、川、302−n に、対応する渦電流形変位計305
−1 、305−2 、− 、305−n をそれぞれ
対向させる。同時に、電磁弁制御回路326により電磁
弁308を開き排気口307を介して真空槽303内を
吸引する。この真空槽303内の圧力変化と、各容器の
蓋面302−s 、 302−2 、・・・、302−
nの変位を圧力計309と各渦電流形変位計305−s
。..., carton case 3 containing a large number of 301-n.
10 is placed at a predetermined position on the floor 304. Next, the vacuum chamber 303 is closed and each container 301-1, 301-2, -.
, 301-n c7) Lid surface 302-1.302-2
, Kawa, 302-n, the corresponding eddy current type displacement meter 305
-1, 305-2, -, and 305-n are opposed to each other. At the same time, the electromagnetic valve control circuit 326 opens the electromagnetic valve 308 to suck the inside of the vacuum chamber 303 through the exhaust port 307 . This pressure change inside the vacuum chamber 303 and the lid surfaces 302-s, 302-2, ..., 302- of each container
The displacement of n is measured using the pressure gauge 309 and each eddy current displacement gauge 305-s.
.
305−2 、・・・、305−ntlcよってそれぞ
れ電圧信号として測定する。そして、これらの各電圧信
号は高速切換器320によって順次アナログ−ディジタ
ル変換器321に送られ、ここでディジタル信号とされ
た上で、メモリ322の各チャネルMJ + M2r・
・・。305-2, . . . , 305-ntlc, each of which is measured as a voltage signal. Then, each of these voltage signals is sequentially sent to an analog-to-digital converter 321 by a high-speed switch 320, where it is converted into a digital signal, and then converted into a digital signal for each channel MJ + M2r of the memory 322.
....
Mn、Mpに記憶される。It is stored in Mn and Mp.
各チャネルMl、M2.・・・、Mn に記憶された各
信号は、演算装置323において、チャネルMn内の信
号による二階微分の演算が行なわれ、各容器301−r
、 301−21・・・、301−nの蓋面302−1
.302−2 、・・・。Each channel Ml, M2. . . , Mn is subjected to second-order differential calculation using the signal in the channel Mn in the calculation unit 323, and the signals stored in the channels 301-r and 301-r are
, 301-21..., lid surface 302-1 of 301-n
.. 302-2,...
3of−nのフリップの有無を調べる。すなわち、演算
装置323における二階微分の結果は、蓋面にフリップ
を生じた圧力において、演算装置323の出力を正の値
から負の値に急変させる。第4図はこの状態を示したも
のである。第4図における曲線(1)は、ある容器30
1−xにピンホール等があり蓋面302−xがフリップ
したことを示している。曲線C11)はそれを微分した
ものであり曲線(()の勾配を表わしている。曲線(i
ii)はさらに微分したもので、曲線(DIfC対して
二階微分を行なったものであり、蓋面302−xがフリ
ップを生じる圧力において、演算装置323の出力が正
値から負値へ急変することを示すとともに、他の圧力時
においては出力がほとんど零の値であることを示してい
る。Check whether there is a 3of-n flip. That is, the result of the second-order differential in the calculation device 323 causes the output of the calculation device 323 to suddenly change from a positive value to a negative value at the pressure that caused the lid surface to flip. FIG. 4 shows this state. Curve (1) in FIG.
There is a pinhole etc. at 1-x, indicating that the lid surface 302-x has been flipped. Curve C11) is a derivative of it and represents the slope of curve (().Curve (i
ii) is further differentiated, and is obtained by performing second-order differentiation on the curve (DIfC), and shows that at the pressure that causes the lid surface 302-x to flip, the output of the arithmetic unit 323 suddenly changes from a positive value to a negative value. It also shows that the output is almost zero at other pressures.
上記のように、演算装置323から負のパルスが出力さ
れると、負パルス検出回路324から不良判別信号32
4aを、メモリ325と電磁弁制御回路326に出力す
る。これにより、電磁弁制御回路326が電磁弁308
を閉じるとともに、真空槽303が開いた際にメモリ3
25からの信号によって図示せざる不良容器排出装置が
作動し、不良容器を収納したカートンケース310を所
定の場所に排出する。なお、図示してないが、どの容器
が不良なのかを示す表示装置を設けであるので、排出し
たカートンケース310から不良容器のみを取出すこと
ができる。As described above, when the arithmetic unit 323 outputs a negative pulse, the negative pulse detection circuit 324 outputs the defect determination signal 32.
