JPH0834088B2 - Alloy plate for shed mask and shed mask - Google Patents

Alloy plate for shed mask and shed mask

Info

Publication number
JPH0834088B2
JPH0834088B2 JP2239687A JP2239687A JPH0834088B2 JP H0834088 B2 JPH0834088 B2 JP H0834088B2 JP 2239687 A JP2239687 A JP 2239687A JP 2239687 A JP2239687 A JP 2239687A JP H0834088 B2 JPH0834088 B2 JP H0834088B2
Authority
JP
Japan
Prior art keywords
shadow mask
alloy
alloy plate
electron beam
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2239687A
Other languages
Japanese (ja)
Other versions
JPS63193440A (en
Inventor
恵美子 東中川
康久 大竹
正治 関東
二美男 盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2239687A priority Critical patent/JPH0834088B2/en
Publication of JPS63193440A publication Critical patent/JPS63193440A/en
Publication of JPH0834088B2 publication Critical patent/JPH0834088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、カラーテレビ用受像管に使用されるシャド
ウマスクに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a shadow mask used in a picture tube for a color television.

(従来の技術) カラーテレビ用受像管に使用されるシャドウマスク
は、三色蛍光面に正確な電子ビームスポットを投影する
機能を有する。このため、電子ビーム通過孔の相対位
置、孔径及び孔形状が画質に直接的な影響を及ぼし、電
子ビーム通過孔の高い加工程度が要求される。また、散
乱電子の発生防止のため、電子ビーム通過孔の蛍光面と
対向する面を半球状に面取り加工するという特殊な加工
も必要である。これらの加工精度が低いと、ドーミング
により画質低下を招く。
(Prior Art) A shadow mask used in a picture tube for color television has a function of projecting an accurate electron beam spot on a three-color fluorescent screen. Therefore, the relative position of the electron beam passage hole, the hole diameter and the hole shape directly affect the image quality, and a high degree of processing of the electron beam passage hole is required. Further, in order to prevent the generation of scattered electrons, it is necessary to perform a special process of chamfering the surface of the electron beam passage hole facing the fluorescent surface into a hemispherical shape. If these processing precisions are low, the image quality is deteriorated due to doming.

従来、このようなシャドウマスクの加工はシャドウマ
スク原板にエッチングによって細長状の電子通過孔を形
成していた。
Conventionally, in the processing of such a shadow mask, elongated electron passing holes are formed in a shadow mask original plate by etching.

一方、近年、テレビ画面の“きめの細かさ”に対する
一般的要求が高まり、通信方式でも高品位テレビ方式の
開発が進められている。従って、受像管においても解像
度の向上の観点から、シャドウマスクに更に微細な電子
ビーム通過孔を形成することが要求される。また、高精
細となるシャドウマスクの熱膨張による電子ビーム通過
孔の位置ずれの問題が生じ、これを解決するためにFe−
Ni系アンバー合金の使用が検討されている。しかしなが
ら、かかる状況下では従来余り問題となっていなかった
問題点がクローズアップされる。その1つとして、圧延
で薄肉化したシャドウマスク原板をエッチングにより微
細な電子ビーム通過孔を開孔した際、この孔が均一にな
らないという欠点があった。シャドウマスク原板の板面
に{100}面をそろえることで孔の形状が均一となるこ
とを見出し、特願昭57−147790号、特願昭60−106024
号、特願昭58−19085号、特願昭60−73847号で開示し
た。
On the other hand, in recent years, a general demand for "fineness" of a television screen has increased, and a high-definition television system has been developed as a communication system. Therefore, also in the picture tube, from the viewpoint of improving the resolution, it is required to form a finer electron beam passage hole in the shadow mask. In addition, the problem of displacement of the electron beam passage hole due to thermal expansion of the shadow mask with high definition occurs.
The use of Ni-based amber alloy is being considered. However, under such circumstances, problems that have not been a problem in the past will be highlighted. As one of them, there is a defect that when the shadow mask original plate thinned by rolling is used to open fine electron beam passage holes by etching, the holes are not uniform. It was found that by aligning {100} planes on the surface of the shadow mask original plate, the hole shape becomes uniform, and Japanese Patent Application Nos. 57-147790 and 60-106024.
Japanese Patent Application No. 58-19085 and Japanese Patent Application No. 60-73847.

