JPH0834168B2 - Conductive composition for ceramic capacitor terminal electrodes - Google Patents

Conductive composition for ceramic capacitor terminal electrodes

Info

Publication number
JPH0834168B2
JPH0834168B2 JP26139188A JP26139188A JPH0834168B2 JP H0834168 B2 JPH0834168 B2 JP H0834168B2 JP 26139188 A JP26139188 A JP 26139188A JP 26139188 A JP26139188 A JP 26139188A JP H0834168 B2 JPH0834168 B2 JP H0834168B2
Authority
JP
Japan
Prior art keywords
weight
glass
capacitor
ceramic capacitor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26139188A
Other languages
Japanese (ja)
Other versions
JPH02109314A (en
Inventor
榮一 浅田
正美 赤木
安俊 遠藤
直樹 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP26139188A priority Critical patent/JPH0834168B2/en
Publication of JPH02109314A publication Critical patent/JPH02109314A/en
Publication of JPH0834168B2 publication Critical patent/JPH0834168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セラミックコンデンサの端子電極を形成す
るための導電性組成物であり、特にチタン酸バリウム系
積層コンデンサの端子電極付近に生じるクラックを防止
した電極組成物に関する。
TECHNICAL FIELD The present invention relates to a conductive composition for forming a terminal electrode of a ceramic capacitor, and particularly, to prevent cracks generated near the terminal electrode of a barium titanate-based multilayer capacitor. It relates to an electrode composition.

従来の技術 積層コンデンサ等、チップ状セラミックコンデンサの
端子電極は、銀、パラジウム、金、白金、銅、ニッケル
又はこれらの混合物などの導電性粉末と、ガラス質フリ
ット等の無機結合剤とを有機ビヒクルに分散させたペー
スト状の組成物を、チップ素体の端子部に塗布し、焼付
けすることによって形成される。
2. Description of the Related Art The terminal electrode of a chip-shaped ceramic capacitor such as a multilayer capacitor is made of an organic vehicle including conductive powder such as silver, palladium, gold, platinum, copper, nickel or a mixture thereof and an inorganic binder such as a glass frit. It is formed by applying the paste composition dispersed in the above to the terminal portion of the chip element body and baking it.

コンデンサンチップの回路基板への実装は、半田付に
よって行うのが一般的であるが、電極中の導電成分が貴
金属のように半田に溶解し易い金属である場合は、耐半
田溶解性を高めるため電極表面に半田に溶解し難いニッ
ケル、銅などの金属の薄膜を電解メッキ等の手段によっ
て形成し、次いでその上に半田付性の良い錫や錫−鉛合
金などを被覆し、その後半田付処理を行っている。
Mounting the capacitor chip on the circuit board is generally done by soldering, but if the conductive component in the electrode is a metal such as a noble metal that easily dissolves in the solder, increase the solder dissolution resistance. Therefore, a thin film of metal such as nickel or copper that is difficult to dissolve in solder is formed on the electrode surface by means such as electrolytic plating, and then tin or tin-lead alloy with good solderability is coated on it, and then soldered. It is processing.

ところが、従来この種の導電性組成物は無機結合剤に
硼珪酸鉛系や硼珪酸ビスマス系のガラス質フリットを用
いているが、この組成物から形成された導電被膜に電解
メッキ処理を施したとき、端子とコンデンサ素体間の接
合強度が劣化する問題が生じる。これは電極材料、特に
ガラス質フリットがメッキ液等により侵されるためと考
えられ、これまでガラスの改良が種々なされてきた。例
えば特公昭60−37562号は、鉛を含有しないZnO−B2O3
SiO2ガラスを使用したペーストで、酸処理、電解メッキ
の可能な導体膜を形成するものである。又特公昭62−16
62号には、アルカリ金属及びアルカリ土類金属を含有す
る特定の組成の硼珪酸亜鉛系ガラス質フリットを用いた
導電塗料が記載されている。しかしこれらのガラスを使
用することによって、電解メッキによる密着強度の劣化
はある程度改善されるものの、電極表面にガラスが分布
して、メッキが一様に形成されず、このため半田の付着
性が不十分になる欠点がある。
However, a conductive composition of this type has conventionally used a glass frit of lead borosilicate type or bismuth borosilicate type as an inorganic binder, but a conductive coating formed from this composition was subjected to electrolytic plating treatment. At this time, there arises a problem that the joint strength between the terminal and the capacitor element body is deteriorated. It is considered that this is because the electrode material, particularly the glassy frit, is attacked by the plating solution and the like, and various improvements have been made to the glass so far. For example Japanese Patent Publication No. 60-37562 is, ZnO-B 2 O 3 containing no lead -
A paste using SiO 2 glass, which forms a conductor film that can be acid-treated and electroplated. In addition, it is 62-16
No. 62 describes a conductive paint using a zinc borosilicate-based glassy frit having a specific composition containing an alkali metal and an alkaline earth metal. However, although the use of these glasses improves the deterioration of the adhesion strength due to electrolytic plating to some extent, the glass is distributed on the electrode surface and the plating is not formed uniformly, so that the adhesiveness of the solder is impaired. There is a drawback that will be sufficient.

