JPH08336446A - Mattresses and manufacturing method - Google Patents

Mattresses and manufacturing method

Info

Publication number
JPH08336446A
JPH08336446A JP14631795A JP14631795A JPH08336446A JP H08336446 A JPH08336446 A JP H08336446A JP 14631795 A JP14631795 A JP 14631795A JP 14631795 A JP14631795 A JP 14631795A JP H08336446 A JPH08336446 A JP H08336446A
Authority
JP
Japan
Prior art keywords
elastic resin
cushion
thermoplastic elastic
layer
cushion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14631795A
Other languages
Japanese (ja)
Inventor
Hideo Isoda
英夫 磯田
Yasufusa Hotta
康房 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP14631795A priority Critical patent/JPH08336446A/en
Publication of JPH08336446A publication Critical patent/JPH08336446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mattresses And Other Support Structures For Chairs And Beds (AREA)

Abstract

PURPOSE: To provide a mattresses and manufacturing method thereof most suitable for bed mattress, a Japanese style mattress, a floor cushion, and a furniture cushion of general home, hospital and hotel applications that are to be kept always clean, to be washable, not to become mushy, having superior heat-retaining, shape keeping, and bending characteristics and moderate durability. CONSTITUTION: Mattresses are formed from three-dimensional structures of a continuous wire of a diameter of less than 5mm of thermoplastic elastomer. The structure is formed through fusion bonding of the wires at most of contacting points of bending and twisting wires. Both sides of surfaces are layers of cushion of network structures of practically flat and of apparent density of 0.005-0.10g/cm<3> , and thickness of more than 5mm. On either surface or on both surfaces, cushion layers stacked with wadding layers are to be covered with a side cloth. The wadding layer consists of hard cotton fabric with apparent density of less than 0.1g/cm<3> , and being bonded with fibers of matrix of natural fibers and thermoplastic elastic resin as thermo-bonding component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸れ難く、保温性、体
型保持性に優れ寝心地が良好で、耐久性、折り曲げ性に
も優れ洗濯が可能で、常に清潔性を保持できる一般家庭
用、病院用及びホテル用等のベットに最適なベットマッ
ト及び、敷布団、家具等のクッション材にも適したマッ
ト類に関する。
BACKGROUND OF THE INVENTION The present invention is suitable for general household use, which is difficult to get stuffy, has excellent heat retention and body shape retention, is comfortable to sleep, has excellent durability and bendability, can be washed, and can always maintain cleanliness. The present invention relates to a bed mat that is most suitable for beds for hospitals and hotels, and mats that are also suitable for cushioning materials such as bedding and furniture.

【0002】[0002]

【従来技術】現在、ベッド用のベットマットはクッショ
ン層に硬鋼線スプリング又は発泡スチロール等の発泡体
を用い、ワディング層に発泡ウレタンや非弾性捲縮繊維
を接着した樹脂綿や硬綿などが積層一体化されたもの、
及びクッション体が同一組成のウレタン等の発泡体や非
弾性捲縮繊維を接着した樹脂綿又は硬綿のみで構成され
たものが使用されている。
2. Description of the Related Art At present, bed mats for beds use a hard steel wire spring or a foamed material such as styrofoam for a cushion layer, and a wadding layer laminated with resin cotton or hard cotton with adhered urethane foam or inelastic crimped fiber. Integrated,
Also, a cushion body made of only a foamed material such as urethane having the same composition or a resin cotton or a hard cotton to which an inelastic crimped fiber is adhered is used.

【0003】しかしながら、クッション層に硬鋼線スプ
リングを用いたものは、サポ−ト性は著しく優れている
が、折り曲げ性に劣り、又、廃棄時に硬鋼線スプリング
を分離して処理するための煩雑さが大きい問題となって
いる。クッション層又はワディング層又はクッション体
に発泡−架橋型ウレタンを用いたものは、クッション体
としての耐久性は極めて良好だが、透湿透水性に劣り蓄
熱性があるため蒸れやすく、折り曲げ性もやや劣り、か
つ、熱可塑性では無いためリサイクルが困難となり焼却
される場合、焼却炉の損傷が大きく、かつ、有毒ガス除
去に経費が掛かる。このため埋め立てされることが多く
なったが、地盤の安定化が困難なため埋め立て場所が限
定され経費も高くなっていく問題がある。また、加工性
は優れるが製造中に使用される薬品の公害問題などもあ
る。また、最近、病院用ベットがMRSA等の温床とな
る問題からベットマットの洗濯が必要だが、透水性に劣
るウレタンは洗濯ができないため社会問題になってい
る。
However, the one using a hard steel wire spring for the cushion layer is remarkably excellent in supportability, but is inferior in bending property, and the hard steel wire spring is separated and treated at the time of disposal. Complexity is a big problem. The cushion layer or wadding layer or the one using foam-crosslinking type urethane for the cushion body has very good durability as a cushion body, but it has poor moisture permeability and heat storage property, so it easily gets damp and slightly bendable. In addition, since it is not thermoplastic and it is difficult to recycle it and it is incinerated, the incinerator is greatly damaged and the cost of removing toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, recently, bed mats need to be washed due to the problem that hospital beds become hot beds such as MRSA, but urethane, which has poor water permeability, cannot be washed, which has become a social problem.

【0004】クッション層又はワディング層又はクッシ
ョン体がポリエステル繊維を接着剤で接着した樹脂綿、
例えば接着剤にゴム系を用いたものとして特開昭60−
11352号公報、特開昭61−141388号公報、
特開昭61−141391号公報等がある。又、架橋性
ウレタンを用いたものとして特開昭61−137732
号公報等がある。これらをクッション層又はワディング
層に用いたものは、通気性をよくして蒸れを軽減できる
が、耐久性と折り曲げ性に劣り、且つ、熱可塑性でな
く、単一組成でもないためリサイクルも出来ない等の問
題、及び加工性の煩雑さや製造中に使用される薬品の公
害問題などもある。また、洗濯は可能だが、水切り性が
悪い問題がある。
A resin cotton, in which a cushion layer or a wadding layer or a cushion body is formed by adhering polyester fibers with an adhesive,
For example, as an adhesive using a rubber system, Japanese Patent Laid-Open No. 60-
11352, JP-A-61-141388,
There is JP-A-61-141391. In addition, as one using a crosslinkable urethane, Japanese Patent Laid-Open No. 61-137732
There is a bulletin, etc. Those using these as a cushion layer or a wadding layer can improve breathability and reduce stuffiness, but are inferior in durability and bendability, and are not thermoplastic or single composition and therefore cannot be recycled. There are also problems such as complexity of processability and pollution of chemicals used during manufacturing. Also, although it can be washed, it has a problem of poor drainage.

【0005】クッション層又はワディング層又はクッシ
ョン体にポリエステル硬綿、例えば特開昭58−311
50号公報、特開平2−154050号公報、特開平3
−220354号公報等があるが、用いている熱接着繊
維の接着成分が脆い非晶性のポリマ−を用いるため(例
えば特開昭58−136828号公報、特開平3−24
9213号公報等)接着部分が脆く、使用中に接着部分
が簡単に破壊されて形態や弾力性が低下するなどの耐久
性が劣る問題がある。更に折り曲げ性が劣るものであ
る。また、洗濯は可能だが、水切り性が悪い問題があ
る。耐久性の改良法として、交絡処理する方法が特開平
4−245965号公報等で提案されているが、接着部
分の脆さは解決されず弾力性の低下が大きく、折り曲げ
性も劣る問題がある。また、加工時の煩雑さもある。更
には接着部分が変形しにくくソフトなクッション性を付
与しにくい問題もある。このため、接着部分を柔らか
い、且つある程度変形しても回復するポリエステルエラ
ストマ−を用い、芯成分に非弾性ポリエステルを用いた
熱接着繊維が特開平4−240219号公報で、同繊維
を用いたクッション体がWO−91/19032号公
報、特開平5−156561号公報、特開平5−163
654号公報等で提案されている。この繊維構造物に使
われる接着成分がポリエステルエラストマ−のソフトセ
グメントとしてはポリアルキレングリコ−ルの含有量が
30〜50重量%、ハ−ドセグメントの酸成分にテレフ
タル酸を50〜80モル%含有し、他の酸成分組成とし
て特公昭60−1404号公報に記載された繊維と同様
にイソフタル酸を含有して非晶性が増すことになり、融
点も180℃以下となり低溶融粘度として熱接着部分の
形成を良くしてアメーバー状の接着部を形成しているが
塑性変形しやいため、及び芯成分が非弾性ポリエステル
のため、特に加熱下での塑性変形が著しくなり、耐熱抗
圧縮性が低下する問題点、及び折り曲げ性が劣り、洗濯
は可能だが、水切り性が悪い問題点がある。耐久性を更
なる改良法として、特開平5−163654号公報にシ
−ス成分にイソフタル酸を含有するポリエステルエラス
トマ−、コア成分に非弾性ポリエステルを用いた熱接着
複合繊維のみからなる構造体が提案されているが上述の
理由で加熱下での塑性変形が著しくなり、耐熱抗圧縮性
が低下し、クッション体に使用するには問題がある。
又、硬綿の母材にシリコ−ン油剤を付与して繊維の摩擦
係数を下げて耐久性を向上し、風合いを良くする方法が
特開昭63−158094号公報で提案されている。
が、熱接着繊維の接着性に問題があり、耐久性が劣るの
でクッション体に使用するには好ましくない。他方、折
り曲げ性の改良法として、折り畳み構造にする方法が特
開昭55−36373号公報、特開平2−142513
号公報、特開平5−3894号公報等で提案されている
が、折り曲げ性は改良されたが、耐久性や洗濯時の問題
は何ら改良されず、クッション体として用いるには問題
が多いものである。又、折り曲げ部分に空洞を作って折
り曲げ性を改良したものとして、例えば特開平5−28
5031号公報等があるが、ウレタン等の発泡体の問
題、又は硬綿の問題を何ら解決できていない。
Polyester hard cotton for the cushion layer or the wadding layer or the cushion body, for example, JP-A-58-311.
50, JP-A-2-154050, JP-A-3
However, since an amorphous polymer in which the adhesive component of the heat-adhesive fiber used is brittle is used (for example, JP-A-58-136828 and JP-A-3-24).
(Patent No. 9213, etc.) There is a problem that durability is inferior such that the bonded portion is brittle and the bonded portion is easily broken during use, and the form and elasticity are lowered. Furthermore, it is inferior in bendability. Also, although it can be washed, it has a problem of poor drainage. As a method for improving durability, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965 and the like, but brittleness of an adhesive portion is not solved and elasticity is largely reduced, and there is a problem that bending property is poor. . In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. Therefore, a heat-bonded fiber using a polyester elastomer which is soft and recovers even if it is deformed to some extent and uses an inelastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion using the fiber is disclosed. The body is WO-91 / 19032, JP-A-5-155651, JP-A-5-163.
No. 654, etc. The adhesive component used in this fiber structure contains 30 to 50% by weight of polyalkylene glycol as the soft segment of polyester elastomer, and 50 to 80 mol% of terephthalic acid as the acid component of the hard segment. However, similar to the fiber described in JP-B-60-1404 as another acid component composition, isophthalic acid is added to increase the amorphous property, and the melting point becomes 180 ° C. or lower, resulting in low melt viscosity and thermal bonding. The amoebar-shaped adhesive part is formed by improving the part formation, but it is easy to plastically deform, and because the core component is an inelastic polyester, the plastic deformation becomes remarkable especially under heating, and the heat resistance and compression resistance are high. There is a problem that it deteriorates, and it is inferior in bendability and can be washed, but it has a problem that drainability is poor. As a method of further improving the durability, a structure comprising only a polyester polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding conjugate fiber using an inelastic polyester as a core component is disclosed in JP-A-5-163654. Although proposed, the plastic deformation under heating becomes remarkable due to the above-mentioned reason, the heat resistance and compression resistance are lowered, and there is a problem in using it for the cushion body.
Further, Japanese Patent Laid-Open No. 63-158094 proposes a method in which a silicone oil is added to a hard cotton base material to lower the coefficient of friction of fibers to improve durability and improve the texture.
However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a cushion body. On the other hand, as a method of improving the bendability, a method of forming a folding structure is disclosed in JP-A-55-36373 and JP-A-2-142513.
As disclosed in Japanese Patent Laid-Open No. 5-3894 and Japanese Patent Laid-Open No. 5-3894, the bending property is improved, but the durability and the problem at the time of washing are not improved, and there are many problems when used as a cushion body. is there. In addition, a cavity is formed in the bent portion to improve the bendability, for example, Japanese Patent Laid-Open No. 5-28.
Although there is a publication such as Japanese Patent No. 5031, the problem of foam such as urethane or the problem of hard cotton cannot be solved at all.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。それらを用いたクッション体として、実開昭58
−93270号公報に硬い構造と柔らかな構造を積層さ
れたものが実開昭58−95760号公報には、硬い構
造の網状体内部に空調部を有するもの、実開昭58−1
05714号公報には硬い構造と推測される網状体を用
いたもの記載されているが、耐熱耐久性や寝心地及び軽
量化や洗濯性などの取扱性には何ら配慮されていない。
特開昭58−109670号公報には、片面に凹凸を有
する網状体が提案されているが、細い繊維から構成した
クッションとは異なり表面が凸凹でタッチが悪く、耐熱
耐久性や寝心地及び軽量化や洗濯性などの取扱性には何
ら配慮されていない。特開平6−327723号公報に
は、洗浄パイプや通気管等を装着可能な孔部を有する網
状体が開示されているが、素材がオレフィンのため耐熱
耐久性が著しく劣り、軽量化や洗濯性などの取扱性にも
何ら配慮されておらずワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法も開示されているがクッション材に
は適さない網状構造体である。特公平3−55583号
公報には、ごく表面のみ冷却前に回転体等の細化装置で
細くする方法が記載されている。この方法では表面をフ
ラット化できず、厚みのある細い線条層を作ることでき
ない。したがって座り心地の良好なクッション材にはな
らない。特開平1−207462号公報では、塩化ビニ
−ル製のフロアマットの開示があるが、室温での圧縮回
復性が悪く、耐熱性は著しく悪いので、クッション材と
しては好ましくないものである。なお、上述構造体はベ
ットマットに関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. As a cushion body using them, Shokai 58
No. 93270 discloses a laminated structure of a hard structure and a soft structure. No. 58-95760 discloses a structure having an air conditioning unit inside a net having a hard structure.
Although Japanese Patent Laid-Open No. 05714 describes that a net-like body that is assumed to have a hard structure is used, no consideration is given to heat resistance and durability, comfortableness to sleep, handleability such as weight reduction and washability.
Japanese Unexamined Patent Publication (Kokai) No. 58-109670 proposes a mesh body having irregularities on one side, but unlike a cushion made of thin fibers, the surface is uneven and the touch is bad, and heat resistance durability, sleeping comfort and weight reduction are achieved. No consideration was given to handling such as washing and washing. Japanese Unexamined Patent Publication No. 6-327723 discloses a reticulated body having a hole portion into which a cleaning pipe, a ventilation pipe, etc. can be mounted. However, since the material is olefin, the heat resistance and durability are remarkably inferior, and the weight reduction and the washability are achieved. It is not possible to use it as a wadding layer or cushioning material because it is not considered in handling. In addition, Japanese Patent Publication No. 3-1766
Japanese Patent Laid-Open No. 6-61 also discloses a method in which ejection filaments having different fineness are fused to each other to form a mole, but a net-like structure which is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 describes a method of thinning only a very surface with a thinning device such as a rotating body before cooling. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. Japanese Unexamined Patent Publication No. 1-207462 discloses a vinyl chloride floor mat, but it is not preferable as a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. Note that no consideration is given to the bed mat in the above structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
蒸れ難く、保温性、形態保持性等の寝心地を良くし、耐
熱耐久性、折り曲げ性も良好で使い易く、MRSA等の
雑菌を除去するための洗濯が可能な構造とし、更には、
分別してリサイクルも可能にしたベット、敷布団、座蒲
団、家具用クッションに最適なマット類を提供すること
を目的とする。
To solve the above problems,
It is hard to get stuffy, has good heat retention, shape retention, etc., has good heat resistance and durability, and is easy to use.
The purpose is to provide the most suitable mats for beds, mattresses, seats, and cushions for furniture that can be sorted and recycled.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち、本発明はクッション層の少なくとも上面
にワディング層が積層され、且つ、全体面が側地で被わ
れたマット類であり、クッション層は、熱可塑性弾性樹
脂からなる線径が5mm以下の連続した線条を曲がりく
ねらせランダムループを形成し、それぞれのループの接
触部の大部分が融着されてなる三次元立体構造網状体で
形成され、該三次元立体構造網状体は上、下両面が実質
的にフラット化されており、見掛け密度が0.005〜
0.10g/cm3 、厚みが5mm以上であり、ワディン
グ層は、天然繊維を主たるマトリクスとし、該マトリッ
クス中には熱可塑性弾性樹脂を熱接着成分とした熱接着
性繊維が分散混入され、繊維の交差点で部分的に固着点
を形成しており、該ワディング層の見掛け密度が0.1
g/cm3 以下であることを特徴とするマット類である。
更には、クッション層を構成する熱可塑性弾性樹脂が、
室温での300%伸長後の回復率(室温伸長回復率)が
20%以上、70℃での10%伸長を24時間保持した
後の回復率(70℃伸長回復率)が30%以上であるマ
ット類であり、クッション層を構成する網状体の線径が
0.01mm以上、見掛けの密度が0.01g/cm3 から
0.08g/cm3 、厚みが10mm以上であるマット類で
あり、クッション層を構成する網状体の線径が0.1mm
以上2mm以下、見掛けの密度が0.02g/cm3 から
0.06g/cm3 、厚みが20mm以上500mm以下であ
るマット類であり、ワディング層の空隙率が90%以上
で厚みが2mm以上10mm以下であるマット類であ
り、クッション層とワディング層が布帛を介して積層一
体化したマット類であり、熱可塑性弾性樹脂からなる成
分を示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピ−クを持つ網状体を用いたマット
類であり、クッション層を構成する網状体の該線条の断
面形状が中空断面又は及び異形断面であるマット類であ
り、クッション体の通気度が50cc/cm 2 秒以上である
マット類であり、クッション体を構成する熱可塑性弾性
樹脂がポリエステルであるマット類であり、天然繊維が
絹からなるマット類であり、天然繊維が羊毛からなるマ
ット類であり、天然繊維が麻からなるマット類であり、
複数のオリフィスを持つ多列ノズルより熱可塑性弾性樹
脂をその融点より20〜80℃高い溶融温度で、該ノズ
ルより下方に向けて吐出させ、溶融状態で連続線条のル
ープを形成し、それぞれのループを互いに接触させて融
着させ3次元構造を形成しつつ、引取り装置で挟み込み
冷却槽で冷却せしめた後、得られた3次元構造体の上、
下両面又は片面に天然繊維をマトリックスとし、熱可塑
性弾性樹脂を熱接着成分とした繊維で接合された硬綿を
積層し、側地を被せるマット類の製法であり、製品化に
至る任意の工程で網状体を構成する熱可塑性弾性樹脂の
融点より少なくとも10℃以下の温度でアニ−リングよ
る疑似結晶化処理を行うマット類の製法である。
[Means for Solving the Problems] To solve the above problems
Means of the invention, i.e. at least the upper surface of the cushion layer
A wadding layer is laminated on the
Mats, and the cushion layer is made of thermoplastic elastic resin.
Bends a continuous filament made of fat with a diameter of 5 mm or less
A random loop is formed, and each loop is connected.
It is a three-dimensional three-dimensional net structure in which most of the touch is fused.
The three-dimensional three-dimensional network is formed on both upper and lower surfaces.
Is flattened and the apparent density is 0.005
0.10 g / cm3, Thickness of 5 mm or more, waddin
The matrix layer is made of natural fibers as a main matrix and
In the box, the thermoplastic adhesive is used as the thermal adhesive component.
Fibers are dispersed and mixed in, and partially fixed at intersections of fibers
And the apparent density of the wadding layer is 0.1.
g / cm3The mats are characterized by the following.
Furthermore, the thermoplastic elastic resin forming the cushion layer is
The recovery rate after 300% elongation at room temperature (room temperature elongation recovery rate) is
20% or more, 10% elongation at 70 ° C was maintained for 24 hours
The recovery rate afterwards (extension recovery rate at 70 ° C) is 30% or more.
The wire diameter of the net-like body that constitutes the cushion layer is
0.01mm or more, apparent density is 0.01g / cm3From
0.08g / cm3, Mats with a thickness of 10 mm or more
Yes, the wire diameter of the net-like body that constitutes the cushion layer is 0.1 mm
2mm or less, apparent density 0.02g / cm3From
0.06g / cm3, The thickness is 20 mm or more and 500 mm or less
Mats with a porosity of 90% or more in the wadding layer
Mats having a thickness of 2 mm or more and 10 mm or less
The cushion layer and the wadding layer are laminated through the fabric.
Mats that have been embodied and are made of thermoplastic elastic resin.
The melting curve measured by a differential scanning calorimeter
A mat using a net having an endothermic peak at a temperature below the point
And the disconnection of the filaments of the net-like body that constitutes the cushion layer.
Mats whose surface shape is a hollow cross section or an irregular cross section
The cushion body has an air permeability of 50cc / cm 2Is more than a second
Mats and thermoplastic elasticity that make up the cushion
Mats whose resin is polyester and natural fiber
Mats made of silk with natural fibers made of wool.
Mats made of hemp natural fiber,
Thermoplastic elastic tree from multi-row nozzle with multiple orifices
The fat is melted at a melting temperature 20 to 80 ° C. higher than its melting point.
It is discharged downward from the ridge and the continuous line
Loops, and loops are brought into contact with each other to melt
It is sandwiched with a take-up device while wearing it and forming a three-dimensional structure
After cooling in a cooling tank, on the three-dimensional structure obtained,
Thermoplastic with natural fiber matrix on both bottom or one side
Of hard cotton joined with fibers made of heat-elastic adhesive resin
It is a manufacturing method of mats that are laminated and covered with side material, and commercialized
Of the thermoplastic elastic resin that constitutes the reticulate body in any process
Annealing at a temperature of at least 10 ° C below the melting point
This is a method for producing mats that perform pseudo-crystallization treatment.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体からなるグリコ−ル等のポリアルキレンジオ−ルの
うち少なくとも1種から構成される三元ブロック共重合
体である。ポリエステルエステルブロック共重合体とし
ては、上記ジカルボン酸とジオ−ル及び平均分子量が約
300〜5000のポリラクトン等のポリエステルジオ
−ルのうち少なくとも各1種から構成される三元ブロッ
ク共重合体である。熱接着性、耐加水分解性、伸縮性、
耐熱性等を考慮すると、ジカルボン酸としてはテレフタ
ル酸、または、及びナフタレン2・6ジカルボン酸、ジ
オ−ル成分としては1・4ブタンジオ−ル、ポリアルキ
レンジオ−ルとしてはポリテトラメチレングリコ−ルの
3元ブロック共重合体または、ポリエステルジオ−ルと
してポリラクトンの3元ブロック共重合体が特に好まし
い。特殊な例では、ポリシロキサン系のソフトセグメン
トを導入したものも使うこたができる。また、上記エラ
ストマ−に非エラストマ−成分をブレンドされたもの、
共重合したもの、ポリオレフィン系成分をソフトセグメ
ントにしたもの等も本発明の熱可塑性弾性樹脂に包含さ
れる。ポリアミド系エラストマ−としては、ハ−ドセグ
メントにナイロン6、ナイロン66、ナイロン610、
ナイロン612、ナイロン11、ナイロン12等及びそ
れらの共重合ナイロンを骨格とし、ソフトセグメントに
は、平均分子量が約300〜5000のポリエチレング
リコ−ル、ポリプロピレングリコ−ル、ポリテトラメチ
レングリコ−ル、エチレンオキシド−プロピレンオキシ
ド共重合体からなるグリコ−ル等のポリアルキレンジオ
−ルのうち少なくとも1種から構成されるブロック共重
合体を単独または2種類以上混合して用いてもよい。更
には、非エラストマ−成分をブレンドされたもの、共重
合したもの等も本発明に使用できる。ポリウレタン系エ
ラストマ−としては、通常の溶媒(ジメチルホルムアミ
ド、ジメチルアセトアミド等)の存在または不存在下
に、(A)数平均分子量1000〜6000の末端に水
酸基を有するポリエ−テル及び又はポリエステルと
(B)有機ジイソシアネ−トを主成分とするポリイソシ
アネ−トを反応させた両末端がイソシアネ−ト基である
プレポリマ−に、(C)ジアミンを主成分とするポリア
ミンにより鎖延長したポリウレタンエラストマ−を代表
例として例示できる。(A)のポリエステル、ポリエ−
テル類としては、平均分子量が約1000〜6000、
好ましくは1300〜5000のポリブチレンアジペ−
ト共重合ポリエステルやポリエチレングリコ−ル、ポリ
プロピレングリコ−ル、ポリテトラメチレングリコ−
ル、エチレンオキシド−プロピレンオキシド共重合体か
らなるグリコ−ル等のポリアルキレンジオ−ルが好まし
く、(B)のポリイソシアネ−トとしては、従来公知の
ポリイソシアネ−トを用いることができるが、ジフェニ
ルメタン4・4’ジイソシアネ−トを主体としたイソシ
アネ−トを用い、必要に応じ従来公知のトリイソシアネ
−ト等を微量添加使用してもよい。(C)のポリアミン
としては、エチレンジアミン、1・2プロピレンジアミ
ン等公知のジアミンを主体とし、必要に応じて微量のト
リアミン、テトラアミンを併用してもよい。これらのポ
リウレタン系エラストマ−は単独又は2種類以上混合し
て用いてもよい。なお、本発明の熱可塑性弾性樹脂の融
点は耐熱耐久性が保持できる140℃以上が好ましく、
160℃以上のものを用いると耐熱耐久性が向上するの
でより好ましい。なお、本発明のベットマットを構成す
る網状体は好ましい実施形態として難燃性を付与するた
め燐系化合物を含有させるので、熱安定性が難燃剤を含
有しないものよりやや劣るので、必要に応じ、抗酸化剤
等を添加して耐熱性や耐久性を向上させるのが特に好ま
しい。抗酸化剤は、好ましくはヒンダ−ド系抗酸化剤と
しては、ヒンダ−ドフェノ−ル系とヒンダ−ドアミン系
があり、窒素を含有しないヒンダ−ドフェノ−ル系抗酸
化剤を1%〜5%添加して熱分解を抑制すると燃焼時の
致死量が少ない有毒ガスの発生を抑えられるので特に好
ましい。本発明の目的である好ましい耐久性とクッショ
ン性を兼備できるマット類になるクッション層を構成す
る熱可塑性弾性樹脂の後述する方法で測定した伸長回復
性は、室温での300%伸長後の回復率(室温伸長回復
率)は20%以上、70℃での10%伸長を24時間保
持した後の回復率(70℃伸長回復率)は30%以上で
あり、より好ましくは、室温伸長回復率が30%以上、
70℃伸長回復率が40%以上であり、最も好ましく
は、室温伸長回復率が40%以上、70℃伸長回復率が
50%以上とする。このような伸長回復性を付与する成
分を構成する熱可塑性弾性樹脂のソフトセグメント含有
量は好ましくは15重量%以上、より好ましくは30重
量%以上であり、耐熱耐へたり性からは80重量%以下
が好ましく、より好ましくは70重量%以下である。即
ち、本発明の弾性網状体の振動や応力の吸収機能をもた
せる成分のソフトセグメント含有量は好ましくは15重
量%以上80重量%以下であり、より好ましくは30重
量%以上70重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
It is a ternary block copolymer composed of at least one of polyalkylenediol such as glycol, polypropylene glycol, polytetramethylene glycol, glycol made of ethylene oxide-propylene oxide copolymer and the like. . The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. . Thermal adhesion, hydrolysis resistance, stretchability,
Considering heat resistance and the like, terephthalic acid as dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol as diole component, and polytetramethylene glycol as polyalkylenediol. The terpolymer block copolymer or the terpolymer block copolymer of polylactone as the polyester diol is particularly preferable. In a special case, it is possible to use the one in which a polysiloxane-based soft segment is introduced. In addition, the above elastomer is blended with a non-elastomer component,
Those obtained by copolymerization and those obtained by softening the polyolefin component are also included in the thermoplastic elastic resin of the present invention. As a polyamide elastomer, the hard segment is nylon 6, nylon 66, nylon 610,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 612, nylon 11, nylon 12, etc. and their copolymerized nylon. -A block copolymer composed of at least one kind of polyalkylenediol such as glycol composed of a propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention. Examples of the polyurethane elastomer include (A) a polyester and / or a polyester having a hydroxyl group at the terminal and having a number average molecular weight of 1,000 to 6000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.). ) A typical example is a polyurethane elastomer obtained by reacting a polyisocyanate containing an organic diisocyanate as a main component with a prepolymer having isocyanate groups at both ends and (C) extending the chain with a polyamine containing a diamine as a main component. Can be illustrated as (A) Polyester, Polyester
The tellers have an average molecular weight of about 1000 to 6000,
Preferably from 1300 to 5000 polybutylene adipates
Copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol
Polyalkylenediol such as glycol and ethylene oxide-propylene oxide copolymer glycol is preferable, and as the polyisocyanate of (B), a conventionally known polyisocyanate can be used. An isocyanate mainly composed of 4'diisocyanate may be used, and if necessary, a trace amount of conventionally known triisocyanate may be added and used. As the polyamine (C), known diamines such as ethylenediamine and 1.2-propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained,
It is more preferable to use a material having a temperature of 160 ° C. or higher because the heat resistance and durability are improved. In addition, since the reticulate body constituting the bed mat of the present invention contains a phosphorus compound for imparting flame retardancy as a preferred embodiment, the thermal stability is slightly inferior to that not containing a flame retardant. It is particularly preferable to add an antioxidant or the like to improve heat resistance and durability. The antioxidant is preferably a hindered phenol-based antioxidant and a hindered amine-based antioxidant, and a nitrogen-free hindered phenol-based antioxidant is 1% to 5%. It is particularly preferable to suppress the thermal decomposition by adding it, because the generation of toxic gas with a small lethal amount at the time of combustion can be suppressed. The elongation recovery measured by the method described later of the thermoplastic elastic resin forming the cushion layer, which is a mat that can have both favorable durability and cushioning property, which is the object of the present invention, is the recovery rate after 300% elongation at room temperature. (Room temperature elongation recovery rate) is 20% or more, and the recovery rate after holding 10% elongation at 70 ° C. for 24 hours (70 ° C. elongation recovery rate) is 30% or more, more preferably room temperature elongation recovery rate. 30% or more,
The 70 ° C extension recovery rate is 40% or more, and most preferably, the room temperature extension recovery rate is 40% or more, and the 70 ° C extension recovery rate is 50% or more. The soft segment content of the thermoplastic elastic resin constituting the component imparting such elongation recovery is preferably 15% by weight or more, more preferably 30% by weight or more, and 80% by weight from the viewpoint of heat and fatigue resistance. The following is preferable, and 70% by weight or less is more preferable. That is, the soft segment content of the component having the function of absorbing vibrations and stress of the elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. .