ところが板面を{100}面に揃えたシャドウマスク原
板に開孔したシャドウマスクに白ムラが見つかり、詳細
に測定した結果電子孔の形状は理想的な相似形をしてい
るが、大きさに大小があることが判った。
However, white unevenness was found in the shadow mask that was opened in the shadow mask original plate with the plate surface aligned on the {100} plane, and detailed measurements showed that the shape of the electron hole was an ideal similar shape, but It turned out that there are big and small.

(発明が解決しようとする問題点) 本発明は、上記従来の問題点を解決しようとなされた
もので、電子孔の形状だけでなく大きさも極めて均一で
あり、その結果白ムラの無いシャドウマスクを提供しよ
うとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and not only the shape of the electron holes but also the size thereof are extremely uniform, and as a result, a shadow mask without white unevenness is obtained. Is to provide.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段及び作用) 本発明者等の研究によれば前述の白ムラはα−Feの析
出によるものであることがわかった。α−Feはアンバー
合金より耐食性が劣るため、α−Feが局在している個所
では電子孔の径が大きくなってしまうのである。従っ
て、このα−Feの析出を抑制することにより、この白ム
ラが解消されることが判明し、本発明を創出するに至っ
た。
(Means and Actions for Solving Problems) According to the study by the present inventors, it was found that the above-mentioned white unevenness was caused by the precipitation of α-Fe. Since α-Fe is inferior in corrosion resistance to amber alloy, the diameter of the electron hole becomes large at the location where α-Fe is localized. Therefore, it was found that the white unevenness was eliminated by suppressing the precipitation of α-Fe, and the present invention was created.

すなわち本発明は Fe−Ni系アンバー合金板の板面におけるX線回折強度
が、 の関係を満たすことを特徴とするシャドウマスク用合金
板、及びこの合金板に電子ビーム通過孔を形成してなる
シャドウマスクである。本発明におけるhはFe−Ni系ア
ンバー合金に混入するα−Fe不純の混入量を示す指標で
ある。すなわち、Fe−Ni系アンバー合金をX線回折で測
定すると{111}、{220}、{220}結晶面が強く観察
され、3者のX線回折強度の和は、Fe−Ni系アンバー合
金の存在量に比例する。一方、α−Feの{110}、{20
0}結晶面の回折強度の和はα−Feの存在量に比例す
る。したがって、 の関係が成立する。hが20未満の場合はα−Feの存在量
が多くなり、白ムラが発生しやすくなる。
That is, in the present invention, the X-ray diffraction intensity on the plate surface of the Fe-Ni-based amber alloy plate is And a shadow mask formed by forming electron beam passage holes in the alloy plate. In the present invention, h is an index indicating the amount of α-Fe impurities mixed in the Fe-Ni amber alloy. That is, {111}, {220}, and {220} crystal planes are strongly observed when the Fe-Ni amber alloy is measured by X-ray diffraction, and the sum of the X-ray diffraction intensities of the three parties is the Fe-Ni amber alloy. Proportional to the abundance of. On the other hand, α-Fe {110}, {20
The sum of the diffraction intensities of the 0} crystal plane is proportional to the amount of α-Fe present. Therefore, The relationship is established. When h is less than 20, the amount of α-Fe present is large and white unevenness is likely to occur.

本発明のシャドウマスク用合金板は以下の如くに製造
される。Fe−Ni合金においては、900℃以上ではFeとNi
の成分比の如何に拘らずγ相(f.c.c)になることは知
られている。900℃以上のγ相から除冷すると、γ相のF
e−Ni合金にα相のFeとγ相のNiとが析出する。しか
し、900℃以上のγ相を急冷すると900℃で形成していた
結晶構造をそのまま常温でも保つことができ、常温でγ
相の均一相のFe−Ni合金を得ることができる。
The shadow mask alloy plate of the present invention is manufactured as follows. In Fe-Ni alloys, Fe and Ni at 900 ° C and above
It is known that γ phase (fcc) is obtained regardless of the component ratio of. When the γ phase at 900 ° C or higher is cooled, the γ phase F
α-phase Fe and γ-phase Ni are precipitated in the e-Ni alloy. However, if the γ phase above 900 ° C is rapidly cooled, the crystal structure formed at 900 ° C can be maintained as it is at room temperature.
It is possible to obtain a Fe-Ni alloy having a uniform phase.