又従来、電解メッキ処理したコンデンサを半田付する
際、高温の半田浴にコンデンサチップを浸漬するので急
激な温度変化が加わることになり、信頼性に問題を生ず
る。例えば積層セラミックコンデンサを製造する場合、
半田付時に受けるサーマルショックによりコンデンサ素
体にしばしばクラックが発生し、コンデンサとして使用
できなくなることがある。このクラックは、半田付時の
他、コンデンサ製造工程において大きな機械的応力が加
わったときなどにも生ずることがある。このようなクラ
ックの発生は、特に内部電極材料にパラジウム系又は銀
−パラジウム系の金属を使用し、端子電極を銀−パラジ
ウム又は銀系で形成したときに多く見られ、又機械的強
度が比較的弱いBaTiO3系の積層コンデンサで多発してお
り、大きな問題となっている。
Further, conventionally, when soldering a capacitor that has been electrolytically plated, the capacitor chip is immersed in a high-temperature solder bath, which causes a rapid temperature change, which causes a problem in reliability. For example, when manufacturing a monolithic ceramic capacitor,
Due to the thermal shock received during soldering, cracks often occur in the capacitor element body, making it unusable as a capacitor. This crack may occur not only when soldering but also when a large mechanical stress is applied in the capacitor manufacturing process. The occurrence of such cracks is often seen especially when a palladium-based or silver-palladium-based metal is used for the internal electrode material and the terminal electrode is formed of silver-palladium or silver-based, and the mechanical strength is comparable. This is a big problem because it occurs frequently in the relatively weak BaTiO 3 type multilayer capacitors.

発明が解決しようとする課題 本発明の目的は、セラミックコンデンサ端子電極のガ
ラス結合剤の改良により、端子とコンデンサ素体との接
合性及び半田付性を改善し、更に積層コンデンサの半田
付時の熱衝撃等によるクラックの発生を防止することに
ある。
The object of the present invention is to improve the bondability and solderability between the terminal and the capacitor element body by improving the glass binder of the ceramic capacitor terminal electrode, and further to improve the solderability of the multilayer capacitor. This is to prevent the generation of cracks due to thermal shock.

課題を解決するための手段 本発明は、貴金属粉末100重量部と、ガラスを構成す
る各元素の合計が酸化物換算でそれぞれ B2O3 15〜35重量% ZnO 32〜50重量% SiO2 13〜30重量% Al2O3 1〜15重量% PbO 0.1〜12重量% BaO及びCaOから選ばれる少なくとも1種 2〜15重量% Na2O及びK2Oから選ばれる少なくとも1種0.1〜8重量% の比率となるような1種又は2種以上のガラス質フリッ
ト0.2〜20重量部とを、有機ビヒクルに分散させてなる
セラミックコンデンサ端子電極用導電性組成物である。
Means for Solving the Problems The present invention is based on 100 parts by weight of a noble metal powder and the total of each element constituting glass is B 2 O 3 15 to 35% by weight ZnO 32 to 50% by weight SiO 2 13 -30 wt% Al 2 O 3 1-15 wt% PbO 0.1-12 wt% At least one selected from BaO and CaO 2-15 wt% At least one selected from Na 2 O and K 2 O 0.1-8 wt % Of 0.2% to 20% by weight of one or more kinds of glassy frits in an organic vehicle, which is a conductive composition for a ceramic capacitor terminal electrode.