【0010】本発明マット類の好ましい実施形態として
難燃性を付与する必要から、熱可塑性弾性樹脂中に燐含
有量(Bppm)がソフトセグメント含有量(A重量
%)に対し、60A+200≦B≦100000の関係
を満足するのが良い。満足しない場合は難燃性が劣る場
合がある。100000ppmを越えると可塑化効果に
よる塑性変形が大きくなり熱可塑性弾性樹脂の耐熱性が
劣るので好ましくない。好ましい燐含有量(Bppm)
はソフトセグメント含有量(A重量%)に対して、30
A+1800≦B≦100000であり、より好ましい
燐含有量(Bppm)はソフトセグメント含有量(A重
量%)に対し、16A+2600≦B≦50000であ
る。難燃性は多量のハロゲン化物と無機物を添加して高
度の難燃性を付与する方法があるが、燃焼時に致死量の
少ない有毒なハロゲンガスを多量に発生し、火災時の中
毒の問題があり、焼却時には、焼却炉の損傷が大きくな
るので、本発明では、好ましいハロゲン化物の含有量は
10重量%以下、より好ましいハロゲン化物の含有量は
5重量%以下、最も好ましくはハロゲン化物を含有しな
いものである。本発明の燐系難燃剤としては、例えば、
ポリエステル系熱可塑性弾性樹脂の場合、樹脂重合時
に、ハ−ドセグメント部分に難燃剤として、例えば特開
昭51−82392号公報等に記載された10〔2・3
・ジ(2・ヒドロキシエトキシ)−カルボニルプロピ
ル〕9・10・ジヒドロ・9・オキサ・10ホスファフ
ェナレンス・10オキシロ等のカルボン酸をハ−ドセグ
メントの酸成分の一部として共重合したポリエステル系
熱可塑性弾性樹脂とする方法や、熱可塑性弾性樹脂に後
工程で、例えば、トリス(2・4−ジ−t−ブチルフェ
ニル)フスファイト等の燐系化合物を添加して難燃性を
付与することができる。その他、難燃性を付与できる難
燃剤としては、各種燐酸エステル、亜燐酸エステル、ホ
スホン酸エステル(必要に応じハロゲン元素を含有する
上記燐酸エステル類)、もしくはこれら燐化合物から誘
導される重合物が例示できる。本発明は、熱可塑性弾性
樹脂中に各種改質剤、添加剤、着色剤等を必要に応じて
添加できる。本発明ベットマットを構成するクッション
層の網状体やワディング層の接着成分に難燃性を付与す
るために燐を含有させており、この理由は、上記してい
る如く、安全性の観点から、火災時に発生するシアンガ
ス、ハロゲンガス等の致死量の少ない有毒ガスをできる
だけ少なくすることにある。このため、本発明マット類
を構成する網状体の燃焼ガスの毒性指数は、好ましくは
6以下、より好ましくは5.5以下である。ワディング
層の燃焼ガスの毒性指数は好ましくは12以下、より好
ましくは10以下、最も好ましくは7以下である。毒性
指数を低減化できる天然繊維としてはセルロ−ズ系が最
も好ましく、蛋白質系繊維の絹、羊毛、羽毛等を用いる
場合は、熱接着繊維やマトリックスに混合される繊維に
毒性指数の低いポリエステル系繊維の混率を出来るだけ
高くするのが望ましい。また、側地にもポリエステル繊
維の混率が高いものを使用するのが好ましい。クッショ
ン層の網状体を構成する熱可塑性弾性樹脂は、同一種類
に統一するのが好ましい。例えばポリエステル系熱可塑
性弾性樹脂とすることで、クッション層は個々に分別せ
ずに再生リサイクルができる。
Since it is necessary to impart flame retardancy as a preferred embodiment of the mats of the present invention, the phosphorus content (Bppm) in the thermoplastic elastic resin is 60A + 200≤B≤ with respect to the soft segment content (A% by weight). It is good to satisfy the relationship of 100,000. If not satisfied, flame retardancy may be inferior. If it exceeds 100,000 ppm, the plastic deformation due to the plasticizing effect becomes large and the heat resistance of the thermoplastic elastic resin becomes poor, which is not preferable. Preferable phosphorus content (Bppm)
Is 30 with respect to the soft segment content (A% by weight)
A + 1800 ≦ B ≦ 100,000, and more preferable phosphorus content (Bppm) is 16A + 2600 ≦ B ≦ 50000 with respect to the soft segment content (A weight%). For flame retardancy, there is a method to add a high level of flame retardancy by adding a large amount of halides and inorganic substances, but when burning, a large amount of toxic halogen gas with a small lethal amount is generated, and there is a problem of poisoning during fire. Therefore, in the incineration, the damage of the incinerator becomes large, so that in the present invention, the preferable halide content is 10% by weight or less, the more preferable halide content is 5% by weight or less, and the most preferable halide content is It does not. Examples of the phosphorus-based flame retardant of the present invention include:
In the case of a polyester-based thermoplastic elastic resin, as a flame retardant in the hard segment portion at the time of resin polymerization, for example, as described in JP-A-51-82392, 10 [2.3]
・ Di (2-hydroxyethoxy) -carbonylpropyl] 9,10 ・ dihydro ・ 9 ・ oxa ・ 10 phosphaphenalene ・ 10 Polyester obtained by copolymerizing a carboxylic acid such as oxylo as a part of the acid component of the hard segment A flame-retardant property is imparted by adding a phosphorus-based compound such as tris (2.4-di-t-butylphenyl) fusphite to the thermoplastic elastic resin in a later step or a method of forming the thermoplastic elastic resin. be able to. Other flame retardants capable of imparting flame retardancy include various phosphoric acid esters, phosphorous acid esters, phosphonic acid esters (the above phosphoric acid esters containing a halogen element as necessary), or polymers derived from these phosphorus compounds. It can be illustrated. In the present invention, various modifiers, additives, colorants and the like can be added to the thermoplastic elastic resin as needed. Phosphorus is added to the flame-retardant adhesive component of the cushion layer netting or wadding layer constituting the bed mat of the present invention in order to provide flame retardancy. The reason is, as described above, from the viewpoint of safety. The goal is to minimize the use of toxic gases, such as cyanogen gas and halogen gas, which are produced in the event of fire and have a low lethal dose. Therefore, the toxicity index of the combustion gas of the reticulate body constituting the mats of the present invention is preferably 6 or less, more preferably 5.5 or less. The combustion gas toxicity index of the wadding layer is preferably 12 or less, more preferably 10 or less, and most preferably 7 or less. Cellulose is most preferable as a natural fiber that can reduce the toxicity index, and when using protein fiber silk, wool, feathers, etc., a polyester fiber with a low toxicity index is used for the heat-bonding fiber or the fiber mixed in the matrix. It is desirable to make the fiber mixing ratio as high as possible. Further, it is preferable to use a material having a high polyester fiber mixing ratio also for the side surface. It is preferable that the thermoplastic elastic resins forming the mesh body of the cushion layer are of the same type. For example, when the polyester-based thermoplastic elastic resin is used, the cushion layer can be recycled and recycled without separately separating it.

【0011】本発明のマット類を構成する熱可塑性弾性
樹脂からなる成分は、示差走査型熱量計にて測定した融
解曲線において、融点以下に吸熱ピ−クを有するのが好
ましい。融点以下に吸熱ピ−クを有するものは、耐熱耐
へたり性が吸熱ピ−クを有しないものより著しく向上す
る。例えば、本発明の好ましいポリエステル系熱可塑性
樹脂として、ハ−ドセグメントの酸成分に剛直性のある
テレフタル酸やナフタレン2・6ジカルボン酸などを9
0モル%以上含有するもの、より好ましくはテレフタル
酸やナフタレン2・6ジカルボン酸の含有量は95モル
%以上、特に好ましくは100モル%とグリコ−ル成分
をエステル交換後、必要な重合度まで重合し、次いで、
ポリアルキレンジオ−ルとして、好ましくは平均分子量
が500以上5000以下、特に好ましくは1000以
上3000以下のポリテトラメチレングリコ−ルを15
重量%以上70重量%以下、より好ましくは30重量%
以上60重量%以下共重合量させた場合、ハ−ドセグメ
ントの酸成分に剛直性のあるテレフタル酸やナフタレン
2・6ジカルボン酸の含有量が多いとハ−ドセグメント
の結晶性が向上し、塑性変形しにくく、かつ、耐熱抗へ
たり性が向上するが、溶融熱接着後更に融点より少なく
とも10℃以上低い温度でアニ−リング処理するとより
耐熱抗へたり性が向上する。圧縮歪みを付与してからア
ニ−リングすると更に耐熱抗へたり性が向上する。この
ような処理をした網状体を示差走査型熱量計で測定した
融解曲線に室温以上融点以下の温度で吸熱ピークをより
明確に発現する。なおアニ−リングしない場合は融解曲
線に室温以上融点以下に吸熱ピ−クを発現しない。この
ことから類推するに、アニ−リングにより、ハ−ドセグ
メントが再配列され、疑似結晶化様の架橋点が形成さ
れ、耐熱抗へたり性が向上しているのではないかとも考
えられる。(この処理を疑似結晶化処理と定義する)こ
の疑似結晶化処理効果は、ポリアミド系弾性樹脂やポリ
ウレタン系弾性樹脂にも有効である。
The component comprising the thermoplastic elastic resin constituting the mats of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point have significantly improved heat resistance and sag resistance than those having no endothermic peak. For example, as a preferable polyester-based thermoplastic resin of the present invention, terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment is used.
The content of 0 mol% or more, more preferably the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid is 95 mol% or more, and particularly preferably 100 mol% to the required degree of polymerization after transesterification of the glycol component. Polymerize, then
As the polyalkylene diol, 15 polytetramethylene glycol having an average molecular weight of 500 or more and 5000 or less, particularly preferably 1000 or more and 3000 or less is preferably used.
% To 70% by weight, more preferably 30% by weight
When the amount of copolymerization is 60% by weight or more, the crystallinity of the hard segment is improved if the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment is large. Although it is less likely to undergo plastic deformation and the heat resistance and sag resistance are improved, the heat resistance and sag resistance is further improved by performing an annealing treatment at a temperature lower than the melting point by at least 10 ° C. or more after melt heat bonding. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved. The reticulated body treated in this way has a melting curve measured by a differential scanning calorimeter, and more clearly shows an endothermic peak at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0012】本発明に於ける天然繊維とは、綿、麻、椰
子殻繊維、ジュ−ト等セルロ−ス系繊維や、羊毛、絹、
羽毛等の蛋白質系繊維などの天然に産する有機繊維を言
う。本発明で言う、天然繊維を主たるマトリックスとす
るとは、マトリックス繊維の少なくとも50重量%以上
が天然繊維からなる系を言う。天然繊維の吸湿性や吸水
性を充分発揮させるには本発明では、マトリックス繊維
中に占める天然繊維の混率は50%以上、好ましくは6
5%以上、より好ましくは100%である。しかして、
本発明では、洗濯を可能とすることに配慮するため、洗
濯後の水切り性と乾燥速度を配慮して、平衡水分率の少
ない合成繊維を混合して乾燥速度を高める必要から、平
衡水分率の少ない合成繊維の混率は、好ましくは少なく
とも15重量%以上、より好ましくは30重量%以上5
0重量%未満である。他方、火災時の安全性に燃焼ガス
の毒性があり、燃焼ガスの毒性を低減させるには、セル
ロ−ズ系繊維が好ましく、蛋白質系繊維を用いる場合
は、前述の如く、毒性指数の低い合成樹脂の繊維を混合
して毒性指数を低減させるのが望ましい。本発明では、
ワディング層の毒性指数は、少なくとも15以下、好ま
しくは10以下、より好ましくは7以下である。しかし
て、蛋白質系繊維は難燃性も有するので、本発明では、
ワディング層中の天然繊維は少なくとも50%以上含有
させる。
The natural fibers in the present invention include cotton, hemp, palm shell fibers, cellulosic fibers such as jute, wool, silk,
It refers to naturally occurring organic fibers such as protein fibers such as feathers. In the present invention, the term "matrix composed mainly of natural fibers" means a system in which at least 50% by weight or more of the matrix fibers are composed of natural fibers. In the present invention, the mixing ratio of the natural fiber in the matrix fiber is 50% or more, preferably 6 in order to sufficiently exhibit the hygroscopicity and water absorption of the natural fiber.
It is 5% or more, and more preferably 100%. Then
In the present invention, in consideration of enabling washing, it is necessary to increase the drying rate by mixing synthetic fibers having a low equilibrium moisture content to increase the drying rate in consideration of the drainage property after washing and the drying rate. The mixing ratio of the low synthetic fibers is preferably at least 15% by weight or more, more preferably 30% by weight or more.
It is less than 0% by weight. On the other hand, there is toxicity of combustion gas in safety at the time of fire, and in order to reduce toxicity of combustion gas, cellulosic fiber is preferable, and when protein fiber is used, as described above, synthesis with low toxicity index is performed. It is desirable to mix the resin fibers to reduce the toxicity index. In the present invention,
The toxicity index of the wadding layer is at least 15 or less, preferably 10 or less, more preferably 7 or less. Since the protein fiber also has flame retardancy, the present invention
At least 50% or more of the natural fiber is contained in the wadding layer.