従って、本発明合金板は、通常の鍛造、熱間圧延、冷
間圧延等の製造工程中に、900℃以上の高温から急冷す
る調質熱処理を行なうことにより得ることができる。こ
の調質熱処理は製造工程中、例えば熱間鍛造後、冷間圧
延等どこにいれても良いが、熱間圧延後、冷間圧延前に
行なうことが望ましい。この調質熱処理は、熱間圧延の
終点温度が900℃以上である場合は、熱間圧延後の降温
を急冷することにより代替できる。
Therefore, the alloy sheet of the present invention can be obtained by performing heat treatment for quenching from a high temperature of 900 ° C. or higher during the manufacturing process such as ordinary forging, hot rolling, cold rolling and the like. This tempering heat treatment may be performed anywhere during the manufacturing process, for example, after hot forging and cold rolling, but it is preferably performed after hot rolling and before cold rolling. When the end temperature of hot rolling is 900 ° C. or higher, this heat treatment can be replaced by rapidly cooling the temperature after hot rolling.

本発明に用いるFe−Ni系アンバー合金は、36Ni−Feを
中心とするNi30〜50wt%残部Feの合金が代表的である
が、必要に応じ、Cr,Co等を添加したものでも良い。
The Fe-Ni-based amber alloy used in the present invention is typically an alloy of Ni of 30 to 50 wt% balance Fe centered at 36Ni-Fe, but Cr, Co, etc. may be added if necessary.

またシャドウマスクを製造する場合、電子ビーム通過
孔を形成するが、形状のそろった孔を設けるためには、
合金板の板面の結晶方位をそろえていた方が好ましい。
具体的にはFe−Ni系アンバー合金の{200}結晶面と{1
11}結晶面とが、{220}結晶面よりも集合している度
合を、{200}回折強度をI{200}、{111}回折強度
をI{111}、{220}回折強度をI{220}とすると、 g=(I{200}+I{111})/I{220} で定義し、このg値が2以上であれば良い。すなわち、
孔の形状が不均一となる{220}結晶面の集合度合を小
さくする方が好ましい。
When manufacturing a shadow mask, electron beam passage holes are formed, but in order to provide holes with uniform shapes,
It is preferable that the crystal planes of the alloy plate are aligned.
Specifically, the Fe-Ni amber alloy has {200} crystal faces and {1}
The degree to which the 11} crystal planes are more assembled than the {220} crystal planes is the {200} diffraction intensity is I {200} , the {111} diffraction intensity is I {111} , and the {220} diffraction intensity is I. Let {220} be defined as g = (I {200} + I {111} ) / I {220} , and it is sufficient if this g value is 2 or more. That is,
It is preferable to reduce the degree of aggregation of {220} crystal planes in which the shapes of the holes are non-uniform.

また板面には{100}面が35%以上、好ましくは40%
以上集合していた方がエッチング性等の関係で良好であ
り、集合度合を表わす際に一般的に用いられる次式 φ:結晶粒の体積比 φ:板面に垂直な方向と結晶粒の<100>方向とのなす
角 が0.35以上、好ましくは0.4以上であれば良い。
In addition, the plate surface has a {100} surface of 35% or more, preferably 40%
The above-mentioned groups are better in terms of etching properties, etc. V φ : Volume ratio of crystal grains φ : The angle formed by the direction perpendicular to the plate surface and the <100> direction of the crystal grains is 0.35 or more, preferably 0.4 or more.

このように{100}面が集合したシャドウマスク用合
金板を得るためには、合金インゴットを造塊、鍛造、熱
間圧延を行なう通常の製造工程後、冷間にて、好ましく
は圧延率80%以上の強加工圧延を施し、その後、再結晶
温度を超える温度で熱処理を行なう。強加工圧延により
{110}結晶面に集合し、再結晶温度以上の熱処理で{1
00}結晶面に回転し{100}結晶面が集合する。さらに
必要に応じ結晶面を回転させない圧延率25%以下の条件
で冷間圧延して板厚の精度を高めることもできる。
In order to obtain an alloy plate for a shadow mask in which {100} planes are aggregated in this manner, an alloy ingot is generally ingot-cast, forged, and hot-rolled. % Or more, and then heat-treated at a temperature exceeding the recrystallization temperature. Aggregates on {110} crystal planes by strong work rolling, and {1} by heat treatment above recrystallization temperature.
Rotate to the {00} crystal plane and {100} crystal planes gather. Further, if necessary, cold rolling may be performed under conditions of a rolling rate of 25% or less without rotating the crystal plane to improve the accuracy of the plate thickness.