作用 本発明の特定組成のガラスを結合剤として使用した導
電性組成物は、後に説明するように、コンデンサ素体に
焼付けすることにより、コンデンサ素体との接合強度が
極めて強く、電解メッキを施しても強度の劣化がおこら
ない端子電極を形成することができる。又電極表面にガ
ラスの分布が少ないため、メッキの付着性が極めて良好
であり、従ってメッキ後の半田付性も改善されるほか、
メッキせずに直接半田付する場合でも半田の付着性が優
れている。更に、積層コンデンサの実装時の半田付に際
してのサーマルショックや、その他の機械的衝撃による
コンデンサ素体へのクラックの発生が著しく減少する。
Action The conductive composition using the glass of the specific composition of the present invention as a binder has an extremely strong bonding strength with the capacitor element body by being baked on the capacitor element body as described later, and is subjected to electrolytic plating. However, it is possible to form a terminal electrode that does not deteriorate in strength. Also, since the distribution of glass on the electrode surface is small, the adhesion of the plating is very good, and therefore the solderability after plating is also improved,
Excellent solder adhesion even when soldering directly without plating. Furthermore, the thermal shock at the time of soldering when mounting the multilayer capacitor and the occurrence of cracks in the capacitor body due to other mechanical shocks are significantly reduced.

積層コンデンサのクラックの発生機構については明確
には解っていないが、例えばパラジウム系一内部電極を
用いた積層セラミックコンデンサ素体に、銀系の端子電
極組成物を塗布し、焼成すると、パラジウムと銀の拡散
速度の違いから、端子中の銀が、端子に直接結合してい
る内部電極中に拡散し、端子近くの内部電極が体積膨脹
を起こして周囲のセラミック誘電体層を圧迫する。この
ため内部電極が露出していない素体側面部に引張り応力
の集中が起こり、その結果セラミック誘電体層に内部歪
み、或いは極めて微細な亀裂を生じさせるものと考えら
れる。そして端子部に電解メッキを行なった後、実装工
程で高温の半田浴へ浸漬する際、急激な昇温によってこ
の歪み又は微細な亀裂が拡大され、特に機械的強度があ
まり強くないBaTiO3のようなセラミック誘電体の場合、
大きなクラックに至ると考えられる。
Although the mechanism of crack generation in a multilayer capacitor is not clearly understood, for example, when a silver-based terminal electrode composition is applied to a multilayer ceramic capacitor element body using one palladium-based internal electrode and fired, palladium and silver Due to the difference in the diffusion rate of the silver, the silver in the terminal diffuses into the internal electrode directly coupled to the terminal, and the internal electrode near the terminal causes volume expansion and presses the surrounding ceramic dielectric layer. Therefore, it is considered that the tensile stress is concentrated on the side surface of the element body where the internal electrodes are not exposed, resulting in internal strain or extremely fine cracks in the ceramic dielectric layer. Then, after electroplating the terminals, when immersed in a high temperature solder bath during the mounting process, this strain or minute cracks expand due to a sudden rise in temperature, especially when BaTiO 3 is not very strong in mechanical strength. In case of ceramic dielectric,
It is thought to lead to a large crack.

本発明においてガラスを前記の組成とすると、端子電
極とコンデンサ素体との界面に強靭な結晶化ガラスの薄
い層が形成され、この層が形成されるとクラックが発生
しにくくなることが判明した。この層は分析の結果、亜
鉛系の結晶化ガラス中にZnOとTiO2を主成分とする結晶
が析出したものであるが、これは端子電極の焼成時、軟
化したガラスをフラックスとしてコンデンサ素体の一部
が分解され、端子電極中のガラスの構成成分であるZnO
と反応したものではないかと推定される。この素体の分
解と反応層が生成する現象に伴って、前述の内部電極の
膨脹に起因するセラミックの内部歪み、及び半田付時の
急激な温度変化による歪みが緩和され、加えてクラック
発生箇所の機械的強度が増大するため、種々の熱衝撃や
機械的衝撃を受けてもクラックの発生が抑制されると考
えられる。
It has been found that when the glass has the above composition in the present invention, a thin layer of tough crystallized glass is formed at the interface between the terminal electrode and the capacitor body, and cracks are less likely to occur when this layer is formed. . As a result of analysis, this layer is a crystal of Zn-based crystallized glass with ZnO and TiO 2 as the main components.This is because the softened glass was used as a flux during the firing of the terminal electrode to form a capacitor element body. ZnO, which is a constituent of the glass in the terminal electrode, is partially decomposed.
It is presumed that it was a reaction with. Due to the decomposition of the element body and the phenomenon of generation of the reaction layer, the internal strain of the ceramic due to the expansion of the internal electrode and the strain due to the rapid temperature change at the time of soldering are alleviated. It is considered that the occurrence of cracks is suppressed even when subjected to various thermal shocks and mechanical shocks, because the mechanical strength of the steel is increased.