4a is output to the memory 325 and the solenoid valve control circuit 326. This causes the solenoid valve control circuit 326 to control the solenoid valve 308.
At the same time, when the vacuum chamber 303 is opened, the memory 3
A defective container discharging device (not shown) is activated by a signal from 25, and the carton case 310 containing the defective container is discharged to a predetermined location. Although not shown, a display device is provided to indicate which containers are defective, so that only defective containers can be taken out from the discharged carton case 310.
一方、カートンケース310に不良容器が入っていない
場合には、圧力計309が設定器328に設定された圧
力と同じ圧力に達つすると、比較器327から電磁弁制
御回路326に信号を送り、電磁弁308を開じて検査
を自動的に終了させる。そして、真空槽303を開いた
後に1図示せざる送出装置によってカートンケース31
0を次工程に送る。On the other hand, when there is no defective container in the carton case 310, when the pressure gauge 309 reaches the same pressure as the pressure set in the setting device 328, a signal is sent from the comparator 327 to the solenoid valve control circuit 326. The solenoid valve 308 is opened to automatically terminate the inspection. After the vacuum chamber 303 is opened, the carton case 31 is opened by a delivery device (not shown).
Send 0 to the next process.
本発明の検査を正確に行なうには、カートンケース31
0内の圧力と真空槽303内の圧力とが一致しなければ
ならない。しかし、一般のカートンケースにおいては、
コーナ部の合せ目を全面接着していな論ので、との部分
に十分な通気性があり、5 cm Hg/ see以下
の比較的ゆっくりした排気速度ではなんら問題はなかっ
た。また、8 cm Hg/w以上の速度で排気する場
合は、カートンケースに排気孔311を設ける必要があ
るが、この排気孔311は、カートンケースに通常設け
られる搬送用の把手孔で十分兼用できる。In order to accurately perform the inspection of the present invention, the carton case 31
The pressure inside the vacuum chamber 303 must match the pressure inside the vacuum chamber 303. However, in a general carton case,
Since the corner seams were not entirely glued, there was sufficient air permeability in these areas, and there were no problems at relatively slow pumping speeds of 5 cm Hg/see or less. In addition, when exhausting at a speed of 8 cm Hg/w or more, it is necessary to provide an exhaust hole 311 in the carton case, but this exhaust hole 311 can be sufficiently used as a handle hole for transportation normally provided in the carton case. .
本発明の微分演算をするには、アナログ−ディジタル変
換器321及びメモリ322はそれぞれ8ビツトのもの
で十分である。これは、本発明においては変位測定の精
度はそれ程重要でなく、急激に変化するフリップの有無
で判別する方式だからであり、蓋面の上下変位量の大半
をフリップで占めているので実用的忙は4ビット以上で
あれば問題はない。また、真空度の測定分解能も23H
g程度で十分であり、最大真空度を40σHgとすれば
、必要な精度は5チであり5ビット以上あれば十分であ
る。In order to carry out the differential operation of the present invention, it is sufficient that the analog-to-digital converter 321 and the memory 322 each have 8 bits. This is because the accuracy of displacement measurement is not so important in the present invention, and the method is based on the presence or absence of a flip that changes rapidly, and since the flip accounts for most of the amount of vertical displacement of the lid surface, it is not practical. There is no problem if it is 4 bits or more. In addition, the measurement resolution of the degree of vacuum is 23H.
If the maximum degree of vacuum is 40σHg, the required precision is 5 inches, and 5 bits or more is sufficient.