【0013】本発明における合成樹脂は熱可塑性樹脂を
言う。熱可塑性樹脂とは、ポリエステル、ポリアミド、
ポリオレフィン等が例示できる。なお、本発明ではガラ
ス転移点温度が少なくとも40℃以上のものを使用する
のが好ましい。例えば、ポリエステルでは、ポリエチレ
ンテレフタレ−ト(PET)、ポリエチレンナフタレ−
ト(PEN)、ポリシクロヘキシレンジメチレンテレフ
タレ−ト(PCHDT)、ポリシクロヘキシレンジメチ
レンナフタレ−ト(PCHDN)、ポリブチレンテレフ
タレ−ト(PBT)、ポリブチレンナフタレ−ト(PB
N)、ポリアリレ−ト等、及びそれらの共重合ポリエス
テル等が例示できる。ポリアミドでは、ポリカプロラク
タム(NY6)、ポリヘキサメチレンアジパミド(NY
66)、ポリヘキサメチレンセバカミド(NY6−1
0)等が例示できる。ポリオレフィンとしては、ポリプ
ロピレン(PP)、ポリブテン・1(PB・1)等が例
示できる。本発明に用いる熱可塑性樹脂としては、クッ
ション層及び側地にポリエステルを用いる場合は、廃棄
する場合に分離せずにリサイクルが可能で、耐熱性も良
好なPET、PEN、PBN、PCHDT等のポリエス
テルが特に好ましい。更には、PET、PEN、PB
N、PCHDT等と重縮合して燐含有エステル形成性化
合物を共重合または燐含有難燃剤を含有してなる難燃性
ポリエステル(以下難燃性ポリエステルと略す)が好ま
しく、例えば、特開昭51−82392号公報、特開昭
55−7888号公報、特公昭55−41610号公報
等に例示されたものが挙げられる。なお、塩化ビニ−ル
は自己消火性を有するが燃焼すると有毒ガスを多く発生
すること、及び耐熱耐久性が劣るので本発明に用いるの
は好ましくない。
The synthetic resin in the present invention means a thermoplastic resin. Thermoplastic resins include polyester, polyamide,
Examples include polyolefins. In the present invention, it is preferable to use one having a glass transition temperature of 40 ° C. or higher. For example, for polyester, polyethylene terephthalate (PET), polyethylene naphthalate
(PEN), polycyclohexylene dimethylene terephthalate (PCHDT), polycyclohexylene dimethylene naphthalate (PCHDN), polybutylene terephthalate (PBT), polybutylene naphthalate (PB)
N), polyarylate, etc., and copolyesters thereof can be exemplified. For polyamide, polycaprolactam (NY6), polyhexamethylene adipamide (NY)
66), polyhexamethylene sebacamide (NY6-1)
0) etc. can be illustrated. Examples of the polyolefin include polypropylene (PP) and polybutene-1 (PB-1). As the thermoplastic resin used in the present invention, when polyester is used for the cushion layer and the side material, polyester such as PET, PEN, PBN and PCHDT which can be recycled without separation when discarded and has good heat resistance is used. Is particularly preferable. Furthermore, PET, PEN, PB
A flame-retardant polyester (hereinafter abbreviated as flame-retardant polyester) obtained by polycondensation with N, PCHDT or the like to copolymerize a phosphorus-containing ester-forming compound or containing a phosphorus-containing flame retardant is preferable. -82392, JP-A-55-7888, JP-B-55-41610 and the like are exemplified. Although vinyl chloride has self-extinguishing properties, it produces a large amount of toxic gas when burned, and its heat resistance and durability are poor, so it is not preferable to use it in the present invention.

【0014】本発明マット類の基本のクッション層は、
繊径が5mm以下の熱可塑性弾性樹脂からなる連続した線
条を曲がりくねらせ互いに接触させて該接触部の大部分
が融着一体化された3次元立体構造体を形成し、両面が
実質的にフラット化された網状体のため、ワディング層
を介して外部から与えられた変形、特には局部的に大き
い変形応力が与えられた場合でも、フラット化された網
状体の面で変形応力を受け止め変形応力を分散させ、熱
可塑性弾性樹脂からなる線条が3次元立体構造体を形成
し融着一体化されているので、構造体全体が変形してエ
ネルギ−変換により変形応力を吸収させることによりゴ
ム弾性による低い反発力で変形応力を受け止めるので、
極端な局部的沈み込みを防止し、人体に対し柔らかな把
持力で体型を支えることができる好ましい体型保持機能
を発現する。ベット用マットでは振動吸収機能も要求さ
れる。本発明の網状体からなるクッション層は、ベット
イン時や寝返り時に外部から与えられた振動を熱可塑性
弾性樹脂の振動吸収機能で大部分の振動を吸収減衰し、
好ましい振動吸収機能も発現する。変形応力が解除され
ると熱可塑性弾性樹脂のゴム弾性で容易に元の形態に回
復する機能があるので耐へたり性も良好である。更に、
空隙率が高く、通気孔径が著しく大きいので通気抵抗が
低く通気性が著しく良好であり、寝返り等による変形応
力の変化を受けると熱可塑性弾性樹脂のゴム弾性を有す
る線条が3次元立体構造体を形成し融着一体化されてい
るので、構造体全体が変形により圧縮回復してワディン
グ層を介して透過したクッション層中に溜まった蒸気や
熱を含む空気を圧縮時排出し、回復時新鮮な外気と入替
えるポンプ機能を有するため、ワディング層とクッショ
ン層間の熱及び蒸気の移動が容易となり蒸れ難くい快適
な寝心地を提供できるマット類である。この目的から、
本発明の網状体を形成する振動吸収性と弾性回復性の良
い熱可塑性弾性樹脂からなる線条の線径は5mm以下であ
る。見掛け密度を0.2g/cm2 以下にした場合、5mm
を越えると構成本数が少なくなり、密度斑を生じて部分
的に耐久性の悪い構造ができ、応力集中による疲労が大
きくなり耐久性が低下するので好ましくない。本発明の
熱可塑性弾性樹脂からなる線条の線径が細すぎると抗圧
縮性が低くなり過ぎて変形による応力吸収性が低下する
ので0.01mm以上であり、構成本数の低下による構造
面の緻密性を損なわない3mm以下である。より好ましく
は0.05mm以上、2mm以下である。本発明の網状体を
形成する連続線条のランダムループの平均直径は、好ま
しくは50mm以下、特に2〜25mmとするのが目的を達
成するためには好ましい。本発明の網状体の見掛け密度
は、0.005g/cm3 では反発力が失われ、変形応力
吸収能力や振動吸収能力が不充分となりクッション機能
を発現させにくくなる場合があり、0.25g/cm3
上では反発力が高すぎて座り心地が悪くなる場合がある
が、本発明では軽量化して取扱性を向上させる目的で
0.10g/cm3 以下である。振動吸収能力や変形応力
吸収機能が生かせてクッション体としての機能が発現さ
れやすい0.01g/cm3 以上0.08g/cm3 以下が
好ましく、より好ましくは0.02g/cm3 以上0.0
6g/cm3 以下である。本発明における網状体は線径の
異なる線状を見掛け密度との組合せで最適な構成とする
異繊度積層構造とする方法も好ましい実施形態として選
択できる。本発明の網状体の厚みは5mm以上が必要であ
る。厚みが5mm未満では応力吸収機能と応力分散機能が
低下するので好ましくない。好ましい厚みは力の分散を
する面機能と振動や変形応力吸収機能が発現できる厚み
として10mm以上であり、より好ましくは20mm以上5
00mm以下である。単板で厚みが500mm以上になると
後述する折り曲げ性が低下するので、より厚いクッショ
ン層を所望する場合は、所望に応じて500mm以下、好
ましくは200mm以下の薄い厚みのクッション層を非接
合の状態で積層することで折り曲げ性を損なうことを抑
えることができる。厚みが500mm以下となるように積
層する場合、界面を接合しても良く、非接合でも面がフ
ラットなので応力の伝達が面で伝達されるので変形対応
性に支障はない。網状体の表面が実質的にフラット化さ
れてない場合、ワディング層から伝達される局部的な外
力は、変形応力を面で受けることが出来ず、表面の線条
及び接着点部分までに選択的に伝達され、変形応力を分
散させる機能が低下するので、応力集中が発生する場合
があり、このような外力に対しては応力集中による疲労
が発生して耐へたり性が低下する場合がある。なお、該
線条が熱可塑性弾性樹脂からなる場合は3次元構造部分
で構造全体が変形するので応力集中は緩和されるが、へ
たりが進行するに伴い体型保持機能も低下する。非弾性
樹脂では、そのまま応力が接着点に集中して構造破壊を
生じ回復しなくなる。更には、表面が実質的にフラット
化されてなく凸凹があると寝た時背部や臀部等に異物感
を与えるため寝心地が悪くなり好ましくない。なお、線
状が連続していない場合は、線条の接着点が応力の伝達
点となるため接着点に著しい応力集中が起こり構造破壊
を生じ耐熱耐久性が劣り好ましくない。構造破壊しない
段階でも抗圧縮性が劣り、体型保持性が劣る問題があ
り、この問題を解決するため密度を高くすると、空隙率
の低下と共に通気性も低下して快適性が低下し、重量も
重くなり取扱性が著しく劣る。融着していない場合は、
形態保持が出来ず、構造体が一体で変形しないため、応
力集中による疲労現象が起こり耐久性が劣ると同時に、
形態が変形して体型保持ができなくなるので好ましくな
い。本発明クッション層のより好ましい融着の程度は、
線条が接触している部分の大半が融着した状態であり、
もっとも好ましくは接触部分が全て融着した状態であ
る。公知の非弾性樹脂のみからなる線条で構成した網状
体では、表面層で吸収できない大きい変形応力を受ける
とゴム弾性を持たないので変形しにくく大きい反発力を
示すため、適度の沈み込みが起こらず、強い反発力を示
すので不快な体型支持感を与え好ましくない体型保持機
能を発現する。更に、圧縮変形により塑性変形を生じて
回復しなくなり耐久性も劣る。更に、圧縮回復によるポ
ンプ機能が殆ど有しないので蒸れ低減化機能が劣る。架
橋性発泡ポリウレタンでは、振動吸収機能や耐へたり性
は弾性樹脂のため良好であるが、応力伝達が容易な構造
のため、局部的な変形に容易に追随して極端な局部的沈
み込みを発生し、体型保持機能が劣る。又、発泡ポリウ
レタンは通気性が極めて劣るため蒸れ易く、快適な寝心
地が得られないマット類となるクッション層である。本
発明のマット類は汗や湿気をできるだけ早く皮膚面から
ワディング層を介して移動させ蒸れ感を与えず、適正な
保温性と好ましいフィット感で体型を保持して快適な眠
りを永続的に提供するため、天然繊維を主たるマトリッ
クスとし、熱可塑性弾性樹脂を熱接着成分とした繊維で
接合された見掛け密度が0.1g/cm3 以下の硬綿から
なるワディング層を上記クッション層の片面又は、及び
裏面側に積層したクッション体で構成されて、洗濯時は
個々に分割して取り出し、洗濯後は積層して収納が可能
な側地で包まれたマット類である。ワディング層が天然
繊維をマトリックスとすることで、天然繊維の優れた吸
湿性及び吸水性が、皮膚面で体温まで温度が上昇した汗
や水蒸気は、側地を介して皮膚面からワディング層へ移
動し、次いでクッション層が新鮮な空気と入れ換えるポ
ンプ機能を持つので、ワディング層に移動した熱と水分
はクッション層を介して外部に放出される相乗効果で皮
膚面が乾燥すると、水分蒸発による皮膚面の温度低下も
伴い蒸れ感を低減させる。しかして、天然繊維が吸水又
は吸湿する際には発熱し、熱移動が低下して冷えすぎを
防止できる。又、天然繊維は一旦吸水又は吸湿すると一
定の蒸気圧を保つので、熱と水分の移動速度が抑制され
て、適度の水蒸気圧が皮膚面でも保たれて保温効果を維
持させることができる。ワディング層は熱可塑性弾性樹
脂からなる熱接着成分で接合された見掛け密度が0.1
g/cm3 以下の硬綿から構成されているので、ワディン
グ層自体にも熱可塑性弾性樹脂の伸長回復性によりクッ
ション層と同様のポンプ機能があり、乾き難い天然繊維
が吸水又は吸湿した水分を効率よくクッション層に排出
するのでワディング層の水蒸気圧が極端に高くなること
を防止できる。見掛け密度が0.1g/cm3 を越えると
ワディング層のポンプ機能は極端に低下するので、ポン
プ機能からの見掛け密度は、好ましくは0.06g/cm
3 以下、より好ましくは0.04g/cm3 以下である。
かくして、ワディング層とクッション層の相乗効果で蒸
れにくく、且つ保温性も優れたマット機能を発現でき
る。ワディング層の他の機能として、熱可塑性弾性樹脂
で天然繊維間を接合一体化した3次元立体構造体を形成
しているので、局部的な変形応力を受けても構造体全体
が変形してエネルギ−変換により変形応力を吸収させる
ことによりゴム弾性による低い反発力で変形応力を受け
止められるので、人体に対し柔らかな把持力で体型を支
えられる。前記クッション層との積層構造は相乗効果で
更にゴム弾性による低い反発力で変形応力を受け止めら
れるので、人体と接する局所的な高圧縮応力点が形成さ
れにくくなることで、より鬱血しにくいワディング機能
を発現できる。この機能は側地を介して新鮮な空気を皮
膚面に送ることにより、更なる相乗効果として床擦れ防
止にも有効に作用する。特に顕著なこの様な効果を付与
するには、ワディング層表面からクッション層側面へ排
気される空気の通気度を50cc/cm2 秒以上となる構成
にするのが望ましい。本発明のワディング層を構成する
硬綿の見掛け密度は高過ぎると高圧縮応力支持面積の増
加による鬱血防止機能の低下と通気性やポンプ機能が劣
り蒸れ防止効果も低下するので見掛け密度が0.1g/
cm3 以下が必要である。見掛け密度が低すぎると抗圧縮
性が低下してワディング層の機能が低下するので、好ま
しい見掛け密度は0.01g/cm3 以上0.06g/cm
3 以下、より好ましくは見掛け密度は0.03g/cm3
以上0.05g/cm3 以下である。ワディング層の厚み
は、2mm未満ではワディング層機能が低下する。30mm
以上ではクッション層との相乗効果の有用な前記機能や
適度の沈み込みと柔らかい把持力で体を支える体型保持
機能や振動吸収機能を低下させる。好ましい厚みは3mm
以上15mm以下、より好ましくは5mm以上10mm以下で
ある。本発明のベット類のワディング層に用いるマトリ
ックス繊維中の天然繊維は、前記した如く、洗濯時の乾
燥性、難燃性や燃焼ガス毒性以外に、保温性や蒸れにく
さを好みに応じてその種類や混率を変えることができ
る。例えば、比較的冷え性の人が温か目を所望する場合
は、マトリックス繊維中の羊毛や真綿(絹)、羽毛等の
蛋白繊維の混率が60%以上が好ましく、80%以上1
00%がより好ましい。また、柔らかなタッチで且つ保
温性の良いものを所望する場合、マトリックス繊維中の
真綿(絹)や羽毛の混率が70%以上が好ましく、80
%以上100%がより好ましい。他方、やや涼しい寝心
地を所望する場合は、マトリックス繊維中の麻や綿等の
セルロ−ズ系繊維の混率を高くするのが好ましく、特に
は埃が少なく、繊維径が太い麻の混率を80%以上とす
るのがより好ましい。好みに応じて所望の異なるワディ
ング層をクッション層の両面に積層して夏冬使い分ける
等の使用形態もとれる。又、本発明の基本機能を失わな
い範囲において、クッション層及び、又はワディング層
に他の素材が積層されてもかまわない。なお、ワディン
グ層中の熱可塑性弾性樹脂を熱接着成分とした繊維の混
率は5%以下では天然繊維間を接合一体化した3次元立
体構造体を形成して、局部的な変形応力を受けても構造
体全体が変形してエネルギ−変換により変形応力を吸収
させ、ゴム弾性による低い反発力で変形応力を受け止め
られる機能やポンプ機能が劣る。他方、50%以上の混
率にすると、マトリックス繊維の構成本数が少なくな
り、天然繊維の機能効果が低減するので好ましくない。
本発明のワディング層中の熱可塑性弾性樹脂を熱接着成
分とした繊維の混率は、好ましくは10%以上、より好
ましくは20%以上40%以下である。熱可塑性弾性樹
脂を熱接着成分とした熱接着繊維は、熱接着成分が熱可
塑性弾性樹脂で形成され、熱可塑性弾性樹脂でマトリッ
クス繊維との熱接着点を形成できる繊維であれば特に制
限はない。例えば、シ−ス・コア繊維のシ−ス成分また
はサイドバイサイド繊維の片成分に熱可塑性弾性樹脂を
用い、他の成分に熱可塑性非弾性樹脂を用いたものや、
熱可塑性弾性樹脂のみからなる単成分のもの等があげら
れる。しかして、他の成分に熱可塑性非弾性樹脂を用い
たものは、熱可塑性非弾性樹脂成分が塑性変形により耐
熱耐久性が低下する場合がある。熱可塑性弾性樹脂のみ
からなるものは接着処理時に溶融して繊維形態を消失す
ると構造体の繊維の構成本数が少なくなり適度の反発応
力が発現しなくなる場合がある。このため、本発明で
は、シ−ス・コアの両成分が熱可塑性弾性樹脂からなる
繊維を用いるのが最も好ましい。熱接着成分としては融
点又は流動開始温度が100℃未満では耐熱性が劣り、
200℃以上では天然繊維の耐熱性を越える場合があり
熱接着がしにくいので、100℃以上200℃以下のも
のが好ましい。より好ましくは、セルロース系繊維には
140℃以上180℃以下のものを用いると、130℃
の蒸気殺菌が可能となる。蛋白質系繊維には、110℃
以上150℃以下のものを用いると、100℃未満のエ
チレンオキサイドガス殺菌が可能となる。熱接着繊維の
繊度も特に制限はないが、使用する天然繊維の繊度に近
い繊度のものを用いると混繊が容易となるので好まし
い。例えば、綿や絹を使用する場合は1デニ−ルから4
デニ−ル、羊毛*麻を使用する場合2デニ−ルから6デ
ニ−ルを使用するのがよい。又、マトリックス繊維中の
天然繊維と混繊する繊維も、天然繊維と混繊できる繊維
であれば特には制限されない。マトリックス繊維中の天
然繊維と混繊する繊維は、ワディング層の天然繊維にな
い特性を付加するために、例えば、防ダニ剤、抗菌剤、
消臭剤、難燃剤、芳香剤等を含有する繊維を混繊して機
能を高めたり、撥水性、疎水性等の特性を利用して水切
り乾燥性を改善したり、極細繊維や極太繊維を混繊して
天然繊維の欠点のかバ−や特徴を倍加する等の機能付与
できる繊維を混繊するのが望ましい。該繊維の繊度は所
望に応じて選択されるが、通常のカ−ド開繊で使用でき
る繊度としては、0.5デニ−ルから100デニ−ルで
ある。特別な場合は500デニ−ルまでの繊度が選択で
きる。素材も必要に応じ選択するが、通常はポリエステ
ル繊維でよい。ワディング層とクッション層は接合して
もかまわないが、洗濯後の水切り性がワディング層は少
し劣るので丸洗いした場合や、接合した状態で洗濯した
場合は、クッション層と接合せず、個々に分割してワデ
ィング層の厚みを薄くすることで、水切り性と乾燥速度
を早くできる構造よりやや乾燥時間が長くなる。(もち
ろん、ウエッブから構成されるマット類や太い線径のマ
トリックスを用いた硬綿のみから構成されるマット類等
と対比するとはるかに乾燥時間は短いので水切り性は優
れている。が、)また、接合するとワディング層が面剛
性を高める機能をして、接合しないものより折り曲げ性
もやや低下するため、望ましくは、クッション層とワデ
ィング層は接合しない方が洗濯時の水切り性と折り曲げ
性が向上するので好ましい。かくして、積層されたクッ
ション体は個々に分離して取り出し、再度積層して側地
に挿入できるように縫製された側地に包まれて本発明の
マット類になる。本発明では、上記理由から、クッショ
ン層とワディング層を別々に取り出し、洗濯後に積層挿
入して使用できるように側地に閉鎖できる開閉口を有す
る。このことで、クッション体の洗濯や乾燥等の操作を
容易に行えるように配慮されている。本発明のマット類
は、前記特徴と共に、折り曲げ性や洗濯が可能で洗濯時
の水切り性が良い特徴を有する。即ち、クッション材に
熱可塑性弾性樹脂を用いているので、その伸縮性を生か
した折り曲げが可能で、頭部や上半身を起こす必要があ
る介護用等のベットに使用することができる。厚みが薄
い敷布団として使用する場合は、折り畳んで収納するこ
とも可能である。洗濯性の良い点は、通常の繊維からな
るクッション層の繊維径0.001mm以下のもの較べ、
本発明のクッション体の大部分を構成するクッション層
の線径が0.01mm以上であり、ワディング層の硬綿は
繊維の表面せきは大きいが、クッション体全体での平均
の構成本数が少ないため、線条の表面積が著しく少ない
ため線条表面の付着水分が少なくできるので、水切り性
に優れる。水切り性が良いので乾燥時間を短縮できる。
この為、本発明のベットマットは頻繁に洗濯でき、結果
として、清潔なベットマットを常に使用できる。本発明
のベットマットの洗濯は、丸洗いも可能であるが、上述
の理由から側地とクッション層及びワディング層を個々
分割して洗濯するのが好ましい。クッション層が非弾性
樹脂で構成されるものは折り曲げが困難である。硬い素
材で構成されたものは無理に折り曲げると折り曲げ部が
破壊する場合があり、柔らかい素材で構成されたものは
塑性変形してクッションが折り曲げ部付近が凹み、繰り
返し折り曲げると屈曲疲労で破断するが、弾性樹脂から
なる本発明のクッション層と変形に対する自由度の高い
ワディング層の積層構造のため、折り曲げが可能で、繰
り返し折り曲げに対しても塑性変形しにくく耐久性に優
れる点が本発明と大きく異なる点である。折り曲げ性を
改良するために、折り曲げ構造とするものが提案されて
いるが、本発明のクッション層と異なりクッション層に
非弾性樹脂が使用されているため耐久性が劣るものであ
る。業務用ベットでは、必要に応じて殺菌する場合があ
る。殺菌は100℃未満のエチレンオキサイドガス又は
130℃の蒸気を用いるのが一般的である。本発明のマ
ット類の好ましい実施形態では、圧縮応力を付与しない
で15分未満で殺菌することで変形させずに殺菌するこ
とが可能であるが、公知のオレフィン系や塩化ビニ−ル
系素材を用いた場合は、耐熱性が劣り殺菌時の加熱で塑
性変形し嵩減りを生じる点が本発明と異なる点である。
なお、網状体及び積層クッション形成段階から製品化さ
れる任意の段階で上述の疑似結晶化処理を施すことによ
り、網状体中の熱可塑性弾性樹脂からなる成分を示差走
査型熱量計で測定した融解曲線に室温以上融点以下の温
度に吸熱ピークを持つようにすると熱可塑性弾性樹脂の
伸縮性と耐熱性が著しく向上し、製品の耐熱耐久性も格
段に向上するのでより好ましい。
The basic cushion layer of the mats of the present invention is
A continuous filament made of a thermoplastic elastic resin having a fiber diameter of 5 mm or less is bent and brought into contact with each other to form a three-dimensional solid structure in which most of the contact portions are fused and integrated, and both sides are substantially Due to the flattened reticulated body, even if externally applied deformation through the wadding layer, especially when a large deformation stress is locally applied, the flattened reticulated body surface receives the deformation stress Since the deformation stress is dispersed and the filaments made of thermoplastic elastic resin form a three-dimensional structure and are fused and integrated, the entire structure is deformed and the deformation stress is absorbed by energy conversion. Since it receives the deformation stress with a low repulsive force due to rubber elasticity,
It exhibits a preferable body shape holding function capable of preventing extreme local depression and supporting the body shape with a soft gripping force on the human body. The betting mat is also required to have a vibration absorbing function. The cushion layer made of the mesh body of the present invention absorbs and attenuates most of the vibration applied from the outside by the vibration absorbing function of the thermoplastic elastic resin at the time of bed-in or turning over,
A preferable vibration absorbing function is also developed. When the deformation stress is released, the rubber elasticity of the thermoplastic elastic resin has a function of easily recovering the original shape, and therefore the sag resistance is also good. Furthermore,
The porosity is high, and the ventilation hole diameter is extremely large, so the ventilation resistance is low and the ventilation is extremely good. When the deformation stress changes due to rolling over, etc., the linear line having the rubber elasticity of the thermoplastic elastic resin is a three-dimensional structure. Since the structure is fused and integrated, the entire structure is compressed and recovered by deformation, and the air containing steam and heat accumulated in the cushion layer that has permeated through the wadding layer is discharged during compression and fresh during recovery. The mats have a pump function of exchanging with the outside air, so that heat and steam can be easily transferred between the wadding layer and the cushion layer, and the mats can provide comfortable sleeping that is hard to stuff. From this purpose,
The wire diameter of the thermoplastic elastic resin having good vibration absorption and elastic recovery forming the mesh body of the present invention is 5 mm or less. 5 mm when the apparent density is 0.2 g / cm 2 or less
If it exceeds, the number of constituents decreases, a density unevenness is generated, and a structure having poor durability is partially formed, and fatigue due to stress concentration increases and durability deteriorates, which is not preferable. If the wire diameter of the filament made of the thermoplastic elastic resin of the present invention is too small, the anti-compression property becomes too low and the stress absorbability due to deformation decreases, so it is 0.01 mm or more. It is 3 mm or less so as not to impair compactness. More preferably, it is 0.05 mm or more and 2 mm or less. The average diameter of the continuous loop random loops forming the reticulate body of the present invention is preferably 50 mm or less, and particularly preferably 2 to 25 mm in order to achieve the object. When the apparent density of the reticulate body of the present invention is 0.005 g / cm 3 , the repulsive force is lost, the deforming stress absorbing ability and the vibration absorbing ability are insufficient, and the cushioning function may not be easily expressed. If it is cm 3 or more, the repulsive force may be too high and the sitting comfort may be poor, but in the present invention, it is 0.10 g / cm 3 or less for the purpose of reducing the weight and improving the handleability. It is preferably 0.01 g / cm 3 or more and 0.08 g / cm 3 or less, more preferably 0.02 g / cm 3 or more 0.0, in which the function as a cushion body is easily expressed by utilizing the vibration absorbing ability and the deformation stress absorbing function.
It is 6 g / cm 3 or less. As a preferred embodiment, a method in which the reticulate body in the present invention has a different fineness laminated structure in which linear shapes having different wire diameters are combined with an apparent density to have an optimum configuration can be selected. The thickness of the mesh body of the present invention is required to be 5 mm or more. If the thickness is less than 5 mm, the stress absorbing function and the stress dispersing function are deteriorated, which is not preferable. A preferable thickness is 10 mm or more, more preferably 20 mm or more, as a surface function for dispersing force and a function of absorbing vibration and deformation stress.
It is less than 00 mm. If the thickness of a single plate is 500 mm or more, the bendability described below deteriorates. Therefore, when a thicker cushion layer is desired, a cushion layer having a thin thickness of 500 mm or less, preferably 200 mm or less is not bonded as desired. By stacking with, it is possible to prevent the bending property from being impaired. In the case of stacking so as to have a thickness of 500 mm or less, the interface may be joined, and even if it is not joined, since the surface is flat, the transmission of stress is transmitted by the surface, so there is no problem in deformability. If the surface of the mesh body is not substantially flattened, the local external force transmitted from the wadding layer cannot receive the deformation stress on the surface, and the surface line and the bonding point are selectively exposed. The stress concentration may occur because the function to disperse the deformation stress is reduced, and the stress concentration may occur against such external force, which may cause fatigue due to stress concentration. . When the filaments are made of thermoplastic elastic resin, the entire structure is deformed in the three-dimensional structure portion, so stress concentration is relieved, but the body shape retention function is also deteriorated as the fatigue is advanced. In the case of non-elastic resin, stress concentrates on the bonding point as it is, causing structural destruction and cannot be recovered. Furthermore, if the surface is not substantially flattened and has irregularities, it gives a feeling of foreign matter to the back, buttocks, etc. when the person sleeps, which is unfavorable because it makes the sleeping comfort worse. When the linear shape is not continuous, the adhesive point of the filament becomes a stress transmitting point, so that remarkable stress concentration occurs at the adhesive point and structural destruction occurs, resulting in poor heat resistance and durability, which is not preferable. There is a problem that the compression resistance is inferior even at the stage where the structure is not destroyed, and the body shape retention property is inferior.If the density is increased to solve this problem, the porosity decreases, the air permeability decreases and the comfort decreases, and the weight also decreases. It becomes heavy and the handling is extremely poor. If not fused,
Since the shape cannot be maintained and the structure does not deform integrally, fatigue phenomenon occurs due to stress concentration and durability is poor, and at the same time,
It is not preferable because the shape is deformed and the body shape cannot be maintained. The more preferable degree of fusion bonding of the cushion layer of the present invention is
Most of the parts where the filaments are in contact are in a fused state,
Most preferably, the contact portions are all fused. In a net-like body composed of known filaments made only of non-elastic resin, when it receives a large deformation stress that cannot be absorbed by the surface layer, it does not have rubber elasticity and it does not easily deform and shows a large repulsive force. In addition, since it exhibits a strong repulsive force, it gives an unpleasant body-supporting feeling and exhibits an unfavorable body-shape holding function. Further, due to the compressive deformation, plastic deformation occurs and the recovery is lost, and the durability is poor. Further, since it has almost no pump function by compression recovery, the function of reducing stuffiness is inferior. The cross-linkable polyurethane has excellent vibration absorption function and sag resistance because it is an elastic resin, but it has a structure that facilitates stress transmission, so it can easily follow local deformation to prevent extreme local subsidence. Occurs, and the function of maintaining body shape is poor. Further, the foamed polyurethane is a cushioning layer which becomes a mat or the like which is apt to be stuffy because it has extremely poor air permeability and does not provide comfortable sleeping comfort. The mats of the present invention move sweat and moisture from the skin surface through the wadding layer as quickly as possible and do not give a stuffy feeling, and hold the figure with proper heat retention and a favorable fit, and permanently provide a comfortable sleep. In order to do so, a wadding layer made of hard cotton having an apparent density of 0.1 g / cm 3 or less, which is joined with fibers having a natural fiber as a main matrix and a thermoplastic elastic resin as a heat-adhesive component, is provided on one side of the cushion layer, or And mats that are composed of a cushion body laminated on the back side and are individually divided and taken out at the time of washing, and can be laminated and stored after washing and wrapped with a side material. Since the wadding layer uses natural fibers as a matrix, the excellent hygroscopicity and water absorption of the natural fibers allow the sweat and water vapor, whose temperature has risen to the body temperature on the skin surface, to move from the skin surface to the wading layer through the lateral surface. Then, the cushion layer has a pump function to replace with fresh air, so the heat and moisture transferred to the wadding layer are released to the outside through the cushion layer. It also reduces the stuffy feeling as the temperature decreases. Thus, when the natural fiber absorbs water or absorbs heat, heat is generated, heat transfer is reduced, and excessive cooling can be prevented. Further, since natural fiber maintains a constant vapor pressure once it absorbs or absorbs water, the moving speeds of heat and moisture are suppressed, and an appropriate vapor pressure can be maintained on the skin surface to maintain the heat retaining effect. The wadding layer has an apparent density of 0.1 by being bonded with a thermal adhesive component made of a thermoplastic elastic resin.
Since it is made of hard cotton of g / cm 3 or less, the wadding layer itself also has the same pump function as the cushion layer due to the elongation recovery of the thermoplastic elastic resin, and the natural fibers that are difficult to dry absorb water that has absorbed or absorbed water. Since it is efficiently discharged to the cushion layer, it is possible to prevent the water vapor pressure of the wadding layer from becoming extremely high. When the apparent density exceeds 0.1 g / cm 3 , the pumping function of the wadding layer is extremely deteriorated. Therefore, the apparent density from the pumping function is preferably 0.06 g / cm 3.
It is 3 or less, more preferably 0.04 g / cm 3 or less.
Thus, the synergistic effect of the wadding layer and the cushion layer makes it possible to develop a mat function that is resistant to stuffiness and has excellent heat retention. Another function of the wadding layer is that the thermoplastic elastic resin forms a three-dimensional three-dimensional structure in which natural fibers are joined and integrated, so that even if a local deformation stress is applied, the entire structure deforms and the energy is reduced. Since the deformation stress is absorbed by the conversion, the deformation stress can be received with a low repulsive force due to rubber elasticity, so that the human body can be supported by a soft gripping force against the human body. Since the laminated structure with the cushion layer has a synergistic effect, it can receive a deformation stress with a low repulsive force due to rubber elasticity, so that a local high compressive stress point in contact with the human body is less likely to be formed, and thus a wadding function that is less likely to cause congestion. Can be expressed. This function sends fresh air to the surface of the skin through the lateral side, and as a further synergistic effect, effectively works to prevent floor rubs. In order to impart such a particularly remarkable effect, it is desirable that the ventilation rate of the air exhausted from the surface of the wadding layer to the side surface of the cushion layer is 50 cc / cm 2 seconds or more. If the apparent density of the hard cotton constituting the wadding layer of the present invention is too high, the congestion preventing function is deteriorated due to the increase of the high compression stress supporting area, and the breathability and the pump function are poor and the anti-steaming effect is also deteriorated. 1 g /
cm 3 or less is required. When the apparent density is too low, the anti-compression property is lowered and the function of the wadding layer is deteriorated. Therefore, the preferable apparent density is 0.01 g / cm 3 or more and 0.06 g / cm 3 or more.
3 or less, more preferably an apparent density of 0.03 g / cm 3
It is above 0.05 g / cm 3 . If the thickness of the wadding layer is less than 2 mm, the function of the wading layer will deteriorate. 30 mm
In the above, the useful function of the synergistic effect with the cushion layer and the function of retaining the body shape and the function of absorbing vibration by supporting the body with a proper depression and soft gripping force are reduced. Preferred thickness is 3 mm
It is 15 mm or less and more preferably 5 mm or more and 10 mm or less. The natural fiber in the matrix fiber used for the wadding layer of the bed of the present invention is, as described above, dryness at the time of washing, flame retardancy and combustion gas toxicity, as well as heat retention and stuffiness depending on preference. You can change the type and mixing ratio. For example, when a person who is relatively chilly desires warm eyes, the mixture ratio of protein fibers such as wool, genuine cotton (silk), and feathers in the matrix fiber is preferably 60% or more, and 80% or more 1
00% is more preferable. When a soft touch and good heat retention are desired, it is preferable that the mixing ratio of cotton (silk) and feathers in the matrix fiber is 70% or more.
% Or more and 100% or more is more preferable. On the other hand, when a slightly cooler sleeping comfort is desired, it is preferable to increase the mixing ratio of cellulosic fibers such as hemp and cotton in the matrix fiber, and particularly the amount of dust is small, and the mixing ratio of hemp having a large fiber diameter is 80%. It is more preferable to set it as above. Depending on the taste, the desired different wadding layers may be laminated on both sides of the cushion layer to use them differently in summer and winter. Further, other materials may be laminated on the cushion layer and / or the wadding layer as long as the basic function of the present invention is not lost. If the mixing ratio of the fibers containing the thermoplastic elastic resin in the wadding layer as a thermal adhesive component is 5% or less, a three-dimensional three-dimensional structure in which natural fibers are joined and integrated is formed and subjected to local deformation stress. Also, the entire structure is deformed to absorb the deformation stress by energy conversion, and the function of receiving the deformation stress with a low repulsive force due to rubber elasticity and the pump function are poor. On the other hand, if the mixing ratio is 50% or more, the number of matrix fibers is reduced and the functional effect of natural fibers is reduced, which is not preferable.
The mixing ratio of the fibers containing the thermoplastic elastic resin in the wadding layer of the present invention as a thermal adhesive component is preferably 10% or more, more preferably 20% or more and 40% or less. The heat-bonding fiber having a thermoplastic elastic resin as a heat-bonding component is not particularly limited as long as the heat-bonding component is formed of a thermoplastic elastic resin and the thermoplastic elastic resin can form a heat-bonding point with the matrix fiber. . For example, a thermoplastic elastic resin is used for the sheath component of the sheath / core fiber or one component of the side-by-side fiber, and a thermoplastic non-elastic resin is used for the other component,
Examples thereof include a single component made of only a thermoplastic elastic resin. However, in the case where the thermoplastic non-elastic resin is used as the other component, the thermoplastic non-elastic resin component may be deteriorated in heat resistance due to plastic deformation. If the thermoplastic elastic resin alone is melted during the adhesive treatment and loses its fiber form, the number of constituent fibers of the structure may decrease, and appropriate repulsive stress may not be exhibited. Therefore, in the present invention, it is most preferable to use a fiber in which both the components of the sheath and the core are made of thermoplastic elastic resin. As the heat-adhesive component, if the melting point or the flow starting temperature is less than 100 ° C, the heat resistance is poor,
When the temperature is 200 ° C. or higher, the heat resistance of natural fibers may be exceeded and thermal adhesion is difficult to occur. Therefore, a temperature of 100 ° C. or higher and 200 ° C. or lower is preferable. More preferably, when using a cellulosic fiber having a temperature of 140 ° C. or higher and 180 ° C. or lower, 130 ° C.
It becomes possible to sterilize by steam. 110 ℃ for protein fiber
If the one having a temperature of 150 ° C. or higher is used, sterilization of ethylene oxide gas at a temperature of lower than 100 ° C. is possible. The fineness of the heat-bonding fiber is not particularly limited, but it is preferable to use a fiber having a fineness close to that of the natural fiber to be used because the fiber mixing becomes easy. For example, when using cotton or silk, 1 denier to 4
When using denier or wool * linen, it is preferable to use 2 to 6 denier. The fibers mixed with the natural fibers in the matrix fibers are not particularly limited as long as they can be mixed with the natural fibers. The fibers mixed with the natural fibers in the matrix fibers are added to the wadding layer in order to add characteristics not found in the natural fibers, for example, anti-mitic agents, antibacterial agents,
Fibers containing deodorants, flame retardants, fragrances, etc. are mixed to enhance the function, and water-repellent and hydrophobic properties are used to improve draining and drying properties. It is desirable to mix fibers to be mixed with fibers that can impart a function such as doubling the characteristics and characteristics of natural fibers. The fineness of the fiber is selected as desired, but the fineness that can be used in ordinary card opening is from 0.5 denier to 100 denier. In special cases, fineness up to 500 denier can be selected. The material is selected as necessary, but usually polyester fiber may be used. The wadding layer and cushion layer may be joined together, but the draining property after washing is slightly inferior to the wadding layer, so if washed in a circle or washed in the joined state, they will not be joined with the cushion layer and will be separated individually. By reducing the thickness of the wadding layer, the drying time is slightly longer than that of the structure capable of increasing the drainability and the drying speed. (Of course, compared with mats composed of webs and mats composed only of hard cotton using a matrix with a large wire diameter, the drying time is much shorter, so the draining property is excellent.) , When bonded, the wadding layer functions to increase the surface rigidity, and the bendability is slightly lower than that of the unbonded one. Therefore, it is desirable that the cushion layer and the wadding layer are not bonded because the drainage property and bendability during washing are improved. Therefore, it is preferable. Thus, the laminated cushion bodies are individually separated, taken out, re-laminated, and wrapped in the sewn side fabric so that they can be inserted into the side fabric, thereby forming the mats of the present invention. In the present invention, for the above reason, the cushion layer and the wadding layer are separately taken out and provided with an opening / closing port that can be closed to the side so that the cushion layer and the wadding layer can be stacked and inserted after washing. This allows the cushion body to be easily washed and dried. The mats of the present invention, in addition to the above-mentioned characteristics, have the characteristics that they are bendable, can be washed, and have good drainage properties during washing. That is, since the cushioning material is made of a thermoplastic elastic resin, it can be bent by taking advantage of its elasticity, and can be used for a bed for care or the like which needs to raise the head or upper body. When used as a thin mattress, it can be folded and stored. The good washability is that the cushion layer made of normal fibers has a fiber diameter of 0.001 mm or less.
The wire diameter of the cushion layer that constitutes the majority of the cushion body of the present invention is 0.01 mm or more, and the hard cotton of the wadding layer has a large fiber surface weave, but the average number of the whole cushion body is small. Since the surface area of the filament is remarkably small, the moisture adhering to the surface of the filament can be reduced, resulting in excellent drainability. Since it has good draining property, the drying time can be shortened.
Therefore, the bed mat of the present invention can be washed frequently, and as a result, a clean bed mat can always be used. The bed mat of the present invention can be washed in a round manner, but for the above-mentioned reason, it is preferable to separately divide the side layer, the cushion layer and the wadding layer for washing. If the cushion layer is made of non-elastic resin, it is difficult to bend. If a material made of a hard material is bent forcibly, the bent portion may be broken, and if a material made of a soft material is plastically deformed and the cushion is dented near the bent portion, it will break due to bending fatigue if repeatedly bent. Because of the laminated structure of the cushioning layer of the present invention made of an elastic resin and the wadding layer having a high degree of freedom for deformation, it is bendable, and it is hard to be plastically deformed against repeated bending and has excellent durability. It is a different point. In order to improve the bending property, a structure having a bending structure has been proposed. However, unlike the cushion layer of the present invention, the non-elastic resin is used for the cushion layer, so that the durability is poor. Commercial beds may be sterilized as needed. For sterilization, ethylene oxide gas below 100 ° C or steam at 130 ° C is generally used. In a preferred embodiment of the mats of the present invention, it is possible to sterilize without deforming by applying sterilization for less than 15 minutes without applying compressive stress. However, known olefin-based or vinyl chloride-based materials are used. When used, it is different from the present invention in that it has poor heat resistance and plastically deforms due to heating during sterilization to cause bulk reduction.
In addition, by performing the above-mentioned pseudo crystallization treatment at any stage from the step of forming the net body and the laminated cushion to the product, the component made of the thermoplastic elastic resin in the net body is melted by a differential scanning calorimeter. It is more preferable that the curve has an endothermic peak at a temperature of room temperature or higher and melting point or lower, because the stretchability and heat resistance of the thermoplastic elastic resin are remarkably improved, and the heat resistance and durability of the product are remarkably improved.