更にガラスとコンデンサ素体とが反応して接着してい
るため、端子とコンデンサ素体との間の接合強度も著し
く改善され、電解メッキ後半田付しても強度劣化が起こ
らないと考えられる。
Furthermore, since the glass and the capacitor element body react and adhere to each other, the bonding strength between the terminal and the capacitor element body is significantly improved, and it is considered that the strength does not deteriorate even when soldering after electrolytic plating.

ガラスの組成を限定した理由は次の通りである。 The reason for limiting the composition of glass is as follows.

B2O3は15重量%未満ではガラス化が困難であり、35重
量%を越えると軟化温度が高くなり、又失透するので望
ましくない。
If B 2 O 3 is less than 15% by weight, vitrification is difficult, and if it exceeds 35% by weight, the softening temperature becomes high and devitrification occurs, which is not desirable.

ZnOはコンデンサ成分と反応して、素体との密着強度
を改善するとともにクラックを防止すると考えられる
が、32重量%より少ないと反応層の形成が不十分で効果
がなく、又50重量%を越えるとガラス化が困難になる。
ZnO is considered to react with the capacitor component to improve the adhesion strength with the element body and prevent cracks, but if it is less than 32% by weight, the formation of the reaction layer is insufficient and there is no effect. If it exceeds, vitrification becomes difficult.

SiO2は、13重量%より少ないと焼成温度範囲が狭くな
り、工程の自由度が小さくなるので望ましくない。これ
は、端子を比較的高い温度、例えば800℃を越える温度
で焼成する場合、内部電極が膨脹して端子側に突出する
ため端子電極がコンデンサ素体から剥離する現象が起こ
り易くなるので、焼成温度も制限されるが、SiO2を13重
量%以上配合すると、焼成中のガラスの流動性が小さく
なるので、この端子の剥離現象が防止されると考えられ
る。しかし30重量%を越えると軟化温度が高くなりす
ぎ、又反応層の形成が困難となる。
If the content of SiO 2 is less than 13% by weight, the firing temperature range becomes narrow and the degree of freedom in the process becomes small, which is not desirable. This is because when the terminal is fired at a relatively high temperature, for example, a temperature higher than 800 ° C, the internal electrode expands and protrudes to the terminal side, so that the phenomenon that the terminal electrode peels from the capacitor body easily occurs. Although the temperature is also limited, when SiO 2 is blended in an amount of 13% by weight or more, the fluidity of the glass during firing becomes small, and therefore it is considered that this terminal peeling phenomenon is prevented. However, if it exceeds 30% by weight, the softening temperature becomes too high and it becomes difficult to form a reaction layer.

Al2O3はガラスを安定化させるのに大きな効果があ
る。配合量が1重量%未満では失透が起こり易く、素体
とガラスの反応が均一に起こりにくくなって強度等が低
下する。15重量%を越えるとガラスの流動性が損なわれ
る。
Al 2 O 3 has a great effect on stabilizing glass. If the blending amount is less than 1% by weight, devitrification is likely to occur, the reaction between the element body and the glass is less likely to occur uniformly, and the strength and the like decrease. If it exceeds 15% by weight, the fluidity of glass is impaired.

PbOが0.1重量%より少ないと強度が弱く、又ガラス化
が困難になる。又12重量%を越えると軟化温度が低下し
すぎて使用に適さない。
If the PbO content is less than 0.1% by weight, the strength will be weak and vitrification will be difficult. If it exceeds 12% by weight, the softening temperature is too low to be suitable for use.