二階微分演算は、各チャネルごとに記憶されている蓋面
変位値の第二階差で近似した。すなわち、蓋面変位値は
真空度2 cInHg ごとにほぼ等間隔でサンプリン
グして記憶されてシ鯵、且つ微分演算の結果の値それ自
体には大きな意味はなく、二階微分で負値を生ずること
で判別しているためである。The second-order differential calculation was approximated by the second-order difference of the lid surface displacement values stored for each channel. In other words, the lid surface displacement value is sampled and stored at approximately equal intervals for every degree of vacuum 2 cInHg, and the value itself as a result of the differential operation has no significant meaning, and a negative value is generated in the second-order differential. This is because it is determined by
なお、本発明によれば容器の漏洩検査のみな、らず、内
容品の変敗によるガス発生膨張も検知することが可能で
ある。すなわち、真空ポンプに替えて加圧ポンプを用い
、チャンバ内を加圧して変敗内容品を含んだ容器の蓋面
を没入させ、このときの蓋面変位を演算装置で二階微分
演算し、その出力信号を正のパルスとすることにより不
良の判別を行なうことができる。また、真空ポンプを加
減圧装置に替え、チャンバ内の圧力を初め最大値まで加
圧した後、徐々に減圧して行く方法によっても不良判別
を行ない得る。但し、この場合は、加圧領域外のメモリ
を追加する必要がある。In addition, according to the present invention, it is possible not only to inspect containers for leakage, but also to detect gas generation and expansion due to deterioration of the contents. That is, a pressure pump is used instead of a vacuum pump to pressurize the inside of the chamber to immerse the lid surface of the container containing spoiled contents, and the displacement of the lid surface at this time is calculated by second-order differential calculation using a calculation device. Defectiveness can be determined by making the output signal a positive pulse. Furthermore, defectiveness can also be determined by replacing the vacuum pump with a pressure regulator, increasing the pressure in the chamber to a maximum value at first, and then gradually reducing the pressure. However, in this case, it is necessary to add memory outside the pressurized area.
以上の如く本発明によれば、容器蓋面の変位を非接触式
の変位計で測定し、その変位の変化率の大きさによって
容器の漏洩を検査するので、カートンケース等に収納さ
れている容器をそのままの状態で検査することができる
。したがって、飲料等を充填してから数日あるいは数週
間経過した後でなければ検知できないような微少なピン
ホール等による漏洩を、商品の出荷時等に、カート/ケ
ースを開いていちいち容器を取出すことなく容易に検査
することが可能となる。As described above, according to the present invention, the displacement of the container lid surface is measured using a non-contact type displacement meter, and the leakage of the container is inspected based on the magnitude of the change rate of the displacement. The container can be inspected as it is. Therefore, when shipping products, etc., it is necessary to open the cart/case and remove the containers one by one to prevent leakage due to minute pinholes, etc., which cannot be detected until several days or weeks after filling the beverage. This makes it possible to easily perform inspections without any trouble.
第1図は本発明の原理説明図、第2図は第1図にもとづ
く実験のデータ図、第3図は本発明の一実施例の説明図
、第4図は演算装置における演算の状態を示すデータ図
である。
301−1.301−2.・・・、 301−rl・・
・容器302−1,302−2.−・・、 302−n
−蓋面303・・・真空槽(チャンバ)
305−1,305−2.・・・、 305−11・・
・非接触式の渦電流形変位計FIG. 1 is a diagram explaining the principle of the present invention, FIG. 2 is a data diagram of an experiment based on FIG. FIG. 301-1.301-2. ..., 301-rl...
- Containers 302-1, 302-2. -..., 302-n
- Lid surface 303... vacuum chamber (chamber) 305-1, 305-2. ..., 305-11...
・Non-contact eddy current displacement meter
Claims (2)
器をチャンバの内部に収納し、チャンバ内を所定圧力ま
で減圧もしくは加圧して、この間における容器蓋面の変
位を、容器蓋面に対応してチャンバ内に設けた非接触式
の変位計で測定し、その変位の変化率を演算装置で演算
し、演算の結果蓋面の変位の変化率が大きい場合に該容
器を不良容器と判別することを特徴とした密封容器の漏
洩検査方法。(1) A container with a flexible lid surface filled with contents such as a beverage is stored inside a chamber, the pressure inside the chamber is reduced or increased to a predetermined pressure, and the displacement of the container lid surface during this time is measured. A non-contact displacement meter installed in the chamber corresponds to the lid surface, and the rate of change in displacement is calculated by a calculation device. If the calculation results show that the rate of change in displacement of the lid surface is large, the container is determined to be defective. A leakage inspection method for a sealed container characterized by distinguishing it from a container.