【0015】本発明のクッション層を構成する網状体の
線条の断面形状は特には限定されないが、中空断面や異
形断面にすることで好ましい抗圧縮性(反発力)やタッ
チを付与することができるので特に好ましい。抗圧縮性
は繊径や用いる素材のモジュラスにより調整して、線径
を細くしたり、柔らかい素材では中空率や異形度を高く
し初期圧縮応力の勾配を調整できるし、線径をやや太く
したり、ややモジュラスの高い素材では中空率や異形度
を低くして寝心地が良好な抗圧縮性を付与する。中空断
面や異形断面の他の効果として中空率や異形度を高くす
ることで、同一の抗圧縮性を付与した場合、より軽量化
が可能となり、ベット用マット類の交換や布団、座布団
などの場合は、上げ下ろし時の取扱性が向上する。好ま
しい抗圧縮性(反発力)やタッチを付与することができ
る他の好ましい方法として、本発明の網状体の線条を複
合構造とする方法がある。複合構造としては、シ−スコ
ア構造またはサイドバイサイド構造及びそれらの組合せ
構造などが挙げられる。が、特にはクッション層が大変
形してもエネルギ−変換できない振動や変形応力をエネ
ルギ−変換して回復できる立体3次元構造とするために
線状の表面の50%以上を柔らかい熱可塑性弾性樹脂が
占めるシ−スコア構造またはサイドバイサイド構造及び
それらの組合せ構造などが挙げられる。シ−スコア構造
ではシ−ス成分は振動や変形応力をエネルギ−変換が容
易なソフトセグメント含有量が多い熱可塑性弾性樹脂と
し、コア成分は抗圧縮性を示すソフトセグメント含有量
が少ない熱可塑性弾性樹脂で構成し適度の沈み込みによ
る背部や臀部等の接触部への快適なタッチを与えること
ができる。サイドバイサイド構造では振動や変形応力を
エネルギ−変換が容易なソフトセグメント含有量が多い
熱可塑性弾性樹脂の溶融粘度をソフトセグメント含有量
が少ない抗圧縮性を示す熱可塑性弾性樹脂の溶融粘度よ
り低くして線状の表面を占めるソフトセグメント含有量
が多い熱可塑性弾性樹脂の割合を多くした構造(比喩的
には偏芯シ−ス・コア構造のシ−スに熱可塑性弾性樹脂
を配した様な構造)として線状の表面を占めるソフトセ
グメント含有量が多い熱可塑性弾性樹脂の割合を80%
以上としたものが特に好ましく、最も好ましくは線状の
表面を占めるソフトセグメント含有量が多い熱可塑性弾
性樹脂の割合が100%のシ−スコアである。ソフトセ
グメント含有量が多い熱可塑性弾性樹脂の線状の表面を
占める割合が多くなると、溶融して融着するときの流動
性が高いので接着が強固になる効果があり、構造が一体
で変形する場合、接着点の応力集中に対する耐疲労性が
向上し、耐熱性や耐久性がより向上する。他方、本発明
のワディング層を構成する熱接着繊維の最も好ましい実
施形態である、シ−ス・コア成分が共に熱可塑性弾性樹
脂からなる場合、シ−ス成分は振動や変形応力をエネル
ギ−変換が容易なソフトセグメント含有量が多い熱可塑
性弾性樹脂を熱接着成分とし、コア成分の抗圧縮性を示
すソフトセグメント含有量が少ない熱可塑性弾性樹脂を
網状形態の保持機能をもたせるための高融点成分とする
構成で、熱接着成分の融点を高融点樹脂の融点より10
℃から50℃低くしたものを用いることによりワヂィン
グ層の耐熱性や耐久性がより向上する。本発明のマット
類は、クッション層の片面に天然繊維を主たるマトリッ
クスとし、熱可塑性弾性樹脂からなる熱接着成分で接合
一体化したワディング層を積層し、他面に短繊維ウエッ
ブ、不織布、編み物、布帛類等を積層一体化してクッシ
ョン体又は製品化することができる。クッション層とワ
ディング層を積層し、非接合又は接着剤等を用いて接合
したクッション体は、車両用座席、船舶用座席、車両
用、船舶用、病院用等の業務用及び家庭用ベット、家具
用椅子、事務用椅子、布団、座蒲団類等のクッション体
としても有用である。
The cross-sectional shape of the filaments of the net-like body that constitutes the cushion layer of the present invention is not particularly limited, but a preferable anti-compression property (repulsive force) and touch can be imparted by forming a hollow cross section or a modified cross section. It is particularly preferable because it is possible. The compression resistance can be adjusted by adjusting the fiber diameter and the modulus of the material used to make the wire diameter thinner, and for soft materials, the hollowness and irregularity can be increased to adjust the gradient of the initial compression stress, and the wire diameter can be made slightly thicker. Or, if the material has a slightly high modulus, the hollowness and the degree of irregularity are lowered to give the good anti-compression property with good sleeping comfort. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, it is possible to reduce the weight even when the same anti-compression property is given, and it is possible to replace the mats for betting, the duvet, the cushion, etc. In this case, handling property at the time of raising and lowering is improved. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, in particular, 50% or more of the linear surface is made of a soft thermoplastic elastic resin in order to obtain a three-dimensional structure in which vibration and deformation stress that cannot be energy-converted even if the cushion layer is largely deformed can be energy-converted and recovered. And a side-by-side structure and a combination thereof. In the sheath core structure, the sheath component is a thermoplastic elastic resin with a large content of soft segments that can easily convert energy into vibration and deformation stress, and the core component is a thermoplastic elastic resin with a small content of soft segments that exhibits anti-compression properties. It is made of resin and can give a comfortable touch to contact parts such as the back and buttocks due to an appropriate degree of depression. With the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is lower than the melt viscosity of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compression properties. A structure in which the proportion of thermoplastic elastic resin occupying a linear surface and having a large amount of soft segment is increased (metaphorically, a structure in which a thermoplastic elastic resin is arranged in an eccentric sheath-core structure) ), The proportion of the thermoplastic elastic resin occupying the linear surface and having a large soft segment content is 80%.
The above-mentioned ones are particularly preferable, and most preferable is a sheath core in which the proportion of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding points is improved, and the heat resistance and durability are further improved. On the other hand, when the sheath core component, which is the most preferred embodiment of the heat-bonding fiber constituting the wadding layer of the present invention, is made of thermoplastic elastic resin, the sheath component energy-converts vibration and deformation stress. A high-melting point component that uses a thermoplastic elastic resin with a high soft segment content as a heat-adhesive component and a thermoplastic elastic resin with a low soft segment content that shows the anti-compression property of the core component as a reticulated form retention function. And the melting point of the heat-adhesive component is 10
The heat resistance and durability of the wading layer are further improved by using the one whose temperature is lowered by 50 ° C. from 50 ° C. The mats of the present invention have natural fibers as a main matrix on one side of the cushion layer, and a wading layer laminated integrally by a thermo-adhesive component made of a thermoplastic elastic resin is laminated on the other side of which, a short fiber web, a non-woven fabric, a knitted fabric, A cushion body or a product can be manufactured by laminating and integrating cloths and the like. A cushion body obtained by laminating a cushion layer and a wadding layer and joining them by using non-bonding or an adhesive agent is used for vehicle seats, ship seats, vehicle beds, ship beds, hospital beds and other commercial and household beds and furniture. It is also useful as a cushion body for office chairs, office chairs, duvets, seats and the like.