BaO、CaOは接合強度を改善するとともに、膜密度を大
きくするので電極膜へのメッキ液の滲込みが防止され、
信頼性が向上する。BaO、CaOの合計量が2重量%より少
ないとこれらの特性改善にあまり効果がなく、15重量%
を越えると前述の反応層の形成が困難になり、クラック
の発生が多くなる。
BaO and CaO improve the bonding strength and increase the film density, which prevents the plating solution from seeping into the electrode film.
Improves reliability. If the total amount of BaO and CaO is less than 2% by weight, there is little effect on improving these characteristics, and 15% by weight
If it exceeds, it becomes difficult to form the above-mentioned reaction layer, and cracks increase in number.

Na2O、K2Oはガラスの反応性を増し、反応層の形成を
促進すると考えられる。0.1重量%より少ないとその効
果がなく、又ガラスの軟化温度が高くなって十分な膜密
度が得られない。8重量%を越えると流動性が大きくな
りすぎて使用に適さない。
It is considered that Na 2 O and K 2 O increase the reactivity of the glass and promote the formation of the reaction layer. If it is less than 0.1% by weight, the effect is not obtained, and the softening temperature of the glass becomes high, so that a sufficient film density cannot be obtained. If it exceeds 8% by weight, the fluidity becomes too large and it is not suitable for use.

ガラス質フリットとしては単一のガラス質フリットを
使用してもよいが、2種以上のフリットの混合物で、各
成分酸化物の合計が前記の比率となるものを用いてもよ
い。
A single vitreous frit may be used as the vitreous frit, but a mixture of two or more types of frit in which the sum of the component oxides is in the above ratio may be used.

本発明にはガラス質フリットの他に、無機結合剤とし
て通常使用される酸化ビスマス、酸化銅、酸化亜鉛等の
添加剤を併用してもよい。
In the present invention, in addition to the glassy frit, additives such as bismuth oxide, copper oxide, and zinc oxide which are commonly used as an inorganic binder may be used in combination.

導電性粉末としては銀、パラジウム、白金、金などの
貴金属や、これらの合金或いは混合物が使用される。
As the conductive powder, a noble metal such as silver, palladium, platinum, gold, etc., or an alloy or mixture thereof is used.

有機ビヒクルは特に制限はなく、通常この種の導電性
組成物に使用されるものでよい。
The organic vehicle is not particularly limited and may be one normally used in this type of conductive composition.

導電性粉末とガラス質フリットの比率は、導電性粉末
100重量部に対してガラス質フリット0.2〜20重量部の範
囲で使用される。ガラスがこれより少ないと電極の接合
強度が充分でなく、多すぎると電極の表層部に存在する
ガラスが多くなるために、均一なメッキ膜の形成が困難
になるので望ましくない。又有機ビヒクルは導電性粉末
100重量部に対し10〜40重量部程度が適当である。
The ratio of conductive powder to vitreous frit is
It is used in the range of 0.2 to 20 parts by weight of glassy frit per 100 parts by weight. If the amount of glass is less than this, the bonding strength of the electrode is not sufficient, and if it is too large, the amount of glass present on the surface layer portion of the electrode increases, which makes it difficult to form a uniform plated film, which is not desirable. The organic vehicle is a conductive powder.
About 10 to 40 parts by weight is suitable for 100 parts by weight.

本発明の導電性組成物は、特にBaTiO3系の積層コンデ
ンサに対して特に効果が大きいが、TiO2系その他の積層
コンデンサや、単板形のコンデンサの端子電極形成用に
も用いることができるのはもちろんである。
The conductive composition of the present invention is particularly effective for BaTiO 3 -based multilayer capacitors, but can also be used for forming terminal electrodes of TiO 2 -based and other multilayer capacitors and single-plate capacitors. Of course.

更に本発明の組成物は、メッキを行わず直接半田付け
するタイプの端子電極に使用しても、接合強度や半田付
性が従来に比べて大きく改善されるので好ましい。この
場合、1〜10重量部程度の酸化ビスマスを更に配合する
と、半田の付着性がより向上する。
Furthermore, the composition of the present invention is preferable even when used for a terminal electrode of a type which is directly soldered without plating, because the bonding strength and solderability are greatly improved as compared with the prior art. In this case, if bismuth oxide of about 1 to 10 parts by weight is further blended, the adhesiveness of the solder is further improved.