有する密封容器の漏洩を検査する装置において、飲料等
の内容物を熱間充填し、その後冷却した容器を収納する
チャンバと、このチャンバ内の圧力を所定圧力まで減圧
もしくは加圧するポンプと、チャンバ内にかいて容器の
蓋面と対応して配置され減圧もしくは加圧時にかける蓋
面の変位を測定する非接触式の変位計と、変位計からの
信号を演算して蓋面変位の変化率を算出する演算装置と
、演算装置からの出力によって不良容器の判別を行なう
不良容器判別装置とを備えたことを特徴とする密封容器
の漏洩検査装置。(2) In an apparatus for inspecting leakage of a sealed container having a flexible lid surface made of aluminum foil or the like as a base material, a chamber for storing a container that is hot-filled with contents such as a beverage and then cooled; A pump that reduces or increases the pressure in the chamber to a predetermined pressure, and a non-contact displacement meter that is placed inside the chamber and corresponds to the lid surface of the container and measures the displacement of the lid surface applied when the pressure is reduced or increased. A seal characterized by comprising: a calculation device that calculates a rate of change in lid surface displacement by calculating a signal from a displacement meter; and a defective container discrimination device that discriminates a defective container based on the output from the calculation device. Container leakage inspection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23475483A JPS60127438A (en) | 1983-12-13 | 1983-12-13 | Method and apparatus for leakage inspection of sealed container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23475483A JPS60127438A (en) | 1983-12-13 | 1983-12-13 | Method and apparatus for leakage inspection of sealed container |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60127438A true JPS60127438A (en) | 1985-07-08 |
JPH0480333B2 JPH0480333B2 (en) | 1992-12-18 |
Family
ID=16975825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23475483A Granted JPS60127438A (en) | 1983-12-13 | 1983-12-13 | Method and apparatus for leakage inspection of sealed container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60127438A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4771630A (en) * | 1985-12-20 | 1988-09-20 | Warner-Lambert Company | Method and apparatus for testing hermetic seal integrity of sealed packages and containers |
JPS63193340U (en) * | 1987-05-31 | 1988-12-13 | ||
US4803868A (en) * | 1986-08-29 | 1989-02-14 | Analytical Instruments Limited | Hermetically sealed package tester |
JPH0257533A (en) * | 1988-08-22 | 1990-02-27 | Taiyo Fishery Co Ltd | Leakage inspecting method for sealed container |
JPH0277633A (en) * | 1988-06-16 | 1990-03-16 | Nikka Densoku Kk | Detecting method and apparatus of poor sealing and deformation of hermetically sealed vessel |
WO2006001116A1 (en) * | 2004-06-24 | 2006-01-05 | Kabushiki Kaisha N-Tech | Method and device for inspecting container |
WO2012002792A2 (en) * | 2010-06-28 | 2012-01-05 | Automated Data Systems S.A. De C.V. | Method for testing the hermetic sealing of packing |
US8459099B2 (en) | 1997-05-27 | 2013-06-11 | Wilco Ag | Method for leak testing and leak testing apparatus |
WO2015186778A1 (en) * | 2014-06-05 | 2015-12-10 | 株式会社エヌテック | Container inspection device |
CN109540427A (en) * | 2018-12-29 | 2019-03-29 | 天津市澳玛科技开发有限公司 | A kind of vacuum in canned product online test method and device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5338945A (en) * | 1976-09-22 | 1978-04-10 | Hitachi Ltd | Multiplication circuit containing field-effect transistor |
JPS53125892A (en) * | 1977-04-09 | 1978-11-02 | Oki Electric Ind Co Ltd | Air-tight detector for sealed hard container |
-
1983
- 1983-12-13 JP JP23475483A patent/JPS60127438A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5338945A (en) * | 1976-09-22 | 1978-04-10 | Hitachi Ltd | Multiplication circuit containing field-effect transistor |
JPS53125892A (en) * | 1977-04-09 | 1978-11-02 | Oki Electric Ind Co Ltd | Air-tight detector for sealed hard container |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4771630A (en) * | 1985-12-20 | 1988-09-20 | Warner-Lambert Company | Method and apparatus for testing hermetic seal integrity of sealed packages and containers |