さらに{100}結晶面がより多くそろっている面
(A)を電子ビーム入射側の反対側とすることにより、
電子ビーム通過孔の断面形状が面(A)の側において大
きくなり、孔として好適である。従って a=I{200}/I{220} としたときのaの値が大きい面を電子ビーム入射側の反
対側とすることが望ましい。
Furthermore, by making the plane (A) with more {100} crystal planes in the opposite side of the electron beam incident side,
The sectional shape of the electron beam passage hole is large on the side of the surface (A), which is suitable as a hole. Therefore, when a = I {200} / I {220} , it is desirable to make the surface having a large value of a the opposite side to the electron beam incident side.

(実施例) 実施例−1 36%Ni−Feアンバー合金を目標成合として溶解し、複
数個の5トンインゴットを得た。これを1200℃4時間加
熱後鍛造し160t×625w×6000lの寸法とした。その後、1
100℃に4時間加熱し、熱間圧延を行った。その後、連
続熱処理炉において1100℃保持後水冷却を行った(調質
熱処理)。その後90%の冷間圧延と900℃の再結晶焼鈍
を行い4%のスキンパスにより平坦化してシャドウマス
ク原板とした。この原板にフォトエッチング法により電
子ビーム通過孔を開孔したところ、シャドウマスクの全
面にわたって均一な電子ビーム通過孔が得られた。
(Example) Example-1 36% Ni-Fe amber alloy was melted as a target composition to obtain a plurality of 5 ton ingots. This was heated at 1200 ° C. for 4 hours and then forged to have dimensions of 160 t × 625 w × 6000 l . Then 1
It heated at 100 degreeC for 4 hours, and performed hot rolling. After that, water was cooled after being kept at 1100 ° C in a continuous heat treatment furnace (heat treatment). After that, 90% cold rolling and 900 ° C. recrystallization annealing were performed, and flattening was performed with a 4% skin pass to obtain a shadow mask original plate. When electron beam passage holes were opened in this original plate by a photo-etching method, uniform electron beam passage holes were obtained over the entire surface of the shadow mask.

第1図は本実施例シャドウマスク用合金板のX線回折
図である。シャドウマスク全面にわたってX線回折を行
なったところ、第1図と同様な36%Ni−Feの{111},
{200},{220}のピークを示した。
FIG. 1 is an X-ray diffraction diagram of the shadow mask alloy plate of this example. When X-ray diffraction was performed on the entire surface of the shadow mask, it was found that the same 36% Ni-Fe {111},
The peaks of {200} and {220} were shown.

なお、h値は101.5であり、白ムラはなかった。 The h value was 101.5 and there was no white unevenness.

第2図は調質化熱処理を施行しなかった場合のシャド
ウマスクのX線回折の例である。この場合にはシャドウ
マスクの面の殆どは第1図の如き典型を示すが、第2図
の如きα−Feの{110},{200}及びNiの{220}のピ
ークが観察される個所があった。h値は15.8であり、そ
こは白ムラの白色個所と一致した。
FIG. 2 is an example of X-ray diffraction of a shadow mask when heat treatment for refining was not performed. In this case, most of the surface of the shadow mask is typical as shown in FIG. 1, but the peaks of α-Fe {110}, {200} and Ni {220} are observed as shown in FIG. was there. The h value was 15.8, which coincided with the white spots of white unevenness.

実施例−2 製造条件をかえて種々のh値をもつ36%Ni−Feのシャ
ドウマスク用合金板を製造し、これを用いてシャドウマ
スクを製造した場合の白ムラの発生を調べた。
Example 2 36% Ni—Fe alloy plates for shadow masks having various h values were manufactured under different manufacturing conditions, and the occurrence of white unevenness was investigated when a shadow mask was manufactured using this alloy plate.