実施例 実施例1 銀粉末100重量部に対して下記組成のガラス質フリッ
ト6重量部と、有機ビヒクルとしてエチルセルロースの
テルピネオール溶液30重量部を混合し、ペースト状の導
電性組成物を得た。
Example 1 6 parts by weight of a glass frit having the following composition and 30 parts by weight of a terpineol solution of ethyl cellulose as an organic vehicle were mixed with 100 parts by weight of silver powder to obtain a paste-like conductive composition.

B2O3 20.0重量% ZnO 35.0重量% SiO2 21.0重量% Al2O3 11.5重量% PbO 0.5重量% BaO 9.0重量% CaO 0.5重量% Na2O 1.0重量% K2O 1.5重量% このペーストを、内部電極にパラジウムを用いたBaTi
O3系積層セラミックコンデンサ(層数30層)の端子部即
ち内部電極端部の露出した側面に塗布し、150℃で10分
間乾燥した後、最高温度800℃で焼成し、端子電極被膜
を形成した。
B 2 O 3 20.0 wt% ZnO 35.0 wt% SiO 2 21.0 wt% Al 2 O 3 11.5 wt% PbO 0.5 wt% BaO 9.0 wt% CaO 0.5 wt% Na 2 O 1.0 wt% K 2 O 1.5 wt% , BaTi using palladium for internal electrodes
Apply to the exposed side of the terminal part of the O 3 -based monolithic ceramic capacitor (30 layers), that is, the exposed end of the internal electrode, dry at 150 ° C for 10 minutes, and then bake at a maximum temperature of 800 ° C to form a terminal electrode film. did.

次いで端子部にニッケル及び錫を順次電解メッキし
た。メッキ処理の前後で電極とセラミック素体間の接合
強度を測定したところ、それぞれ4.8kg、4.6kgであっ
た。
Next, nickel and tin were sequentially electrolytically plated on the terminals. When the bonding strength between the electrode and the ceramic body was measured before and after the plating treatment, they were 4.8 kg and 4.6 kg, respectively.

又メッキ処理したコンデンサを300℃の錫/鉛共晶半
田浴に1秒間浸漬し、その後、光学顕微鏡でセラミック
素体を観察したところ、クラックの発生は見られなかっ
た。半田の付着性は極めて良好であった。
When the plated capacitor was immersed in a tin / lead eutectic solder bath at 300 ° C. for 1 second and then the ceramic body was observed with an optical microscope, no cracks were found. The adhesion of the solder was very good.

実施例2〜8 表1に示したガラス質フリットを使用する以外は実施
例1と同様にして、端子電極を形成した。同様にメッキ
前後の接合強度及びクラックの発生状況、半田付性を調
べ、結果を表1に併せて示した。
Examples 2 to 8 Terminal electrodes were formed in the same manner as in Example 1 except that the glassy frit shown in Table 1 was used. Similarly, the joint strength before and after plating, the occurrence of cracks, and the solderability were examined, and the results are also shown in Table 1.

尚表1において、半田付性は、試料10個中、半田がは
じかれ均一に付着しなかったものの個数で示した。
In Table 1, the solderability is shown by the number of 10 samples which were repelled and did not adhere uniformly.

比較例1〜5 表1に示した組成のガラス質フリットを使用する以外
は実施例と同様にして、端子電極を形成し、接合強度、
クラックの発生及び半田付性を調べた。結果を表1に併
せて示した。
Comparative Examples 1 to 5 Terminal electrodes were formed in the same manner as in Examples except that the glass frit having the composition shown in Table 1 was used, and the bonding strength,
Generation of cracks and solderability were examined. The results are also shown in Table 1.