【0016】次に本発明の製法を述べる。複数のオリフ
ィスを持つ多列ノズルより熱可塑性弾性樹脂をその融点
より20℃以上高く、80℃未満高い溶融温度で、該ノ
ズルより下方に向けて吐出させ、溶融状態で連続線条の
ループを達成し、それぞれのループを互いに接触させて
融着させ3次元構造を形成しつつ、引取り装置で挟み込
み冷却槽で冷却せしめた後、得られた3次元構造体の
上、下両面又は片面に熱可塑性樹脂からなるダブルラッ
セルニットを積層して、側地を被せるベットマットの製
法である。網状体は、熱可塑性弾性樹脂を一般的な溶融
押出機を用いて溶融し、複数のオリフィスを持つ多列ノ
ズルに供給し、オリフィスより下方へ吐出する。この時
の溶融温度は、熱可塑性弾性樹脂の融点より20℃〜8
0℃高い温度である。熱可塑性弾性樹脂の融点より80
℃を越える高い溶融温度にすると熱分解が著しくなり熱
可塑性弾性樹脂のゴム弾性特性が低下するので好ましく
ない。他方、熱可塑性弾性樹脂の融点より10℃以上高
くしないとメルトフラクチャ−を発生し正常な線条形成
が出来なくなり、また、吐出後ル−プ形成しつつ接触さ
せ融着させる際、線条の温度が低下して線条同士が融着
しなくなり接着が不充分な網状体となる場合があり好ま
しくない。好ましい溶融温度は融点より20℃から60
℃高い温度、より好ましくは融点より25℃から40℃
高い温度である。オリフィスの形状は特に限定されない
が、中空断面(例えば三角中空、丸型中空、突起つきの
中空等となるよう形状)及び、又は異形断面(例えば三
角形、Y型、星型等の断面二次モ−メントが高くなる形
状)とすることで前記効果以外に溶融状態の吐出線条が
形成する3次元構造が流動緩和し難くし、逆に接触点で
の流動時間を長く保持して接着点を強固にできるので特
に好ましい。特開平1−2075号公報に記載の接着の
ための加熱をする場合、3次元構造が緩和し易くなり平
面的構造化し、3次元立体構造化が困難となるので好ま
しくない。網状体の特性向上効果としては、見掛けの嵩
を高くでき軽量化になり、また抗圧縮性が向上し、弾発
性も改良できへたり難くなる。中空断面では中空率が8
0%を越えると断面が潰れ易くなるので、好ましくは軽
量化の効果が発現できる10%以上70%以下、より好
ましくは20%以上60%以下である。オリフィスの孔
間ピッチは線状が形成するル−プが充分接触できるピッ
チとする必要がある。緻密な構造にするには孔間ピッチ
を短くし、粗密な構造にするには孔間ピッチを長くす
る。本発明の孔間ピッチは好ましくは3mm〜20mm、よ
り好ましくは5mm〜10mmである。本発明では所望に応
じ異密度化や異繊度化もできる。列間のピッチ又は孔間
のピッチも変えた構成、及び列間と孔間の両方のピッチ
も変える方法などで異密度層を形成できる。また、オリ
フィスの断面積を変えて吐出時の圧力損失差を付与する
と、溶融した熱可塑性弾性樹脂を同一ノズルから一定の
圧力で押し出される吐出量が圧力損失の大きいオリフィ
スほど少なくなる原理を使って長手方向の区間でオリフ
ィスの断面積が異なる列を少なくとも複数有するノズル
を用い異繊度線条からなる網状構造体を製造することが
できる。次いで、該ノズルより下方に向けて吐出させ、
ル−プを形成させつつ溶融状態で互いに接触させて融着
させ3次元構造を形成しつつ、引取りネットで挟み込
み、網状体の表面の溶融状態の曲がりくねった吐出線条
を45°以上折り曲げて変形させて表面をフラット化す
ると同時に曲げられていない吐出線条との接触点を接着
して構造を形成後、連続して冷却媒体(通常は室温の水
を用いるのが冷却速度を早くでき、コスト面でも安くな
るので好ましい)で急冷して本発明の3次元立体網状構
造体化した網状体を得る。ノズル面と引取り点の距離は
少なくとも40cm以下にすることで吐出線条が冷却され
接触部が融着しなくなることを防ぐのが好ましい。吐出
線条の吐出量5g/分孔以上と多い場合は10cm〜40
cmが好ましく、吐出線条の吐出量5g/分孔未満と少な
い場合は5cm〜20cmが好ましい。網状体の厚みは溶融
状態の3次元立体構造体両面を挟み込む引取りネットの
開口幅(引取りネット間の間隔)で決まる。本発明では
上述の理由から引取りネットの開口幅は5mm以上とす
る。次いで水切り乾燥するが冷却媒体中に界面活性剤等
を添加すると、水切りや乾燥がしにくくなったり、熱可
塑性弾性樹脂が膨潤することもあり好ましくない。尚、
ノズル面と樹脂を固化させる冷却媒体上に設置した引取
りコンベアとの距離、樹脂の溶融粘度(網状体形成時の
溶融粘度は好ましくは500ポイズから10000ポイ
ズであり、20000ポイズを越えるとル−プ形成速度
が遅くなり、緻密な網状構造を形成しにくくなるので好
ましくない。)、オリフィスの孔径と吐出量などにより
所望のループ径や線径をきめられる。冷却媒体上に設置
した間隔が調整可能な一対の引取りコンベアで溶融状態
の吐出線条を挟み込み停留させることで互いに接触した
部分を融着させつつ、連続して冷却媒体中に引込み固化
させ網状体を形成する時、上記コンベアの間隔を調整す
ることで、融着した網状体が溶融状態でいる間で厚み調
節が可能となり、所望の厚みのものが得られる。コンベ
ア速度も速すぎると、接触点の形成が不充分になった
り、融着点が充分に形成されるまでに冷却され、接触部
の融着が不充分になる場合がある。また、速度が遅過ぎ
ると溶融物が滞留し過ぎ、密度が高くなるので、所望の
見掛け密度に適したコンベア速度を設定する必要があ
る。次いで本発明では、該網状体を一旦冷却後、連続し
て、又は、非連続に疑似結晶化処理を行い所定の大きさ
に切断して、又は、切断後疑似結晶化処理し、又はワデ
ィング層と積層後に疑似結晶化処理される。他方、ワデ
ィング層を形成する熱可塑性弾性樹脂を接着成分とした
繊維の最も好ましい熱接着繊維は、低融点の熱可塑性弾
性樹脂と高融点の熱可塑性弾性樹脂とを個々に溶融し、
公知の複合紡糸により紡糸し、延伸して完成糸を得られ
る。が、この方法では、熱接着成分の融点が低いので、
延伸時に高温で熱セットできないため収縮率が30%か
ら80%と高いものしか得られないので、ウエッブを熱
成形する際ウエッブ収縮による成形寸法不良を生じる。
本発明ではこの問題を解決するため、3000m/分以
上の高速紡糸により収縮率を10%以下に低収縮化して
一気に完成糸にする方法で得るのが好ましい。次いで、
巻縮を付与し、所望のカット長に切断して熱接着繊維を
得る。本発明に使用する熱接着繊維の複合形態は特には
限定されないが、熱接着繊維としての機能が必要なので
サイドバイサイドまたはシ−スコアで、低融点成分が繊
維の表面の50%以上を占めるのが好ましく、低融点成
分が繊維の表面の100%以上を占めるのがより好まし
い。ワディング層のマトリックスに混綿する天然繊維以
外の合成樹脂からなるマトリックス繊維(合成繊維)は
公知の方法で熱可塑性非弾性樹脂を非対象冷却法又は複
合紡糸法により潜在捲縮能を付与し、延伸後熱処理によ
り立体捲縮を発現させて切断または、切断後熱処理して
立体捲縮を発現させて得る。合成繊維は耐へたり性と耐
熱性も要求されるので、初期引張り抵抗度が少なくとも
35g/デニ−ル以上で、70℃での初期引張り抵抗度
が少なくとも10g/デニ−ル以上にしたものが好まし
い。嵩高性と抗圧縮性からの立体捲縮の捲縮度は15%
以上、捲縮数は10〜25個/インチが好ましい。かく
して得られた熱接着繊維と合成繊維はワディング層の主
たるマトリックスである天然繊維と所望の配合量にて混
合開繊する。熱接着繊維が少ないと振動吸収機能が低下
して好ましくない。熱接着繊維が多すぎると嵩高性が低
下する場合があり、好ましい熱接着繊維とマトリックス
繊維は混合比率が10/90〜50/50重量比、天然
繊維と合成繊維は混合比率を100/0〜50/50重
量比として、オ−プナ−等で予備開繊混合した後カ−ド
等で開繊し、3次元化構造とした開繊ウエッブを形成
し、見掛け密度が0.1g/cm3 以下、厚みが2mm以上
となるように、好ましくは、見掛け密度が0.01g/
cm3 から0.06g/cm3 、厚みが3mm〜15mmとなる
ように積層圧縮して熱成形により接合一体化し、所定の
大きさに切断してワディング層を得る。ワディング層の
疑似結晶化処理は、単独又はクッション層と積層後に行
うことができる。次いで、該クッション層の両面又は片
面に該ワディング層を積層してクッション体を形成し、
必要に応じてこの段階で疑似結晶化処理し、クッション
体が個々に分割取り出しが可能な構造に縫製された側地
に挿入して本発明のマット類を得る。本発明における結
晶化処理は、製品化に至る任意の工程で熱可塑性弾性樹
脂の少なくとも融点(Tm)より10℃以上低く、Ta
nδのα分散立ち上がり温度(Tαcr)以上で行う。
この処理で、融点以下に吸熱ピ−クを持ち、疑似結晶化
処理しないもの(吸熱ピ−クを有しないもの)より耐熱
耐へたり性が著しく向上する。本発明の好ましい疑似結
晶化処理温度は(Tαcr+10℃)から(Tm−20
℃)である。単なる熱処理により疑似結晶化させると耐
熱耐へたり性が向上する。が更には、10%以上の圧縮
変形を付与してアニ−リングすることで耐熱耐へたり性
が著しく向上するのでより好ましい。また、該網状体を
一旦冷却後、乾燥工程を経する場合、乾燥温度をアニ−
リング温度とすることで同時に疑似結晶化処理を行うが
できる。また、製品化する工程で別途疑似結晶化処理を
行うができる。
Next, the manufacturing method of the present invention will be described. A thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature higher than its melting point by 20 ° C. or more and less than 80 ° C. from a multi-row nozzle having a plurality of orifices, and a continuous linear loop is achieved in a molten state. Then, each loop is brought into contact with each other and fused to form a three-dimensional structure, sandwiched by a take-up device and cooled in a cooling tank, and then heat is applied to the upper, lower, both sides or one side of the obtained three-dimensional structure. This is a method for producing a bed mat in which a double Russell knit made of a plastic resin is laminated to cover a side material. The reticulate body is obtained by melting a thermoplastic elastic resin by using a general melt extruder, supplying the multi-row nozzle having a plurality of orifices, and discharging the resin downward from the orifices. The melting temperature at this time is 20 ° C. to 8 ° C. from the melting point of the thermoplastic elastic resin.
The temperature is 0 ° C. higher. 80 from the melting point of the thermoplastic elastic resin
If the melting temperature is higher than 0 ° C, thermal decomposition will be remarkable and the rubber elasticity of the thermoplastic elastic resin will be deteriorated. On the other hand, unless the temperature is higher than the melting point of the thermoplastic elastic resin by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed. Further, when the filament is formed by looping after discharge and is brought into contact and fused. The temperature may be lowered and the filaments may not be fused to each other, resulting in a network having insufficient adhesion, which is not preferable. The preferred melting temperature is 20 ° C to 60 ° C above the melting point
℃ higher temperature, more preferably 25 ℃ to 40 ℃ above the melting point
It is a high temperature. The shape of the orifice is not particularly limited, but may be a hollow cross section (for example, a triangular hollow, a round hollow, a shape with a projection, etc.) and / or an irregular cross section (for example, a triangular, Y-shaped, star-shaped cross-section secondary mode). In addition to the above effects, it is difficult for the three-dimensional structure formed by the discharge filaments in the molten state to relax the flow, and on the contrary, the flow time at the contact point is maintained for a long time to strengthen the adhesion point. It is particularly preferable because it can be When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. The hollow section has a hollow ratio of 8
If it exceeds 0%, the cross section tends to be crushed, so that it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less so that the effect of weight reduction can be exhibited. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. Then, discharge downward from the nozzle,
While forming a loop, they are brought into contact with each other in a molten state and fused to form a three-dimensional structure, and are sandwiched by a take-up net, and the winding winding filaments in the molten state on the surface of the mesh body are bent by 45 ° or more. After deforming to flatten the surface and at the same time form a structure by adhering the contact points with the discharge line that is not bent, a cooling medium (usually using room temperature water can increase the cooling rate, It is preferable because it is cheap in terms of cost), and is rapidly cooled to obtain the three-dimensional three-dimensional net-structured net-like body of the present invention. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. If the discharge amount of the discharge line is 5g / hole or more, 10cm-40
cm is preferable, and 5 cm to 20 cm is preferable when the discharge amount of the discharge filament is less than 5 g / hole. The thickness of the net-like body is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. still,
The distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin (the melt viscosity at the time of forming the reticulate body is preferably 500 poises to 10000 poises, and when it exceeds 20000 poise, It is not preferable because the forming speed becomes slower and it becomes difficult to form a dense network structure.), And the desired loop diameter and wire diameter can be determined by the hole diameter of the orifice and the discharge amount. A pair of take-up conveyors with adjustable intervals installed on the cooling medium sandwich and hold the molten discharge filaments to fuse the parts that are in contact with each other and continuously draw in the cooling medium to solidify them. By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. Then, in the present invention, after the reticulate body is once cooled, it is continuously or discontinuously pseudo-crystallized to be cut into a predetermined size, or pseudo-crystallized after cutting, or a wadding layer. After stacking, pseudo crystallization is performed. On the other hand, the most preferable thermoadhesive fiber of the thermoplastic elastic resin forming the wadding layer as an adhesive component is a low melting point thermoplastic elastic resin and a high melting point thermoplastic elastic resin are individually melted,
A finished yarn can be obtained by spinning and stretching with a known composite spinning. However, in this method, since the melting point of the heat-adhesive component is low,
Since heat setting cannot be performed at a high temperature during stretching, only a high shrinkage ratio of 30% to 80% can be obtained, and therefore, when the web is thermoformed, a molding dimension defect due to web shrinkage occurs.
In the present invention, in order to solve this problem, it is preferable to obtain the finished yarn at a stretch by reducing the shrinkage rate to 10% or less by high-speed spinning at 3000 m / min or more. Then
A crimp is applied and cut into a desired cut length to obtain a heat-bonded fiber. The composite form of the heat-bonding fiber used in the present invention is not particularly limited, but it is preferable that the low-melting point component occupies 50% or more of the surface of the fiber in side-by-side or sheath-core because it is required to function as a heat-bonding fiber. More preferably, the low melting point component occupies 100% or more of the surface of the fiber. The matrix fiber (synthetic fiber) made of a synthetic resin other than natural fiber mixed with the matrix of the wadding layer is a known method in which a thermoplastic non-elastic resin is imparted with a latent crimping ability by an asymmetric cooling method or a composite spinning method, and stretched. A three-dimensional crimp is developed and cut by post-heat treatment, or a three-dimensional crimp is developed by heat treatment after cutting. Since synthetic fibers are also required to have sag resistance and heat resistance, those having an initial tensile resistance of at least 35 g / denier and an initial tensile resistance at 70 ° C. of at least 10 g / denier are preferred. preferable. The crimp degree of three-dimensional crimp is 15% due to its bulkiness and anti-compression property.
As described above, the number of crimps is preferably 10 to 25 crimps / inch. The heat-bonding fibers and the synthetic fibers thus obtained are mixed and opened with a desired blending amount with the natural fibers which are the main matrix of the wadding layer. When the amount of heat-bonding fibers is small, the vibration absorbing function is deteriorated, which is not preferable. If the amount of the heat-bonding fibers is too large, the bulkiness may decrease. Therefore, the mixing ratio of the heat-bonding fibers and the matrix fibers is preferably 10/90 to 50/50, and the mixing ratio of the natural fibers and the synthetic fibers is 100/0. As a 50/50 weight ratio, pre-opening mixing was performed with an opener and the like, followed by opening with a card or the like to form an opening web having a three-dimensional structure, and an apparent density of 0.1 g / cm 3 Hereinafter, the apparent density is preferably 0.01 g / so that the thickness is 2 mm or more.
Laminate compression is performed so that the thickness is from cm 3 to 0.06 g / cm 3 and the thickness is from 3 mm to 15 mm, the pieces are joined and integrated by thermoforming, and cut into a predetermined size to obtain a wadding layer. The quasi-crystallization treatment of the wadding layer can be performed alone or after laminating with the cushion layer. Then, the wadding layer is laminated on both sides or one side of the cushion layer to form a cushion body,
If necessary, a pseudo-crystallization treatment is performed at this stage, and the cushion body is inserted into a side material sewn into a structure that can be individually taken out separately to obtain the mats of the present invention. In the crystallization treatment in the present invention, Ta is lower than at least the melting point (Tm) of the thermoplastic elastic resin by 10 ° C. or more in any step leading to commercialization.
It is performed at or above the α dispersion rising temperature (Tαcr) of nδ.
By this treatment, the heat-resistant sag resistance is remarkably improved as compared with the one having no endothermic peak (having no endothermic peak) having an endothermic peak below the melting point. The preferred pseudo-crystallization treatment temperature of the present invention is from (Tαcr + 10 ° C) to (Tm-20).
° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. When the reticulate body is once cooled and then subjected to a drying step, the drying temperature is set to
By setting the ring temperature, it is possible to simultaneously perform the pseudo crystallization treatment. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization.