US4803868A (en) * | 1986-08-29 | 1989-02-14 | Analytical Instruments Limited | Hermetically sealed package tester |
JPS63193340U (en) * | 1987-05-31 | 1988-12-13 | ||
JPH0277633A (en) * | 1988-06-16 | 1990-03-16 | Nikka Densoku Kk | Detecting method and apparatus of poor sealing and deformation of hermetically sealed vessel |
JPH0257533A (en) * | 1988-08-22 | 1990-02-27 | Taiyo Fishery Co Ltd | Leakage inspecting method for sealed container |
US5105654A (en) * | 1988-08-22 | 1992-04-21 | Taiyo Fishery Co., Ltd. | Method for inspecting leakage of sealed container |
US9091612B2 (en) | 1997-05-26 | 2015-07-28 | Wilco Ag | Method for leak testing and leak testing apparatus |
US8459099B2 (en) | 1997-05-27 | 2013-06-11 | Wilco Ag | Method for leak testing and leak testing apparatus |
WO2006001116A1 (en) * | 2004-06-24 | 2006-01-05 | Kabushiki Kaisha N-Tech | Method and device for inspecting container |
WO2012002792A3 (en) * | 2010-06-28 | 2012-04-12 | Automated Data Systems S.A. De C.V. | Method for testing the hermetic sealing of packing |
WO2012002792A2 (en) * | 2010-06-28 | 2012-01-05 | Automated Data Systems S.A. De C.V. | Method for testing the hermetic sealing of packing |
WO2015186778A1 (en) * | 2014-06-05 | 2015-12-10 | 株式会社エヌテック | Container inspection device |
JPWO2015186778A1 (en) * | 2014-06-05 | 2017-04-20 | 株式会社エヌテック | Container inspection device |
US9823262B2 (en) | 2014-06-05 | 2017-11-21 | Kabushiki Kaisha N-Tech | Container inspection device |
TWI636922B (en) * | 2014-06-05 | 2018-10-01 | Kabushiki Kaisha N-Tech | A container detector |
CN109540427A (en) * | 2018-12-29 | 2019-03-29 | 天津市澳玛科技开发有限公司 | A kind of vacuum in canned product online test method and device |
Also Published As
Publication number | Publication date |
---|---|
JPH0480333B2 (en) | 1992-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3001820B2 (en) | Container leak test method and apparatus | |
US5111684A (en) | Method and apparatus for leak testing packages | |
US4774830A (en) | Testing container seals | |
CA2043323C (en) | Method of and apparatus for a leakage testing | |
US6330823B1 (en) | Process and apparatus for testing containers | |
EP0181722A1 (en) | Method and apparatus for determinating a vacuum degree within a flexible vacuum package | |
US6167751B1 (en) | Leak analysis | |
JPH02242132A (en) | Apparatus and method for inspecting container | |
JPH0257533A (en) | Leakage inspecting method for sealed container | |
CN102269641A (en) | Detection device and method of tightness of flexible package products | |
JPS60127438A (en) | Method and apparatus for leakage inspection of sealed container | |
MX2007009062A (en) | Method for testing bottles or containers having flexible walls, as well as a plant implementing it. | |
US20030033857A1 (en) | Apparatus and method to detect leaks in sealed packages | |
JPH07113592B2 (en) | Leakage inspection method and device for sealed container | |
CN113825992B (en) | Method and device for detecting the presence of a leak in a sealed container | |
EP0303303A1 (en) | A method and an apparatus for detecting a possible leak in a vacuum package | |
JPH0529862B2 (en) | ||
JP2005009931A (en) | Seal fault inspection apparatus | |
JP2000088694A (en) | Inspection apparatus for sealing performance of airtight container | |
US7325440B2 (en) | Hole inspection system for a pierced container | |
JP2021131309A (en) | Inspection device and inspection method of leak from container | |
JP3387577B2 (en) | Beer barrel leak inspection device | |
JPH03156336A (en) | Method for inspecting leakage from hermetic synthetic resin container | |
JPH03176347A (en) | Method of inspecting leakage of sealed container | |
JPH0562287B2 (en) |