表1から明らかなように、本発明の組成物ではクラッ
クが全く発生せず、接合強度、半田付性ともに極めて優
れているが、本発明外の組成のガラスを用いるもので
は、比較例1〜3、5では多数のクラックが発生した。
比較例4、5では、半田濡れ性が悪いが、これは電極膜
表面にガラスが多く存在し、ニッケルメッキが均一に付
着しないためと考えられる。又比較例1、3〜5では強
度も弱い。
As is clear from Table 1, in the composition of the present invention, cracks are not generated at all, and the bonding strength and the solderability are extremely excellent. In Nos. 3 and 5, many cracks were generated.
In Comparative Examples 4 and 5, the solder wettability is poor, which is considered to be because a large amount of glass is present on the surface of the electrode film and the nickel plating does not adhere uniformly. Further, in Comparative Examples 1 and 3 to 5, the strength is weak.

実施例9 銀粉末100重量部、実施例4と同一組成のガラス質フ
リット2重量部及びBi2O3粉末5重量部をエチルセルロ
ースのテルピネオール溶液30重量部に混合分散し、ペー
スト状の導電性組成物を得た。このペーストを、BaTiO3
系単板形セラミックコンデンサの端子部にスクリーン印
刷し、乾燥後、最高温度750℃で焼成し、端子電極被膜
を形成した。メッキ処理を行わない端子の接合強度は5.
0kgであり、優れた密着性を示した。又半田付性は良好
であった。
Example 9 100 parts by weight of silver powder, 2 parts by weight of glassy frit having the same composition as in Example 4 and 5 parts by weight of Bi 2 O 3 powder were mixed and dispersed in 30 parts by weight of a terpineol solution of ethyl cellulose to form a paste-like conductive composition. I got a thing. Add this paste to BaTiO 3
Screen printing was performed on the terminal part of the single plate type ceramic capacitor, dried and then baked at the maximum temperature of 750 ° C to form a terminal electrode coating film. The joint strength of terminals without plating is 5.
It was 0 kg and showed excellent adhesion. The solderability was good.

発明の効果 本発明の特性組成のガラスを無機結合剤として使用す
る電極用組成物により、コンデンサ素体との接合強度が
強く、電解メッキにも耐える優れた端子電極が形成さ
れ、かつ実装時の半田付に際してのサーマルショックや
その他の機械的衝撃によるクラックの発生がない、信頼
性が極めて高いセラミックコンデンサを得ることができ
る。
Effects of the Invention The composition for electrodes using the glass having the characteristic composition of the present invention as the inorganic binder, has a strong bonding strength with the capacitor element body, and an excellent terminal electrode that can withstand electrolytic plating is formed. It is possible to obtain a highly reliable ceramic capacitor in which cracks due to thermal shock and other mechanical shocks during soldering do not occur.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能勢 直樹 東京都青梅市末広町2丁目9番地3 昭栄 化学工業株式会社内 (56)参考文献 特開 昭60−240115(JP,A) 特開 昭63−14856(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoki Nose 2-9-3 Suehiro-cho, Ome City, Tokyo Shoei Chemical Industry Co., Ltd. (56) References JP-A-60-240115 (JP, A) JP-A-SHO 63-14856 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】貴金属粉末100重量部と、ガラスを構成す
る各元素の合計が酸化物換算でそれぞれ下記比率となる
ような1種又は2種以上のガラス質フリット0.2〜20重
量部とを、有機ビヒクルに分散させてなるセラミックコ
ンデンサ端子電極用導電性組成物。 B2O3 15〜35重量% ZnO 32〜50重量% SiO2 13〜30重量% Al2O3 1〜15重量% PbO 0.1〜12重量% BaO及びCaOから選ばれる少なくとも1種 2〜15重量% Na2O及びK2Oから選ばれる少なくとも1種0.1〜8重量%
1. A noble metal powder of 100 parts by weight and 0.2 to 20 parts by weight of one or more kinds of glassy frit such that the total of each element constituting glass has the following ratio in terms of oxide. A conductive composition for a ceramic capacitor terminal electrode, which is dispersed in an organic vehicle. B 2 O 3 15 to 35 wt% ZnO 32 to 50 wt% SiO 2 13 to 30 wt% Al 2 O 3 1 to 15 wt% PbO 0.1 to 12 wt% At least one selected from BaO and CaO 2 to 15 wt% % Na 2 O and at least one selected from K 2 O 0.1 to 8% by weight
【請求項2】更に酸化ビスマス粉末1〜10重量部を添加
した請求項1記載のセラミックコンデンサ端子電極用導
電性組成物。
2. The conductive composition for a ceramic capacitor terminal electrode according to claim 1, further comprising 1 to 10 parts by weight of bismuth oxide powder.
JP26139188A 1988-10-19 1988-10-19 Conductive composition for ceramic capacitor terminal electrodes Expired - Lifetime JPH0834168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26139188A JPH0834168B2 (en) 1988-10-19 1988-10-19 Conductive composition for ceramic capacitor terminal electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26139188A JPH0834168B2 (en) 1988-10-19 1988-10-19 Conductive composition for ceramic capacitor terminal electrodes