【0017】075号公報に記載の接着のための加熱を
する場合、3次元構造が緩和し易くなり平面的構造化
し、3次元立体構造化が困難となるので好ましくない。
網状体の特性向上効果としては、見掛けの嵩を高くでき
軽量化になり、また抗圧縮性が向上し、弾発性も改良で
きへたり難くなる。中空断面では中空率が80%を越え
ると断面が潰れ易くなるので、好ましくは軽量化の効果
が発現できる10%以上70%以下、より好ましくは2
0%以上60%以下である。オリフィスの孔間ピッチは
線状が形成するル−プが充分接触できるピッチとする必
要がある。緻密な構造にするには孔間ピッチを短くし、
粗密な構造にするには孔間ピッチを長くする。本発明の
孔間ピッチは好ましくは3mm〜20mm、より好ましくは
5mm〜10mmである。本発明では所望に応じ異密度化や
異繊度化もできる。列間のピッチ又は孔間のピッチも変
えた構成、及び列間と孔間の両方のピッチも変える方法
などで異密度層を形成できる。また、オリフィスの断面
積を変えて吐出時の圧力損失差を付与すると、溶融した
熱可塑性弾性樹脂を同一ノズルから一定の圧力で押し出
される吐出量が圧力損失の大きいオリフィスほど少なく
なる原理を使って長手方向の区間でオリフィスの断面積
が異なる列を少なくとも複数有するノズルを用い異繊度
線条からなる網状構造体を製造することができる。次い
で、該ノズルより下方に向けて吐出させ、ル−プを形成
させつつ溶融状態で互いに接触させて融着させ3次元構
造を形成しつつ、引取りネットで挟み込み、網状体の表
面の溶融状態の曲がりくねった吐出線条を45°以上折
り曲げて変形させて表面をフラット化すると同時に曲げ
られていない吐出線条との接触点を接着して構造を形成
後、連続して冷却媒体(通常は室温の水を用いるのが冷
却速度を早くでき、コスト面でも安くなるので好まし
い)で急冷して本発明の3次元立体網状構造体化した網
状体を得る。ノズル面と引取り点の距離は少なくとも4
0cm以下にすることで吐出線条が冷却され接触部が融着
しなくなることを防ぐのが好ましい。吐出線条の吐出量
5g/分孔以上と多い場合は10cm〜40cmが好まし
く、吐出線条の吐出量5g/分孔未満と少ない場合は5
cm〜20cmが好ましい。網状体の厚みは溶融状態の3次
元立体構造体両面を挟み込む引取りネットの開口幅(引
取りネット間の間隔)で決まる。本発明では上述の理由
から引取りネットの開口幅は5mm以上とする。次いで水
切り乾燥するが冷却媒体中に界面活性剤等を添加する
と、水切りや乾燥がしにくくなったり、熱可塑性弾性樹
脂が膨潤することもあり好ましくない。尚、ノズル面と
樹脂を固化させる冷却媒体上に設置した引取りコンベア
との距離、樹脂の溶融粘度(網状体形成時の溶融粘度は
好ましくは500ポイズから10000ポイズであり、
20000ポイズを越えるとル−プ形成速度が遅くな
り、緻密な網状構造を形成しにくくなるので好ましくな
い。)、オリフィスの孔径と吐出量などにより所望のル
ープ径や線径をきめられる。冷却媒体上に設置した間隔
が調整可能な一対の引取りコンベアで溶融状態の吐出線
条を挟み込み停留させることで互いに接触した部分を融
着させつつ、連続して冷却媒体中に引込み固化させ網状
体を形成する時、上記コンベアの間隔を調整すること
で、融着した網状体が溶融状態でいる間で厚み調節が可
能となり、所望の厚みのものが得られる。コンベア速度
も速すぎると、接触点の形成が不充分になったり、融着
点が充分に形成されるまでに冷却され、接触部の融着が
不充分になる場合がある。また、速度が遅過ぎると溶融
物が滞留し過ぎ、密度が高くなるので、所望の見掛け密
度に適したコンベア速度を設定する必要がある。次いで
本発明では、該網状体を一旦冷却後、連続して、又は、
非連続に疑似結晶化処理を行い所定の大きさに切断し
て、又は、切断後疑似結晶化処理し、又はワディング層
と積層後に疑似結晶化処理される。他方、ワディング層
を形成する熱可塑性弾性樹脂を接着成分とした繊維の最
も好ましい熱接着繊維は、低融点の熱可塑性弾性樹脂と
高融点の熱可塑性弾性樹脂とを個々に溶融し、公知の複
合紡糸により紡糸し、延伸して完成糸を得られる。が、
この方法では、熱接着成分の融点が低いので、延伸時に
高温で熱セットできないため収縮率が30%から80%
と高いものしか得られないので、ウエッブを熱成形する
際ウエッブ収縮による成形寸法不良を生じる。本発明で
はこの問題を解決するため、3000m/分以上の高速
紡糸により収縮率を10%以下に低収縮化して一気に完
成糸にする方法で得るのが好ましい。次いで、巻縮を付
与し、所望のカット長に切断して熱接着繊維を得る。本
発明に使用する熱接着繊維の複合形態は特には限定され
ないが、熱接着繊維としての機能が必要なのでサイドバ
イサイドまたはシ−スコアで、低融点成分が繊維の表面
の50%以上を占めるのが好ましく、低融点成分が繊維
の表面の100%以上を占めるのがより好ましい。ワデ
ィング層のマトリックスに混綿する天然繊維以外の合成
樹脂からなるマトリックス繊維(合成繊維)は公知の方
法で熱可塑性非弾性樹脂を非対象冷却法又は複合紡糸法
により潜在捲縮能を付与し、延伸後熱処理により立体捲
縮を発現させて切断または、切断後熱処理して立体捲縮
を発現させて得る。合成繊維は耐へたり性と耐熱性も要
求されるので、初期引張り抵抗度が少なくとも35g/
デニ−ル以上で、70℃での初期引張り抵抗度が少なく
とも10g/デニ−ル以上にしたものが好ましい。嵩高
性と抗圧縮性からの立体捲縮の捲縮度は15%以上、捲
縮数は10〜25個/インチが好ましい。かくして得ら
れた熱接着繊維と合成繊維はワディング層の主たるマト
リックスである天然繊維と所望の配合量にて混合開繊す
る。熱接着繊維が少ないと振動吸収機能が低下して好ま
しくない。熱接着繊維が多すぎると嵩高性が低下する場
合があり、好ましい熱接着繊維とマトリックス繊維は混
合比率が10/90〜50/50重量比、天然繊維と合
成繊維は混合比率を100/0〜50/50重量比とし
て、オ−プナ−等で予備開繊混合した後カ−ド等で開繊
し、3次元化構造とした開繊ウエッブを形成し、見掛け
密度が0.1g/cm3 以下、厚みが2mm以上となるよう
に、好ましくは、見掛け密度が0.01g/cm3 から
0.06g/cm3 、厚みが3mm〜15mmとなるように積
層圧縮して熱成形により接合一体化し、所定の大きさに
切断してワディング層を得る。ワディング層の疑似結晶
化処理は、単独又はクッション層と積層後に行うことが
できる。次いで、該クッション層の両面又は片面に該ワ
ディング層を積層してクッション体を形成し、必要に応
じてこの段階で疑似結晶化処理し、クッション体が個々
に分割取り出しが可能な構造に縫製された側地に挿入し
て本発明のマット類を得る。本発明における結晶化処理
は、製品化に至る任意の工程で熱可塑性弾性樹脂の少な
くとも融点(Tm)より10℃以上低く、Tanδのα
分散立ち上がり温度(Tαcr)以上で行う。この処理
で、融点以下に吸熱ピ−クを持ち、疑似結晶化処理しな
いもの(吸熱ピ−クを有しないもの)より耐熱耐へたり
性が著しく向上する。本発明の好ましい疑似結晶化処理
温度は(Tαcr+10℃)から(Tm−20℃)であ
る。単なる熱処理により疑似結晶化させると耐熱耐へた
り性が向上する。が更には、10%以上の圧縮変形を付
与してアニ−リングすることで耐熱耐へたり性が著しく
向上するのでより好ましい。また、該網状体を一旦冷却
後、乾燥工程を経する場合、乾燥温度をアニ−リング温
度とすることで同時に疑似結晶化処理を行うができる。
また、製品化する工程で別途疑似結晶化処理を行うがで
きる。
When the heating for adhesion described in Japanese Patent No. 075 is carried out, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable.
As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. In the case of a hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed, so that it is possible to exhibit the effect of weight reduction, preferably 10% or more and 70% or less, more preferably 2%.
It is 0% or more and 60% or less. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. To make a dense structure, shorten the pitch between holes,
The pitch between the holes is increased to obtain a dense structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction. Then, the liquid is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state to be fused to form a three-dimensional structure, and are sandwiched by a take-up net to melt the surface of the net-like body. Bending the twisted discharge line of 45 degrees or more to deform it to flatten the surface and at the same time bond the contact points with the unbent discharge line to form a structure, and then continuously cool the medium (usually at room temperature). It is preferable to use the water of (1) because the cooling rate can be increased and the cost can be reduced). The distance between the nozzle surface and the collection point is at least 4
It is preferable to set the thickness to 0 cm or less to prevent the discharge line from being cooled and the contact portion not being fused. 10 cm to 40 cm is preferable when the discharge amount of the discharge line is 5 g / min or more, and 5 when the discharge amount of the discharge line is less than 5 g / min.
cm to 20 cm is preferred. The thickness of the net-like body is determined by the opening width (interval between the take-up nets) of the take-up net sandwiching both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason. Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. Incidentally, the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin (the melt viscosity at the time of forming the mesh body is preferably 500 poises to 10000 poises,
If it exceeds 20000 poise, the loop forming speed becomes slow and it becomes difficult to form a dense network structure, which is not preferable. ), The desired loop diameter and wire diameter can be determined by the hole diameter of the orifice and the discharge amount. A pair of take-up conveyors with adjustable intervals installed on the cooling medium sandwich and hold the molten discharge filaments to fuse the parts that are in contact with each other and continuously draw in the cooling medium to solidify them. By adjusting the distance between the conveyors when forming the body, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion. Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. Then, in the present invention, after the reticulate body is once cooled, continuously, or
Pseudo-crystallization treatment is performed discontinuously to cut into a predetermined size, or pseudo-crystallization treatment after cutting, or pseudo-crystallization treatment after stacking with a wadding layer. On the other hand, the most preferable thermo-adhesive fiber of the thermoplastic elastic resin forming the wadding layer as an adhesive component is a low melting point thermoplastic elastic resin and a high melting point thermoplastic elastic resin are individually melted, a known composite A finished yarn can be obtained by spinning and spinning. But,
In this method, since the heat-adhesive component has a low melting point, it cannot be heat-set at a high temperature during stretching, so that the shrinkage rate is 30% to 80%.
Therefore, when the web is thermoformed, a molding dimension defect due to the shrinkage of the web occurs. In the present invention, in order to solve this problem, it is preferable to obtain the finished yarn at a stretch by reducing the shrinkage rate to 10% or less by high-speed spinning at 3000 m / min or more. Next, crimping is applied and cut into a desired cut length to obtain a heat-bonded fiber. The composite form of the heat-bonding fiber used in the present invention is not particularly limited, but it is preferable that the low-melting point component occupies 50% or more of the surface of the fiber in side-by-side or sheath-core because it is required to function as a heat-bonding fiber. More preferably, the low melting point component occupies 100% or more of the surface of the fiber. The matrix fiber (synthetic fiber) made of a synthetic resin other than natural fiber mixed with the matrix of the wadding layer is a known method in which a thermoplastic non-elastic resin is imparted with a latent crimping ability by an asymmetric cooling method or a composite spinning method, and stretched. A three-dimensional crimp is developed and cut by post-heat treatment, or a three-dimensional crimp is developed by heat treatment after cutting. Since the synthetic fibers are required to have sag resistance and heat resistance, the initial tensile resistance is at least 35 g /
Those having a denier or more and an initial tensile resistance at 70 ° C. of at least 10 g / denier or more are preferable. The crimp degree of the three-dimensional crimp is preferably 15% or more, and the number of crimps is preferably 10 to 25 crimps / inch from the viewpoint of bulkiness and anti-compression property. The heat-bonding fibers and the synthetic fibers thus obtained are mixed and opened with a desired blending amount with the natural fibers which are the main matrix of the wadding layer. When the amount of heat-bonding fibers is small, the vibration absorbing function is deteriorated, which is not preferable. If the amount of the heat-bonding fibers is too large, the bulkiness may decrease. Therefore, the preferable mixing ratio of the heat-bonding fibers and the matrix fibers is 10/90 to 50/50 by weight, and the mixing ratio of the natural fibers and the synthetic fibers is 100/0. As a 50/50 weight ratio, pre-opening mixing was performed with an opener and the like, followed by opening with a card or the like to form an opening web having a three-dimensional structure and an apparent density of 0.1 g / cm 3. Hereafter, lamination compression is performed so that the apparent density is 0.01 g / cm 3 to 0.06 g / cm 3 and the thickness is 3 mm to 15 mm so that the thickness is 2 mm or more, and the joining is integrated by thermoforming. Then, cut into a predetermined size to obtain a wadding layer. The quasi-crystallization treatment of the wadding layer can be performed alone or after laminating with the cushion layer. Then, the wadding layer is laminated on both sides or one side of the cushion layer to form a cushion body, and if necessary, pseudo crystallization is performed at this stage, and the cushion body is sewn into a structure in which the cushion body can be separately taken out. The mats of the present invention are obtained by inserting the mats of the present invention. The crystallization treatment according to the present invention is performed at any step leading to commercialization by lowering the melting point (Tm) of the thermoplastic elastic resin by at least 10 ° C.
The temperature is higher than the dispersion rising temperature (Tαcr). By this treatment, the heat-resistant sag resistance is remarkably improved as compared with the one having no endothermic peak (having no endothermic peak) having an endothermic peak below the melting point. The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10 ° C) to (Tm-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. However, it is more preferable to impart compressive deformation of 10% or more and anneal to significantly improve the heat resistance and sag resistance. Further, when the reticulate body is once cooled and then subjected to a drying step, the pseudo crystallization treatment can be simultaneously performed by setting the drying temperature to the annealing temperature.
Also, a pseudo crystallization treatment can be separately performed in the process of commercialization.

【0018】本発明のマット類は、ベット、敷布団、座
蒲団、家具用マット等以外に、クッション体のみ、又は
クッション層をその機能を利用して用いることが出来
る。例えば、3次元構造を損なわない程度に成形型等を
用いて使用目的にあった形状に成形して側地を被せるの
みで車両用座席、船舶用座席、椅子、家具等に用いるこ
とができる。勿論、用途との関係で要求性能に合うべき
他の素材、例えば、異なる網状体、短繊維集合体からな
る硬綿クッション材、不織布等と組合せて用いることも
可能である。また、樹脂製造過程以外でも性能を低下さ
せない範囲で製造過程から成形体に加工し、製品化する
任意の段階で難燃化、防虫抗菌化、耐熱化、撥水撥油
化、着色、芳香等の機能付与を薬剤添加等の処理加工が
できる。
In the mats of the present invention, in addition to beds, mats, cushions, mats for furniture, etc., only the cushion body or the cushion layer can be used by utilizing its function. For example, it can be used for vehicle seats, boat seats, chairs, furniture, etc. simply by molding it into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired, and covering the side ground. Of course, it is also possible to use it in combination with another material that should meet the required performance in relation to the application, for example, a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric, or the like. In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aromatic, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0019】[0019]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0020】なお、実施例中の評価は以下の方法で行っ
た。 1. 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 2. Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 3. 室温伸長回復率 ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製テンシロン
UTM4型を用い、伸長速度100%にて300%伸長
後歪みを0%に戻し、2分間放置後再度破断まで伸長さ
せた時の、再度伸長時に応力が発現する伸長率を300
%から差し引いた伸長率を300%で除した値を%で示
す。(n=3) 4. 70℃伸長回復率 ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製テンシロン
UTM4型を用い、70℃雰囲気にした加熱オーブン中
で伸長速度100%にて10%伸長歪みを付与して24
時間保持した後、歪みを0%に戻し、5分間放置後再度
破断まで伸長させた時の、再度伸長時に応力が発現する
伸長率を10%から差し引いた伸長率を10%で除した
値を%で示す。(n=3) 5. 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 6. 線条の繊径 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。拡大した断面写真より線径を求め、拡大倍率で叙
した値(n=10の平均値) 7. 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 8. 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚みと処理前の厚みの差と処理前の厚みと
の比を%で示す(n=3の平均値) 9. 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、側地、ワディ
ング層、クッション層がずれたり外れないように、界面
の四隅を縫い糸で接合したものを、島津製作所製サ−ボ
パルサ−にて、25℃65%RH室内にて50%の厚み
まで1Hzのサイクルで圧縮回復を繰り返し2万回後の
試料を1日放置後の厚みと処理前の厚みの差と処理前の
厚みとの比を%で示す。(n=3の平均値) 10.通気度 試料(クッション層とワディング層の積層体)を直径1
0cmの円筒状に打ち抜き、側面をシ−ルできる試料厚み
に相当する高さの内径10cmの金属筒に5%圧縮した状
態で入れ、上下を5%圧縮厚み分のパッキンでシ−ルし
て横漏れしないようにしたサンプルを作成し、株式会社
テクノワ−ルド社製(コスモ計器設計品)通気量測定
器、高圧タイプを用い測定した通気量(cc/cm2 秒)を
通気度として示す。 11.折り曲げ性 クッション層とワディング層を積層して作成したクッシ
ョン体に所定のサイズに縫製された東洋紡績製ハイムか
らなるポリエステル織物の側地を被って作成したベット
マットを水平面から片端を抑えて押し出し、45°に切
り欠いた勾配面に接するまでの長さを以下の基準で示
す。100cm未満:◎、130cm未満:○、150cm未
満:△、150cm以上:× 12.水切り性 ベットマットの重量を測定後に水槽に浸して10分後に
取り出し、出来るだけ水切りしない状態での重量を測定
した後、水切りして、30℃RH65%の雰囲気の室内
で壁に立てかけ12時間放置後の重量を測定して残留水
分の量を求め、以下の基準で評価した。残留水分が5%
以下:◎、残留水分が7%以下:○、残留水分が10%
以下:△、残留水分が10%以上:× 13.寝心地 クッション層とワディング層を積層して作成したクッシ
ョン体に所定のサイズに縫製された東洋紡績製ハイムか
らなるポリエステル織物の側地を被って作成したベット
マットをベットフレ−ムにセットして、28℃RH75
%室内でパネラ−を寝かせて以下の評価をおこなった。
(n=5)なお、ベットマット上にはシ−ツを敷き、掛
け布団にはダウン/フェザ−:90/10混合羽毛1.
8kg入り、枕は自宅で使用中のものを使用させた。 (1) 違和感:寝たときの「背中に感じる違和感」の程度
を感覚的に定性評価した。感じない;◎、殆ど感じな
い;○、やや感じる;△、感じる;× (2) 沈み込み:寝たときの体型保持状況の程度を感覚的
に定性評価した。適度の沈み込みで非常に心地よい;
◎、沈み込みやや少又はやや大で心地良い;○、沈み込
み小又は大で心地よさにやや欠ける;△、沈み込み過ぎ
又は沈み込まないで心地よさを感じない;× (3) 蒸れ感:2時間寝ていて、臀部や背中等のベットマ
ットと接する部分に感じる蒸れ感を感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (4) 体圧の圧迫感:寝てから動かないでどの程度我慢し
ていられるか:30分以内;×、1時間以内;△、2時
間以内;○、2時間以上;◎ (5) 総合評価: (1)から(5) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. 1. Melting point (Tm) and endothermic peak below melting point The endothermic peak (melting peak) is measured from the endothermic curve measured using a Shimadzu TA50, DSC50 type differential thermal analyzer at a heating rate of 20 ° C / min. -H) The temperature was determined. 2. Tαcr polymer is heated to a melting point of + 10 ° C to a thickness of about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a heating rate of 1 ° C./min. Tan δ (the ratio of the imaginary elastic modulus M ″ to the real part M ′ of the elastic modulus M ″ / The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). 3. Room temperature elongation recovery rate Polymer is heated to melting point + 10 ° C and thickness is about 300μm.
Of the film, using Tensilon UTM4 type manufactured by Orientec Co., Ltd., the strain was returned to 0% after stretching 300% at a stretching speed of 100%, and was allowed to stand for 2 minutes and then stretched to break again. Elongation rate at which stress develops is 300
The value obtained by dividing the elongation rate subtracted from% by 300% is shown in%. (N = 3) 4. 70 ° C. elongation recovery rate Polymer is heated to a melting point + 10 ° C. to have a thickness of about 300 μm.
24 film was prepared by using Tensilon UTM4 type manufactured by Orientec Co., Ltd. and applying a 10% elongation strain at a elongation rate of 100% in a heating oven in an atmosphere of 70 ° C.
After holding for a period of time, the strain is returned to 0%, and after being left for 5 minutes and then stretched to break again, the value obtained by subtracting the stretch rate at which stress develops again at 10% from the stretch rate at 10% is divided by 10%. Shown in%. (N = 3) 5. Apparent Density The sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is calculated, and the weight of the sample is divided by the volume. (Average value of n = 4) 6. Fiber diameter of filaments Each filament portion is cut out from 10 locations, embedded with acrylic resin, the cross section is cut out to make a section, and a cross-section photograph is obtained. The value obtained by obtaining the wire diameter from the enlarged cross-sectional photograph and enlarging it with the magnifying power (n = 10 average value) 7. Fusing By hand, check the fibers that are adhered to each other to see if the sample is fused or not. It is judged whether or not something that cannot be removed is fused by pulling. 8. Heat resistance and durability (residual strain at 70 ° C) Cut the sample into a size of 15 cm x 15 cm, compress it by 50%, leave it in dry heat at 70 ° C for 22 hours, cool it to remove the compression strain, and leave it for one day after leaving it. The ratio of the difference in thickness before treatment to the thickness before treatment is shown in% (n = 3 average value) 9. Cyclic compression strain The sample was cut into a size of 15 cm x 15 cm, and the lateral side, wadding layer, and cushion were cut. In order to prevent the layers from slipping and coming off, the four corners of the interface were joined with sewing thread, and compression recovery was performed at a cycle of 1 Hz to a thickness of 50% in a room at 25 ° C and 65% RH with a Servo pulsar manufactured by Shimadzu Corporation. The ratio of the difference between the thickness after standing for 1 day and the thickness before the treatment and the thickness before the treatment of the sample after repeating 20,000 times is shown in%. (Average value of n = 3) 10. Air permeability Sample (laminate of cushion layer and wadding layer) has a diameter of 1
It is punched out into a cylinder of 0 cm, put in a metal tube with an inner diameter of 10 cm and a height corresponding to the thickness of the side that can be sealed in a state of 5% compression, and the top and bottom are sealed with a packing of 5% compression thickness. A sample was prepared to prevent side leakage, and the air flow rate (cc / cm 2 seconds) measured using a high-pressure type air flow rate measuring device manufactured by Techno World Co., Ltd. (Cosmo instrument design product) is shown as the air permeability. 11. Bendability A cushion mat made by laminating a cushioning layer and a wadding layer is covered with a side cloth of polyester fabric made of Toyobo Co., Ltd. made by Toyobo Co. The length until extrusion and contact with a sloped surface notched at 45 ° is shown below. Less than 100 cm: ◎, less than 130 cm: ○, less than 150 cm: Δ, more than 150 cm: × 12. Drainability After measuring the weight of the bed mat, it was immersed in a water tank and taken out 10 minutes later, and the weight was measured without draining as much as possible. After that, the water was drained, and after standing for 12 hours on a wall in a room with an atmosphere of 30 ° C. and RH of 65%, the weight was measured and the amount of residual water was determined, and evaluated according to the following criteria. 5% residual moisture
Below: ◎, residual water content is 7% or less: ○, residual water content is 10%
The following: △, residual water content is 10% or more: × 13. Comfortable sleep A cushion body made by laminating a cushioning layer and a wadding layer is covered with a side fabric of a polyester woven fabric made of TOYOBO HEIM that is sewn to a predetermined size. Set the prepared bed mat on the bed frame, 28 ℃ RH75
% The paneler was laid down in the room and the following evaluation was performed.
(N = 5) Sheets are laid on the bed mat, and down / feather: 90/10 mixed feathers are used for the comforter.
The pillow weighed 8kg and was the same as the one used at home. (1) Feeling uncomfortable: The degree of "feeling uncomfortable on the back" when sleeping was qualitatively and qualitatively evaluated. No feeling; ◎, almost no feeling; ○, slightly felt; △, felt; × (2) Depression: The degree of body retention when sleeping was sensitized qualitatively. Very comfortable with moderate subduction;
◎, slightly depressed or slightly large, comfortable; ○, slightly depressed or large, slightly lacking in comfort; △, too deep or not submerging and does not feel comfortable; × (3) Feeling of stuffiness: A qualitative qualitative evaluation was performed on the stuffiness felt on the buttocks, the back, and the like in contact with the bed mat after sleeping for 2 hours. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, remarkably stuffy; × (4) Pressure of body pressure: how much you can endure without moving after sleeping: 30 minutes or less; ×, 1 hour or less; △, 2 hours or less; ○, 2 hours or more; ◎ (5) Comprehensive evaluation: 4 points out of ◎ from (1) to (5)
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0021】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤1%及び難燃剤
10%(燐含有量5000〜10000ppm)を添加
混合後ペレット化し、50℃48時間真空乾燥して得ら
れた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -The heat obtained by forming a terester block copolymer elastomer, then adding and mixing 1% of an antioxidant and 10% of a flame retardant (phosphorus content: 5000 to 10000 ppm), pelletizing, and vacuum drying at 50 ° C for 48 hours. Table 1 shows the formulation of the plastic elastic resin raw material.