X線回折はCuKα 50kV 100mA 2θ=40〜80゜ またa値の大きい方を電子ビーム入射面の反対側とし
た時の方が良好な孔形成ができた。
In X-ray diffraction, CuKα 50kV 100mA 2θ = 40 to 80 ° Further, better holes could be formed when the larger a value was set on the side opposite to the electron beam incident surface.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば白ムラのないシャ
ドウマスクを得ることができ、非常に有効である。
As described above, according to the present invention, a shadow mask without white unevenness can be obtained, which is very effective.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例のX線回折図、第2図は比較例の
X線回折図。
FIG. 1 is an X-ray diffraction diagram of an example of the present invention, and FIG. 2 is an X-ray diffraction diagram of a comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Fe−Ni系アンバー合金板の板面におけるX
線回折積分強度が、 の関係を満たすことを特徴とするシャドウマスク用合金
板。
1. X on the plate surface of an Fe-Ni-based amber alloy plate
The line diffraction integrated intensity is An alloy plate for a shadow mask, which satisfies the relationship of.
【請求項2】Fe−Ni系アンバー合金板の板面におけるX
線回折積分強度が、 の関係を満たすシャドウマスク用合金板に電子ビーム通
過孔が設けられたことを特徴とするシャドウマスク。
2. X on the plate surface of an Fe-Ni amber alloy plate
The line diffraction integrated intensity is A shadow mask, characterized in that an electron beam passage hole is provided in an alloy plate for a shadow mask satisfying the above relationship.
JP2239687A 1987-02-04 1987-02-04 Alloy plate for shed mask and shed mask Expired - Lifetime JPH0834088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2239687A JPH0834088B2 (en) 1987-02-04 1987-02-04 Alloy plate for shed mask and shed mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2239687A JPH0834088B2 (en) 1987-02-04 1987-02-04 Alloy plate for shed mask and shed mask

Publications (2)

Publication Number Publication Date
JPS63193440A JPS63193440A (en) 1988-08-10
JPH0834088B2 true JPH0834088B2 (en) 1996-03-29

Family

ID=12081499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2239687A Expired - Lifetime JPH0834088B2 (en) 1987-02-04 1987-02-04 Alloy plate for shed mask and shed mask

Country Status (1)

Country Link
JP (1) JPH0834088B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567159B2 (en) * 1991-05-17 1996-12-25 日本冶金工業株式会社 Fe-Ni shadow mask material with excellent blackening processability
JP2723718B2 (en) * 1991-09-27 1998-03-09 ヤマハ株式会社 Fe-Ni-Co alloy for shadow mask
CN1117881C (en) * 1999-06-10 2003-08-13 日本冶金工业株式会社 Fe-Ni based material for shadow mask
JP5721691B2 (en) * 2012-11-20 2015-05-20 Jx日鉱日石金属株式会社 Metal mask material and metal mask

Also Published As

Publication number Publication date
JPS63193440A (en) 1988-08-10

Similar Documents

Publication Publication Date Title
EP1134300A2 (en) Fe-Ni alloy
KR100519520B1 (en) Invar alloy steel sheet material for shadow mask, method of production thereof, shadow mask, and color picture tube
JPH06264190A (en) Stock for shadow mask
JPH0834088B2 (en) Alloy plate for shed mask and shed mask
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JPH09157799A (en) Ferrum-nickel shadow mask blank having excellent etching property and ferrum-nickel shadow mask material having excellent moldability as well as production of shadow mask
JP2929881B2 (en) Metal sheet for shadow mask with excellent etching processability
JP3542024B2 (en) High strength low thermal expansion Fe-Ni alloy, shadow mask, lead frame
JP2795028B2 (en) Metal sheet for shadow mask with excellent etching processability
JP3379301B2 (en) Method for producing low thermal expansion alloy thin plate for shadow mask excellent in plate shape and heat shrink resistance
JPH0551712A (en) Production of copper-iron alloy
JP3073734B1 (en) Method of manufacturing Fe-Ni alloy material for shadow mask
JP2002038237A (en) Fe-Ni BASED ALLOY SHEET
JP3029417B2 (en) Molded blackened shadow mask and method of manufacturing molded blackened shadow mask
KR960008889B1 (en) Thin alloy sheet for electronic instrument having excellent etching workability
JP2933913B1 (en) Fe-Ni-based shadow mask material and method of manufacturing the same
JPS61218050A (en) Material for the parts of color television picture tube and their manufacture
JPH05311357A (en) Shadow-mask material
JPH06279946A (en) Shadow mask material having excellent etching property, its intermediate material, its production, production of shadow mask, and cathode ray tube
JP2004091895A (en) Copper alloy having excellent heat resistance and production method therefor
JP2004331997A (en) HIGH-STRENGTH Fe-Ni-Co ALLOY FOR SHADOW MASK
JP3284732B2 (en) Fe-Ni-based alloy thin plate and Fe-Ni-Co-based alloy thin plate for a color picture tube having excellent magnetic properties and method of manufacturing the same
CN1120246C (en) Fe-Ni alloy for shadow mask, observational method of inpurities and discriminating method of aperature uniformity
JP2001049395A (en) Iron-nickel-cobalt alloy excellent in etching characteristic and low thermal expansion characteristic, and shadow mask excellent in smoothness of inside peripheral shape of etch pit
JP3157239B2 (en) Shadow mask material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term