Publications (2)

Publication Number Publication Date
JPH02109314A JPH02109314A (en) 1990-04-23
JPH0834168B2 true JPH0834168B2 (en) 1996-03-29

Family

ID=17361209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26139188A Expired - Lifetime JPH0834168B2 (en) 1988-10-19 1988-10-19 Conductive composition for ceramic capacitor terminal electrodes

Country Status (1)

Country Link
JP (1) JPH0834168B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104737252A (en) * 2012-10-09 2015-06-24 株式会社村田制作所 Laminated ceramic electronic component and method for manufacturing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161223A (en) * 1993-12-10 1995-06-23 Murata Mfg Co Ltd Conductive paste and multilayer ceramic capacitor
JP3152065B2 (en) * 1994-06-20 2001-04-03 株式会社村田製作所 Conductive paste and multilayer ceramic capacitors
JP3908426B2 (en) 1999-12-24 2007-04-25 日本碍子株式会社 Ceramic capacitor electrode forming paste
CN100583328C (en) 2004-04-23 2010-01-20 株式会社村田制作所 Electronic component and manufacturing method thereof
DE102007026243A1 (en) 2007-06-04 2008-12-11 Endress + Hauser Gmbh + Co. Kg Capacitive pressure sensor
JP5301852B2 (en) * 2008-02-22 2013-09-25 コーア株式会社 Multilayer chip varistor
KR101771742B1 (en) * 2012-11-26 2017-08-25 삼성전기주식회사 Multi-layered ceramic electronic parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104737252A (en) * 2012-10-09 2015-06-24 株式会社村田制作所 Laminated ceramic electronic component and method for manufacturing same
US9620290B2 (en) 2012-10-09 2017-04-11 Murata Manufacturing Co., Ltd. Monolithic ceramic electronic component and method for manufacturing the same
US9831037B2 (en) 2012-10-09 2017-11-28 Murata Manufaturing Co., Ltd. Monolithic ceramic electronic component and method for manufacturing the same

Also Published As

Publication number Publication date
JPH02109314A (en) 1990-04-23

Similar Documents

Publication Publication Date Title
US7285232B2 (en) Conductive paste and ceramic electronic component
JPH08180731A (en) Electroconductive thick film compound, thick film electrode, ceramic electronic component, and layered ceramic capacitor
JPH05235497A (en) Copper conductive paste
JPH0834168B2 (en) Conductive composition for ceramic capacitor terminal electrodes
JP3463320B2 (en) Multilayer ceramic capacitors
JPS6310887B2 (en)
JPH0817671A (en) Conductive paste
JPH0423308A (en) Ceramic capacitor
JPH0817140B2 (en) Conductive composition for ceramic capacitor terminal electrodes
JPH087645A (en) Conductive paste and multilayer ceramic capacitor
JP3120703B2 (en) Conductive paste and multilayer ceramic electronic components
JP2973558B2 (en) Conductive paste for chip-type electronic components
JPH0817141B2 (en) Conductive composition for ceramic capacitor terminal electrodes
JP3257036B2 (en) Conductive paste for chip-type electronic components
JPS621662B2 (en)
JPH08298018A (en) Conductive paste
JP2968316B2 (en) Multilayer ceramic capacitors
JPH0239408A (en) Conductive composed material for ceramic capacitor terminal electrode
JP3291831B2 (en) Conductive paste for chip-type electronic components
JPS635842B2 (en)
JPS6127003A (en) Conductive paste composition
JPH0440803B2 (en)
JPH0693307A (en) Thick-film copper conductor paste composition capable of being plated
JPH06342965A (en) Ceramic circuit board and manufacture thereof
JPS58107605A (en) Method of producing chip resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 13