【0022】[0022]

【表1】 [Table 1]

【0023】幅120cm、長さ10cmのノズル有効面に
幅方向の孔間ピッチ5mm、長さ方向の孔間ピッチ10mm
の千鳥配列としたオリフィス形状は外径2mm、内径1.
6mmでトリプルブリッジの中空形成性断面としたノズル
に、得られた熱可塑性弾性樹脂原料を別々の押出機にて
溶融し、A−1をシ−ス成分に、A−2をコア成分とな
るようにオリフィス直前で分配し、溶融温度245℃に
て単孔当たりの吐出量2.0g/分(A−1:1g/
分、A−2:1g/分)にてノズル下方に吐出させ、ノ
ズル面12cm下に冷却水を配し、幅140cmのステンレ
ス製エンドレスネットを平行に10cm間隔で一対の引取
りコンベアを水面上に一部出るように配して、該溶融状
態の吐出線状を曲がりくねらせル−プを形成して接触部
分を融着させつつ3次元網状構造を形成し、該溶融状態
の網状体の両面を引取りコンベア−で挟み込みつつ毎分
1mの速度で25℃の冷却水中へ引込み固化させ両面を
フラット化した後引取り、水切り後、連続して120℃
の加熱空気を循環させたセッタ−中を15分間通過させ
冷却後、所定の大きさに切断して得た網状体は断面形状
がシ−スコア構造の三角おむすび型の中空断面で中空率
が40%、線径が1.2mmの融点以外に126℃に吸熱
ピープをもつ線条が、形成するル−プの互いの接触点は
殆ど融着により接合され、両面は実質的にフラット化さ
れ、平均の見掛け密度が0.046g/cm2 、厚み9.
5cm、繰返し圧縮歪み2.8%、耐熱耐久性11.2%
であった。別途、常法により公知の複合紡糸機にて、熱
可塑性弾性樹脂A−4をシ−ス成分、A−2をコア成分
となるように個々に溶融してオリフィス直前で分配し、
各吐出量を50/50重量比で、単孔当たり1.6g/
分孔(0.6g/分:0.6g/分)として紡糸温度2
45℃にてC型オリフィスより吐出し、紡糸速度350
0m/分にて得た繊度が3.1デニ−ル、乾熱160℃
での収縮率7%の糸を収束してトウ状でクリンパ−にて
機械巻縮を付与し、64mmに切断してシ−スコア断面の
熱可塑性弾性樹脂からなる熱接着繊維を得た。合成繊維
は、常法により、極限粘度0.63と0.56のPET
を重量比50/50に分配して単孔当たり3.0g/分
孔(1g/分:1g/分)として紡糸温度265℃にて
紡糸速度1300m/分で複合紡糸し、次いで、70℃
及び180℃にて2段延伸して得た延伸糸を64mmに切
断し170℃にてフリ−熱処理して立体捲縮を発現さ
せ、中空断面で中空率32%のシ−スコア構造の繊度6
デニ−ル、初期引張り抵抗度38g/デニ−ル、捲縮度
20%、捲縮数18個/インチの合成繊維を得た。次い
で、マトリックス繊維として、クチクル層表面のエピ層
を除去し、難燃加工したメリノ羊毛と合成繊維及び熱接
着繊維を60/10/30重量比で混合し、オ−プナ−
にて予備開繊した後カ−ドで開繊して得たウエッブを見
掛け密度が0.05g/cm2 、厚み8mmとなるように積
層圧縮し、150℃の熱風にて5分間熱処理後冷却して
両面がフラットなワディング層を得た。次いで、120
℃の加熱空気を循環させたセッタ−中で15分間熱処理
し、冷却後所定の大きさに切断して、2枚の該網状体の
両面に積層した。次いで、ワディング層とクッション層
を個々に取り出し、挿入ができる開閉口を持ち、所定の
大きさに縫製された東洋紡績製ハイムからなるポリエス
テル繊維からなる側地に挿入して本発明のベット用マッ
トを得た。得られたベット用マットの評価結果を表2に
示す。表2で明らかごとく、耐熱性、耐久性、通気性、
折り曲げ性、水切り性に優れ、寝心地の良好なベット用
マットである。なお、このベット用マットは難燃性を示
し、燃焼ガスの毒性指数は5.8であった。このことか
ら、火災時の安全性も高いベット用マットであることが
分かる。
On the effective surface of the nozzle having a width of 120 cm and a length of 10 cm, the pitch of the holes in the width direction is 5 mm, and the pitch of the holes in the length direction is 10 mm.
The zigzag array of orifices has an outer diameter of 2 mm and an inner diameter of 1.
The obtained thermoplastic elastic resin raw material is melted in a separate extruder into a nozzle having a hollow-forming cross section of a triple bridge of 6 mm, and A-1 is used as a sheath component and A-2 is used as a core component. Dispensing just before the orifice, the discharge rate per single hole is 2.0 g / min (A-1: 1 g /
Min., A-2: 1 g / min), the cooling water is placed 12 cm below the nozzle surface, and a pair of take-up conveyors are placed parallel to each other with an endless net made of stainless steel having a width of 140 cm at intervals of 10 cm. The melted discharge line is bent to form a loop and the contact portions are fused together to form a three-dimensional network structure. While sandwiching both sides with a take-up conveyor, it is drawn into cooling water at 25 ° C. at a speed of 1 m / min to solidify and flatten both sides, then taken off, drained, and continuously 120 ° C.
After passing through a setter in which heated air is circulated for 15 minutes to cool and then cutting to a predetermined size, the reticulated body has a triangular cross-sectional hollow cross-section with a cis core structure and a hollow ratio of 40. %, The filament having an endothermic peep at 126 ° C. in addition to the melting point of 1.2 mm is almost joined by fusion bonding at the contact points of the formed loops, and both sides are substantially flattened. Average apparent density 0.046 g / cm 2 , thickness 9.
5 cm, cyclic compression strain 2.8%, heat resistance durability 11.2%
Met. Separately, the thermoplastic elastic resin A-4 is individually melted by a conventional method so that the thermoplastic elastic resin A-4 becomes the sheath component and A-2 becomes the core component, and distributed immediately before the orifice,
Each discharge rate is 50/50 weight ratio, 1.6g / per hole
Spinning temperature 2 as splitting holes (0.6 g / min: 0.6 g / min)
Discharge from C type orifice at 45 ° C, spinning speed 350
Fineness obtained at 0 m / min is 3.1 denier, dry heat 160 ° C.
The yarn having a shrinkage ratio of 7% was converged, mechanically crimped with a crimper in a tow shape, and cut into 64 mm to obtain a heat-bonded fiber made of a thermoplastic elastic resin having a sheath core cross section. Synthetic fiber is PET with the intrinsic viscosity of 0.63 and 0.56 by the conventional method.
Was distributed in a weight ratio of 50/50 to form 3.0 g / min per hole (1 g / min: 1 g / min) at a spinning temperature of 265 ° C., and a composite spinning was performed at a spinning speed of 1300 m / min.
And a drawn yarn obtained by drawing two stages at 180 ° C. is cut into 64 mm and free-heat-treated at 170 ° C. to develop a three-dimensional crimp, and a fineness of a sheath core structure having a hollow section of 32% with a hollow ratio of 6%.
A synthetic fiber having a denier, an initial tensile resistance of 38 g / denier, a crimp degree of 20% and a crimp number of 18 / inch was obtained. Then, as the matrix fiber, the epilayer on the surface of the cuticle layer was removed, and the flame-retarded merino wool, the synthetic fiber and the heat-bonding fiber were mixed at a weight ratio of 60/10/30 to form an opener.
The web obtained by pre-opening with a card was laminated and compressed to have an apparent density of 0.05 g / cm 2 and a thickness of 8 mm, and heat-treated with hot air at 150 ° C. for 5 minutes and then cooled. As a result, a wadding layer having flat surfaces on both sides was obtained. Then 120
Heat treatment was carried out for 15 minutes in a setter in which heated air of ℃ was circulated, and after cooling, cut into a predetermined size and laminated on both sides of the two mesh bodies. Then, the wadding layer and the cushion layer are individually taken out, have an opening / closing port through which the wadding layer and the cushion layer can be inserted, and the wadding layer and the cushion layer are inserted into a side fabric made of polyester fiber made of Toyobo Co. Got Table 2 shows the evaluation results of the obtained mat for betting. As clearly shown in Table 2, heat resistance, durability, breathability,
It is a mat for betting that is excellent in bending and draining properties and has good sleeping comfort. The mat for this bed showed flame retardancy, and the toxicity index of combustion gas was 5.8. From this, it can be seen that the mat for betting is highly safe in case of fire.

【0024】[0024]

【表2】 [Table 2]

【0025】実施例2 幅120cm、長さ5cmのノズル有効面に幅方向の孔間ピ
ッチ5mm、長さ方向の孔間ピッチ10mmの千鳥配列とし
たオリフィス形状は外径1mm丸断面としたノズルに、得
られた熱可塑性弾性樹脂原料A−5を押出機にて溶融
し、溶融温度245℃にて単孔当たりの吐出量2.0g
/分にてノズル下方に吐出させ、ノズル面15cm下に冷
却水を配し、幅140m のステンレス製エンドレスネッ
トを平行に平行に4.5cm間隔で一対の引取りコンベア
を水面上に一部出るように配して、該溶融状態の吐出線
状を曲がりくねらせル−プを形成して接触部分を融着さ
せつつ3次元網状構造を形成し、該溶融状態の網状体の
両面を引取りコンベア−で挟み込みつつ毎分1mの速度
で25℃の冷却水中へ引込み固化させ両面をフラット化
した後引取り、水切り後、連続して120℃の加熱空気
を循環させたセッタ−中を15分間通過させ冷却後、所
定の大きさに切断して得た網状体は、断面形状が丸断面
で、線径が0.9mmの融点以外に126℃に吸熱ピーク
をもつ線条が、形成するル−プの互いの接触点は殆ど融
着により接合され、両面が実質的にフラット化され、平
均の見掛け密度が0.048g/cm2 、厚み4.5cm、
繰返し圧縮歪み7.5%、耐熱耐久性18.4%であっ
た。次いで、熱可塑性弾性樹脂A−1をシ−ス成分、A
−2をコア成分となるように個々に溶融してオリフィス
直前で分配した以外実施例1と同様にして得た熱接着繊
維の繊度は3.1デニ−ル、乾熱160℃での収縮率5
%であった。次いで、開繊綿でホルマリン加工したラミ
−綿と実施例1で使用した合成繊維と該熱接着繊維を6
0/10/30重量比で混合し、オ−プナ−にて予備開
繊した後カ−ドで開繊して得たウエッブを見掛け密度が
0.05g/cm2 、厚み8mmとなるように積層圧縮し、
200℃の熱風にて5分間熱処理後冷却して両面がフラ
ットなワディング層を得た。次いで、120℃の加熱空
気を循環させたセッタ−中で15分間熱処理し、冷却後
所定の大きさに切断して、4枚の該網状体の両面に積層
した。次いで、ワディング層とクッション層を個々に取
り出し、挿入ができる開閉口を持ち、所定の大きさに縫
製された東洋紡績製ハイムからなるポリエステル繊維か
らなる側地に挿入して本発明のベット用マットを得た。
得られたベット用マットの評価結果を表2に示す。表2
で明らかごとく、耐熱性、耐久性、通気性、折り曲げ
性、水切り性に優れ、寝心地の良好なベットマットであ
る。なお、このマットは燃焼ガスの毒性指数は5.0で
あった。このことから、火災時の安全性が良いマットで
あることが分かる。
Example 2 A nozzle having a width of 120 cm and a length of 5 cm and having a staggered arrangement with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 10 mm in the length direction on a nozzle effective surface is a nozzle having an outer diameter of 1 mm and a round cross section. The obtained thermoplastic elastic resin raw material A-5 was melted by an extruder, and the discharge amount per single hole was 2.0 g at a melting temperature of 245 ° C.
Discharge at the bottom of the nozzle at a rate of 1 / min, and place cooling water 15 cm below the nozzle surface, and a pair of take-up conveyors partially exit above the water surface in parallel with a stainless endless net with a width of 140 m at intervals of 4.5 cm. The melted discharge line is bent to form a loop to fuse the contact portions to form a three-dimensional network structure, and both sides of the molten network are drawn. While sandwiching it with a conveyor, it is drawn into cooling water at 25 ° C at a speed of 1 m / min to be solidified and flattened on both sides, then taken off, drained, and then in a setter in which heated air at 120 ° C is continuously circulated for 15 minutes. The reticulate body obtained by passing and cooling and then cutting it to a predetermined size has a round cross-section, and a linear filament having an endothermic peak at 126 ° C is formed in addition to a melting point of 0.9 mm. -The contact points of the Surface is substantially flattened, the apparent density of the average 0.048 g / cm 2, thickness 4.5 cm,
The cyclic compression strain was 7.5%, and the heat resistance durability was 18.4%. Then, the thermoplastic elastic resin A-1 is used as a sheath component, A
-2 of the heat-bonded fiber obtained in the same manner as in Example 1 except that each of -2 was individually melted and distributed immediately before the orifice had a fineness of 3.1 denier and a shrinkage ratio at a dry heat of 160 ° C. 5
%Met. Next, formalin-processed lami-cotton with spread cotton, the synthetic fiber used in Example 1 and the heat-bonded fiber were mixed with each other.
The web obtained by mixing at a weight ratio of 0/10/30, pre-opening with an opener and then opening with a card has an apparent density of 0.05 g / cm 2 and a thickness of 8 mm. Laminated and compressed
After heat treatment with hot air at 200 ° C. for 5 minutes and cooling, a wadding layer having flat both sides was obtained. Then, heat treatment was carried out for 15 minutes in a setter in which heated air of 120 ° C. was circulated, and after cooling, cut into a predetermined size and laminated on both sides of the four mesh bodies. Then, the wadding layer and the cushion layer are individually taken out, have an opening / closing port through which the wadding layer and the cushion layer can be inserted, and the wadding layer and the cushion layer are inserted into a side fabric made of polyester fiber made of Toyobo Co. Got
Table 2 shows the evaluation results of the obtained mat for betting. Table 2
As is clear from the above, it is a bed mat which is excellent in heat resistance, durability, breathability, bendability and drainage, and has a good sleeping comfort. The matte had a combustion gas toxicity index of 5.0. From this, it can be seen that the mat has good safety in case of fire.

【0026】実施例3 幅120cm、長さ5cmのノズル有効面に幅方向の孔間ピ
ッチ5mm、長さ方向の孔間ピッチ10mmの千鳥配列とし
たオリフィス形状は外径2mm、内径1.6mmでトリプル
ブリッジの中空形成性断面としたノズルに、得られた熱
可塑性弾性樹脂A−3を押出機にて溶融し、溶融温度2
35℃にて単孔当たりの吐出量2.0g/分にてノズル
下方に吐出させ、ノズル面12cm下に冷却水を配し、幅
140cmのステンレス製エンドレスネットを平行に4.
5cm間隔で一対の引取りコンベアを水面上に一部出るよ
うに配して、該溶融状態の吐出線状を曲がりくねらせル
−プを形成して接触部分を融着させつつ3次元網状構造
を形成し、毎分1mの速度で25℃の冷却水中へ引込み
固化させた後引取り、水切り後、連続して120℃の加
熱空気を循環させたセッタ−中を15分間通過させ冷却
後、所定の大きさに切断して得た両面が実質的にフラッ
ト化された網状体は、断面形状は中空おむすび型断面
で、線径が1.2mmの融点以外に126℃に吸熱ピーク
をもつ線条が、形成するル−プの互いの接触点は殆ど融
着により接合され、平均の見掛け密度が0.048g/
cm2 、厚み4.5cm、繰返し圧縮歪み5.8%、耐熱耐
久性10.8%であった。次いで、カット長65mmに切
断した真綿と実施例1で得た合成繊維及び実施例1で得
た熱接着繊維を50/20/30重量比で混合した以
外、実施例1と同様の条件で得たワディング層を所定の
大きさに切断して、次いで実施例2と同様にして本発明
のベット用マットの評価結果を表2に示す。表2で明ら
かごとく、耐熱性、耐久性、通気性、折り曲げ性、水切
り性に優れ、寝心地の良好なベットマットである。な
お、このベット用マットは燃焼ガスの毒性指数は5.6
であった。このことから、火災時の安全性も良いベット
用マットであることが分かる。
Example 3 A staggered array of orifices having an outer diameter of 2 mm and an inner diameter of 1.6 mm was formed on a nozzle effective surface having a width of 120 cm and a length of 5 cm with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 10 mm in the length direction. The obtained thermoplastic elastic resin A-3 was melted in an extruder with a nozzle having a triple bridge hollow forming cross section, and the melting temperature was 2
3. Discharge at a discharge rate of 2.0 g / min per single hole at 35 ° C. below the nozzle, arrange cooling water 12 cm below the nozzle surface, and make stainless endless nets 140 cm wide in parallel.
A pair of take-up conveyors are arranged at intervals of 5 cm so as to partially protrude above the surface of the water, and the discharge line in the molten state is bent to form loops to fuse the contact portions to form a three-dimensional net structure. Was formed, and was drawn into cooling water at 25 ° C. at a rate of 1 m / min for solidification, then taken off, drained, and passed through a setter in which heated air at 120 ° C. was continuously circulated for 15 minutes to cool, The net-like body obtained by cutting into a predetermined size and having both sides substantially flat is a hollow rice ball-shaped cross section, and a wire having an endothermic peak at 126 ° C in addition to a melting point of 1.2 mm. The contact points of the loops formed by the stripes are almost joined by fusion bonding, and the average apparent density is 0.048 g /
cm 2 , thickness 4.5 cm, cyclic compression strain 5.8%, heat resistance durability 10.8%. Then, under the same conditions as in Example 1, except that the cotton wool cut into a cut length of 65 mm, the synthetic fiber obtained in Example 1 and the heat-bonded fiber obtained in Example 1 were mixed in a weight ratio of 50/20/30. The wadding layer was cut into a predetermined size, and then, as in Example 2, the evaluation results of the betting mat of the present invention are shown in Table 2. As is clear from Table 2, the bed mat is excellent in heat resistance, durability, breathability, bending property, and water draining property, and has good sleeping comfort. This bed mat has a combustion gas toxicity index of 5.6.
Met. From this, it is understood that the mat for betting has good safety in case of fire.

【0027】実施例4 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 4 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0028】[0028]

【表3】 [Table 3]

【0029】得られた熱可塑性弾性樹脂(シ−ス成分:
B−1、コア成分:B−2)を溶融温度220℃とした
以外実施例1と同様にして得た網状体の線条のシ−スコ
ア構造の断面形状が三角おむすび型の中空断面で中空率
40%、線径が1.1mmの融点以外に126℃に吸熱ピ
ークをもつ線条が、形成するル−プの互いの接触点は殆
ど融着により接合され、両面が実質的にフラット化さ
れ、平均の見掛け密度が0.047g/cm2 、厚み9.
5cm、繰返し圧縮歪み3.6%、耐熱耐久性7.5%で
あった。次いで、実施例2で使用した疑似結晶化処理
し、所定の大きさに切断したワディング層を該網状体の
両面に積層した。次いで、実施例と同様にして得られた
ベット用マットの評価結果を表2に示す。表2で明らか
ごとく、耐熱性、耐久性、通気性、折り曲げ性、水切り
性に優れ、寝心地の良好なベット用マットである。
The thermoplastic elastic resin thus obtained (seed component:
B-1 and core component: B-2) except that the melting temperature was 220 ° C., and the cross-sectional shape of the cis-core structure of the filaments of the reticulate body obtained in the same manner as in Example 1 was a hollow in the shape of a triangular rice ball. In addition to the melting point with a rate of 40% and a wire diameter of 1.1 mm, the filaments that have an endothermic peak at 126 ° C are joined by fusion bonding at the contact points of the loops formed, and both sides are substantially flattened. The average apparent density is 0.047 g / cm 2 , and the thickness is 9.
5 cm, cyclic compression strain 3.6%, heat resistance durability 7.5%. Next, the quasi-crystallization treatment used in Example 2 and a wading layer cut into a predetermined size were laminated on both surfaces of the reticulate body. Next, Table 2 shows the evaluation results of the betting mats obtained in the same manner as in the examples. As is clear from Table 2, this bet mat is excellent in heat resistance, durability, breathability, bendability, and water draining property, and has a good sleeping comfort.

【0030】比較例1 メルトインデックス12のポリプロピレン(PP)単成
分のみを溶融温度を250℃とした以外、実施例2と同
様にして得た網状体は、中実丸断面で、線径が1.8m
m、の融点以外に126℃に吸熱ピークをもたない線条
が、形成するル−プの互いの接触点は殆ど融着により接
合され、両面が実質的にフラット化され、平均の見掛け
密度が0.047g/cm2 、厚み4.5cm、繰返し圧縮
歪み30.2%、耐熱耐久性49.5%であった。次い
で、精練したインド綿と実施例1で使用した合成繊維と
該熱接着繊維を60/10/30重量比で混合し、オ−
プナ−にて予備開繊した後カ−ドで開繊して得たウエッ
ブを見掛け密度が0.05g/cm2 、厚み8mmとなるよ
うに積層圧縮し、200℃の熱風にて5分間熱処理後冷
却して両面がフラットなワディング層を得た。次いで、
120℃の加熱空気を循環させたセッタ−中で15分間
熱処理し、冷却後所定の大きさに切断して、4枚の該網
状体の両面に積層した。次いで、実施例2と同様にして
得られたベット用マットの評価結果を表2に示す。表2
で明らかごとく、非弾性オレフィンからなる網状体のた
め、通気性、水切り性には優れるが、耐熱性、耐久性、
折り曲げ性、蒸れ感以外の寝心地が著しく劣るベットマ
ットであり、難燃性も不合格になり火災時には問題がで
るベットマットである。
Comparative Example 1 A reticulate body obtained in the same manner as in Example 2 except that only the polypropylene (PP) single component having a melt index of 12 had a melting temperature of 250 ° C. has a solid round cross section and a wire diameter of 1 .8m
Wires that do not have an endothermic peak at 126 ° C other than the melting points of m and m are joined by fusion bonding at most contact points of the loops, and both sides are substantially flattened, and the average apparent density is Was 0.047 g / cm 2 , thickness was 4.5 cm, cyclic compression strain was 30.2%, and heat resistance durability was 49.5%. Then, the scoured Indian cotton, the synthetic fiber used in Example 1 and the heat-bonded fiber were mixed at a weight ratio of 60/10/30, and then mixed.
The web obtained by pre-opening with a planer and then with a card was laminated and compressed to have an apparent density of 0.05 g / cm 2 and a thickness of 8 mm, and heat-treated with hot air at 200 ° C. for 5 minutes. After cooling, a wadding layer having flat surfaces on both sides was obtained. Then
Heat treatment was performed for 15 minutes in a setter in which heated air of 120 ° C. was circulated, and after cooling, cut into a predetermined size and laminated on both sides of the four mesh bodies. Next, Table 2 shows the evaluation results of the betting mats obtained in the same manner as in Example 2. Table 2
As is clear from the above, since it is a reticulated body made of an inelastic olefin, it is excellent in breathability and drainage, but it has heat resistance, durability,
It is a bed mat that is extremely inferior in sleeping comfort other than bendability and stuffiness, and also has a problem of flame retardance, which causes problems during a fire.

【0031】比較例2 幅120cm、長さ10cmのノズル有効面に幅方向の孔間
ピッチ5mm、長さ方向の孔間ピッチ10mmの千鳥配列と
したオリフィス形状は外径1mm丸断面としたノズルに、
得られた熱可塑性弾性樹脂原料A−5を押出機にて溶融
し、溶融温度235℃にて単孔当たりの吐出量3.0g
/分にてノズル下方に吐出させ、ノズル面5cm下に冷却
水を配し、幅140cmのステンレス製エンドレスネット
を平行に平行に9.5cm間隔で一対の引取りコンベアを
水面上に一部出るように配して、該溶融状態の吐出線状
を曲がりくねらせル−プを形成して接触部分を融着させ
つつ3次元網状構造を形成し、該溶融状態の網状体の両
面を引取りコンベア−で挟み込みつつ毎分1mの速度で
25℃の冷却水中へ引込み固化させ両面をフラット化し
た後引取り、水切り後、所定の大きさに切断して得た網
状体は、断面形状が丸断面で、線径が5.9mmの融点以
外に吸熱ピークをもたない線条が、形成するル−プの互
いの接触点は殆ど融着により接合され、両面が実質的に
フラット化され、平均の見掛け密度が0.074g/cm
2 、厚み9.5cm、繰返し圧縮歪み18.3%、耐熱耐
久性28.4%であった。次いで、比較例1で使用した
ワヂィング層を2枚の該網状体の両面に積層した。次い
で、実施例1と同様にして得ら*たベット用マットの評
価結果を表2に示す。表2で明らかごとく、通気性、水
切り性、蒸れ感の少ない点に優れるが、耐熱性、耐久
性、折り曲げ性、蒸れ感以外の寝心地が劣るベット用マ
ットである。なお、このベット用マットの燃焼ガスの毒
性指数は5.1であった。
COMPARATIVE EXAMPLE 2 A nozzle having a width of 120 cm and a length of 10 cm and a staggered arrangement with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 10 mm in the length direction on an effective surface of the nozzle has an outer diameter of 1 mm and a round cross section. ,
The obtained thermoplastic elastic resin raw material A-5 was melted with an extruder, and the melting amount was 235 ° C., and the discharge amount per single hole was 3.0 g.
/ Min, and the cooling water is placed under the nozzle surface 5 cm, and a pair of take-up conveyors are partially projected on the water surface in parallel with the stainless endless net of width 140 cm at intervals of 9.5 cm. The melted discharge line is bent to form a loop and the contact portions are fused to form a three-dimensional network structure, and both sides of the melted network are drawn. While being sandwiched by a conveyor, it is drawn into cooling water at 25 ° C. at a speed of 1 m / min to be solidified and flattened on both sides, then taken out, drained, and cut into a predetermined size. In the cross section, the filaments having no endothermic peak other than the melting point of 5.9 mm in diameter are formed by joining most of the contact points of the loops formed by fusion bonding and substantially flattening both sides. Average apparent density is 0.074g / cm
2 , the thickness was 9.5 cm, the cyclic compression strain was 18.3%, and the heat resistance was 28.4%. Then, the wading layer used in Comparative Example 1 was laminated on both sides of the two mesh bodies. Then, Table 2 shows the evaluation results of the mat for betting obtained * in the same manner as in Example 1. As is apparent from Table 2, the bet mat is excellent in breathability, drainability, and less dampness, but is inferior in sleeping comfort other than heat resistance, durability, bendability, and dampness. The combustion gas toxicity index of this bed mat was 5.1.

【0032】比較例3 溶融温度245℃にて、ノズル面30cm下に引取りコン
ベアネットを配し、引き取り速度を0.3m/分とした
以外、比較例2と同様の方法で得た網状体は、断面形状
が丸断面で、線径が1.9mmの融点以外に吸熱ピークを
もたない線条が、形成するル−プの互いの接触点は殆ど
融着により接合され、両面が実質的にフラット化され、
平均の見掛け密度が0.24g/cm2 、厚み9.5cm、
繰返し圧縮歪み19.8%、耐熱耐久性29.4%であ
った。次いで、比較例2と同様にして得たベットマット
の評価結果を表2に示す。表2で明らかごとく、通気
性、水切り性、蒸れ感の少ない点に優れるが、耐熱性、
耐久性、折り曲げ性、蒸れ感以外の寝心地が劣るベット
用マットである。なお、このベット用マットは燃焼ガス
の毒性指数は5.1であった。
Comparative Example 3 A reticulate body obtained in the same manner as in Comparative Example 2 except that a take-up conveyor net was placed 30 cm below the nozzle surface at a melting temperature of 245 ° C. and the take-up speed was 0.3 m / min. Is a round cross-section with a wire diameter of 1.9 mm, which has no endothermic peak other than the melting point, and the contact points of the loops formed are almost joined by fusion, and both sides are substantially Is flattened,
Average apparent density is 0.24 g / cm 2 , thickness is 9.5 cm,
The cyclic compression strain was 19.8% and the heat resistance durability was 29.4%. Then, Table 2 shows the evaluation results of the bet mats obtained in the same manner as in Comparative Example 2. As is clear from Table 2, it is excellent in breathability, drainability, and less dampness, but heat resistance,
A mat for betting that is inferior in sleep comfort other than durability, bendability, and dampness. The bed gas mat had a combustion gas toxicity index of 5.1.

【0033】比較例4 単孔当たりの吐出量0.3g/分とし、ノズル面5cm下
に引取りコンベアネットを配し、引き取り速度を1.9
m/分とした以外、比較例3と同様の方法で得た網状体
は、断面形状が丸断面で、線径が0.4mmの融点以外に
吸熱ピークをもたない線条が、形成するル−プの互いの
接触点は殆ど融着により接合され、両面が実質的にフラ
ット化され、平均の見掛け密度が0.004g/cm2
厚み9.5cm、繰返し圧縮歪み13.6%、耐熱耐久性
22.4%であった。次いで、比較例2と同様にして得
たベット用マットの評価結果を表2に示す。表2で明ら
かごとく、通気性、折り曲げ性、水切り性に優れるが、
耐熱性、耐久性、寝心地が劣るベット用マットである。
COMPARATIVE EXAMPLE 4 The discharge amount per single hole was 0.3 g / min, a take-up conveyor net was placed 5 cm below the nozzle surface, and the take-up speed was 1.9.
The reticulate body obtained by the same method as in Comparative Example 3 except that m / min was a cross section having a round cross section, and a line having no endothermic peak other than the melting point of 0.4 mm was formed. Almost all contact points of the loops are joined by fusion bonding, both sides are substantially flattened, and the average apparent density is 0.004 g / cm 2 ,
The thickness was 9.5 cm, the cyclic compression strain was 13.6%, and the heat resistance durability was 22.4%. Next, Table 2 shows the evaluation results of the betting mats obtained in the same manner as in Comparative Example 2. As is clear from Table 2, it has excellent breathability, bendability, and drainability,
It is a bed mat that has poor heat resistance, durability, and sleeping comfort.

【0034】比較例5 溶融温度230℃にて、単孔当たりの吐出量1.5g/
分とし、ノズル面60cm下に引取りコンベアネットを配
し、引き取り速度を1m/分とした以外、比較例2と同
様の方法で得た網状体は、断面形状が丸断面で、線径が
1.9mmの融点以外に吸熱ピークをもたない線条となる
が、線条がル−プを形成しないで接触点が殆どできず、
網状体を形成しなかった。この線条を無理に見掛け密度
が0.05g/cm2 、厚み9.5cmのウエッブ状とし、
次いで、比較例2と同様にして得たベット用マットの評
価結果を表2に示す。表2で明らかごとく、接触点が接
合されない場合は、寝心地が劣るベットマットになる。
なお、このベットマットは寝心地が劣悪なため他の評価
をしていない。
Comparative Example 5 At a melting temperature of 230 ° C., the discharge amount per single hole was 1.5 g /
Minutes, a take-up conveyor net was placed 60 cm below the nozzle surface, and the take-up speed was set to 1 m / min. The filament has no endothermic peak other than the melting point of 1.9 mm, but the filament does not form a loop and almost no contact point is formed.
No reticulate was formed. Forcing this wire into a web with an apparent density of 0.05 g / cm 2 and a thickness of 9.5 cm,
Next, Table 2 shows the evaluation results of the betting mats obtained in the same manner as in Comparative Example 2. As is clear from Table 2, when the contact points are not joined, the bed mat is inferior in sleeping comfort.
Since this bed mat has poor sleeping comfort, no other evaluation was made.

【0035】比較例6 溶融温度245℃にて、単孔当たりの吐出量1.5g/
分とし、ノズル面20cm下に引取りコンベアネットを配
し、片側のコンベアネットの表面に5mmの凹凸を付けた
ものとし、引き取り速度を1m/分とした以外、比較例
2と同様の方法で得た網状体は、断面形状が丸断面で、
線径が0.9mmの融点以外に吸熱ピークをもたない線条
が、形成するル−プの互いの接触点は殆ど融着により接
合され、片面は実質的にフラット化されているが、他面
は凹凸を有する、平均の見掛け密度が0.035g/cm
2 、最も厚い場所の厚み9.5cm、繰返し圧縮歪み1
9.5%、耐熱耐久性29.2%であった。次いで、比
較例2と同様にして得たベット用マットの評価結果を表
2に示す。表2で明らかごとく、通気性、折り曲げ性、
水切り性、蒸れ感、圧迫感の少ない点に優れるが、耐熱
性、耐久性がやや劣り、凸凹側を使った寝心地では違和
感があり、寝心地がやや劣るベット用マットである。な
お、このベット用マットの燃焼ガスの毒性指数は5.1
であった。
Comparative Example 6 At a melting temperature of 245 ° C., the discharge amount per single hole was 1.5 g /
In the same manner as in Comparative Example 2, except that a take-up conveyor net was placed 20 cm below the nozzle surface and the surface of one side of the conveyor net had irregularities of 5 mm, and the take-up speed was 1 m / min. The obtained reticulate body has a round cross section,
Wires having no endothermic peak other than the melting point of the wire diameter of 0.9 mm, the contact points of the loops to be formed are almost joined by fusion, and one side is substantially flattened. The other surface has irregularities, the average apparent density is 0.035 g / cm
2 , thickness of the thickest place 9.5cm, repeated compressive strain 1
The heat resistance and durability were 9.5% and 29.2%, respectively. Next, Table 2 shows the evaluation results of the betting mats obtained in the same manner as in Comparative Example 2. As clearly shown in Table 2, breathability, bendability,
It is a mat for betting, which excels in drainability, stuffiness, and pressure but is slightly inferior in heat resistance and durability. In addition, the toxicity index of the combustion gas of this bed mat is 5.1.
Met.

【0036】比較例7 幅120cm、長さ1cmのノズル有効面に幅方向の孔間ピ
ッチ5mm、長さ方向の孔間ピッチ5mmの千鳥配列とした
オリフィス形状は外径1mm丸断面としたノズルを用い、
単孔当たりの吐出量0.3g/分とし、ノズル面5cm下
に引取りコンベアネットを配し、0.4cm間隔で一対の
引取りコンベアを水面上に一部出るように配して、引き
取り速度を1.0m/分とした以外、比較例3と同様の
方法で得た網状体は、断面形状が丸断面で、線径が0.
4mmの融点以外に吸熱ピークをもたない線条が、形成す
るル−プの互いの接触点は殆ど融着により接合され、両
面が実質的にフラット化され、平均の見掛け密度が0.
064g/cm2 、厚み0.4cm、繰返し圧縮歪み18.
6%、耐熱耐久性29.8%であった。次いで、比較例
2と同様にして得たベット用マットの評価結果を表2に
示す。表2で明らかごとく、通気性、折り曲げ性、水切
り性に優れるが、耐熱性、耐久性が劣り、クッション層
が薄すぎて寝心地が著しく劣るベットマットである。
Comparative Example 7 A nozzle having a width of 120 cm and a length of 1 cm and a staggered arrangement with a hole-to-hole pitch of 5 mm in the width direction and a hole-to-hole pitch of 5 mm in the length direction on a nozzle effective surface was used. Used,
The discharge rate per single hole is 0.3 g / min, a take-up conveyor net is placed 5 cm below the nozzle surface, and a pair of take-up conveyors are placed at 0.4 cm intervals so that they partially come out on the water surface. The reticulate body obtained in the same manner as in Comparative Example 3 except that the speed was 1.0 m / min had a round cross section and a wire diameter of 0.
The filaments having no endothermic peak other than the melting point of 4 mm are formed by almost fusion-bonding the contact points of the formed loops, substantially flattening both surfaces, and an average apparent density of 0.
064 g / cm 2 , thickness 0.4 cm, cyclic compressive strain 18.
It was 6% and the heat resistance durability was 29.8%. Next, Table 2 shows the evaluation results of the betting mats obtained in the same manner as in Comparative Example 2. As is clear from Table 2, the bed mat is excellent in breathability, bending property, and water draining property, but inferior in heat resistance and durability, and the cushion layer is too thin to remarkably sleep.

【0037】比較例8 疑似結晶化処理しなかった以外実施例2と同様にして得
た網状体の特性は断面形状が丸断面で、線径が0.9mm
の融点以外に126℃に吸熱ピークをもたない線条が、
形成するル−プの互いの接触点は殆ど融着により接合さ
れ、両面が実質的にフラット化され、平均の見掛け密度
が0.048g/cm2 、厚み4.5cm、繰返し圧縮歪み
16.5%、耐熱耐久性26.4%であった。別途、精
練したインド綿と実施例1で使用した合成繊維と該熱接
着繊維を60/10/30重量比で混合し、オ−プナ−
にて予備開繊した後カ−ドで開繊して得たウエッブを見
掛け密度が0.15g/cm2 、厚み8mmとなるように積
層圧縮し、200℃の熱風にて5分間熱処理後冷却し、
次いで、120℃の加熱空気を循環させたセッタ−中で
15分間熱処理し、冷却後所定の大きさに切断して両面
がフラットなワディング層を得た。次いで、実施例2と
同様にして得たベット用マットの評価結果を表2に示
す。表2より明らかなごとく、ワヂィング層の密度が高
すぎるため、通気性、折り曲げ性が悪く、寝心地も劣る
ベット用マットであった。
Comparative Example 8 The characteristics of the reticulate body obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not carried out were that the cross-sectional shape was a round cross section and the wire diameter was 0.9 mm.
In addition to the melting point of, the filaments that have no endothermic peak at 126 ° C
Almost all the contact points of the loops to be formed are joined by fusion bonding and both sides are substantially flattened, the average apparent density is 0.048 g / cm 2 , the thickness is 4.5 cm, and the cyclic compression strain is 16.5. %, And the heat resistance durability was 26.4%. Separately, the scoured Indian cotton, the synthetic fiber used in Example 1 and the heat-bonded fiber were mixed in a weight ratio of 60/10/30 to form an opener.
The web obtained by pre-opening with a card is opened and laminated so as to have an apparent density of 0.15 g / cm 2 and a thickness of 8 mm, heat treated with hot air at 200 ° C. for 5 minutes and then cooled. Then
Then, heat treatment was carried out for 15 minutes in a setter in which heated air of 120 ° C. was circulated, and after cooling, cut into a predetermined size to obtain a wadding layer having both sides flat. Next, Table 2 shows the evaluation results of the betting mats obtained in the same manner as in Example 2. As is clear from Table 2, since the density of the wading layer was too high, the mat for a bed was poor in breathability and bending property and inferior in sleeping comfort.

【0038】比較例9 見掛け密度が0.05g/cm3 の市販のポリエステル硬
綿を厚み5mmにスライスし、所定の大きさに切断して、
比較例8で用いた2枚の該網状体の両面に市販のゴム系
接着接着剤を塗布して積層した硬綿を網状体と接着し、
所定の大きさに縫製されたポリエステル繊維からなる側
地に挿入して得られたベット用マットの評価結果を表2
に示す。表2で明らかごとく、寝心地はやや良いが、耐
熱性、耐久性、通気性、折り曲げ性、水切り性が劣るベ
ット用マットである。
Comparative Example 9 Commercially available polyester hard cotton having an apparent density of 0.05 g / cm 3 was sliced to a thickness of 5 mm and cut into a predetermined size.
The hard rubber laminated by applying a commercially available rubber-based adhesive adhesive on both surfaces of the two nets used in Comparative Example 8 was adhered to the net.
Table 2 shows the evaluation results of the betting mat obtained by inserting the mat into the side material made of polyester fiber sewn into a predetermined size.
Shown in As is clear from Table 2, the bed mat is slightly comfortable to sleep but inferior in heat resistance, durability, breathability, bendability and drainability.

【0039】比較例10 厚み10cm、見掛け密度0.05g/cm3 の市販のポリ
エステル硬綿をクッション材とし、所定の大きさに縫製
されたポリエステル繊維からなる側地に挿入して得られ
たベット用マットの評価結果を表2に示す。表2で明ら
かごとく、寝心地はやや良いが沈み込みが少なく、耐熱
性、耐久性、通気性、折り曲げ性、水切り性は劣るベッ
ト用マットである。
Comparative Example 10 A bed obtained by inserting commercially available polyester hard cotton having a thickness of 10 cm and an apparent density of 0.05 g / cm 3 into a cushion material and inserting it into a side cloth made of polyester fiber sewn to a predetermined size. Table 2 shows the evaluation results of the mat. As is clear from Table 2, the mat for betting has a good sleeping comfort but little sinking, and is inferior in heat resistance, durability, breathability, bendability and drainability.

【0040】比較例11 厚み10cm、見掛け密度0.05g/cm3 の市販の発泡
ポリウレタンをクッション材とし、比較例2で使用した
ワディング層を積層し、所定の大きさに縫製されたポリ
エステル繊維からなる側地に挿入して得られたベット用
マットの評価結果を表2に示す。表2で明らかごとく、
耐熱性、耐久性は優れているが、通気性、折り曲げ性、
水切り性、寝心地が劣るベットマットである。
COMPARATIVE EXAMPLE 11 A commercially available polyurethane foam having a thickness of 10 cm and an apparent density of 0.05 g / cm 3 was used as a cushioning material, and the wadding layer used in Comparative Example 2 was laminated on the polyester fiber sewn to a predetermined size. Table 2 shows the evaluation results of the mat for betting obtained by inserting it into the side ground. As is clear from Table 2,
It has excellent heat resistance and durability, but is breathable, bendable,
It is a bed mat that is inferior in drainability and sleep comfort.

【0041】実施例5 実施例2で得た網状体の両面に実施例1で用いたワディ
ング層を積層して所定の大きさに縫製されたポリエステ
ル繊維からなる側地に挿入して敷布団を得た。得られた
敷布団の評価結果では、耐熱性、耐久性、通気性、折り
曲げ性、水切り性、寝心地が共に優れた敷布団であっ
た。
Example 5 A mattress was obtained by laminating the wadding layers used in Example 1 on both sides of the mesh body obtained in Example 2 and inserting the wadding layer in a side cloth made of polyester fiber sewn to a predetermined size. It was As a result of evaluation of the obtained mattress, the mattress was excellent in heat resistance, durability, breathability, bendability, drainability, and sleeping comfort.

【0042】実施例6 実施例2で得た網状体の両面に実施例1で用いたワディ
ング層を積層して所定の大きさに縫製されたポリエステ
ル繊維からなる側地に挿入して座蒲団を得た。得られた
座蒲団の評価結果では、耐熱性、耐久性、通気性、水切
り性、座り心地共に優れた座蒲団であった。
Example 6 The wadding layer used in Example 1 was laminated on both sides of the mesh body obtained in Example 2 and inserted into a side fabric made of polyester fiber sewn to a predetermined size to obtain a seat cushion. It was The result of evaluation of the obtained zakka was that it was excellent in heat resistance, durability, breathability, drainability and sitting comfort.

【0043】[0043]

【発明の効果】伸長回復性の良い熱可塑性弾性樹脂から
なる線条が融着一体化され表面をフラット化した網状体
をクッション層にし、天然繊維の特性と熱可塑性弾性樹
脂の伸長回復性を生かした硬綿をワディング層に積層さ
れたマット類、及び、製法であるので、蒸れ難く寝心地
が良好で、耐熱耐久性、形態保持性、クッション性に優
れ、折り曲げ性も良好で使い易く、火災時に有毒ガスの
発生が少なく、MRSA等の雑菌を除去するための洗濯
ができて水切り性の良好な一般家庭用、病院用及びホテ
ル用等のベットに最適なベット用マット、敷布団、座蒲
団及び、家具用にも適するクッション体として有用なマ
ット類、及び、製造法を提供できる。
[Effects of the Invention] A net-like body having a flattened surface in which filaments made of a thermoplastic elastic resin having good elongation recovery is fused and integrated to form a cushion layer to improve the characteristics of natural fibers and the elongation recovery of the thermoplastic elastic resin. The mats are made by layering hard cotton that is used on the wadding layer, and the manufacturing method makes it difficult to get stuffy and comfortable to sleep in. Occasionally, it produces less toxic gas and can be washed to remove germs such as MRSA and has good drainage properties. Suitable for household use, hospital use, hotel use, etc. It is possible to provide a mat useful as a cushion body suitable for furniture and a manufacturing method.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 クッション層の少なくとも上面にワディ
ング層が積層され、且つ、全体面が側地で被われたマッ
ト類であり、クッション層は、熱可塑性弾性樹脂からな
る線径が5mm以下の連続した線条を曲がりくねらせラ
ンダムループを形成し、それぞれのループの接触部の大
部分が融着されてなる三次元立体構造網状体で形成さ
れ、該三次元立体構造網状体は上、下両面が実質的にフ
ラット化されており、見掛け密度が0.005〜0.1
0g/cm3 、厚みが5mm以上であり、ワディング層
は、天然繊維を主たるマトリクスとし、該マトリックス
中には熱可塑性弾性樹脂を熱接着成分とした熱接着性繊
維が分散混入され、繊維の交差点で部分的に固着点を形
成しており、該ワディング層の見掛け密度が0.1g/
cm3 以下であることを特徴とするマット類。
1. A matting material in which a wadding layer is laminated on at least an upper surface of a cushion layer and the entire surface is covered with a side material, and the cushion layer is made of a thermoplastic elastic resin and has a continuous wire diameter of 5 mm or less. Formed into a three-dimensional three-dimensional network having a contact portion of each loop fused to form a random loop, and the three-dimensional three-dimensional network has upper and lower surfaces. Are substantially flattened, and the apparent density is 0.005 to 0.1.
0 g / cm 3 , thickness 5 mm or more, the wadding layer has a natural fiber as a main matrix, and the thermoplastic adhesive resin as a thermal adhesive component is dispersed and mixed in the matrix to form a fiber crossing point. Partly form a fixed point, and the apparent density of the wadding layer is 0.1 g /
Mats characterized by being less than or equal to cm 3 .
【請求項2】 クッション層を構成する熱可塑性弾性樹
脂が、室温での300%伸長後の回復率(室温伸長回復
率)が20%以上、70℃での10%伸長を24時間保
持した後の回復率(70℃伸長回復率)が30%以上で
ある請求項1記載のマット類。
2. The thermoplastic elastic resin constituting the cushion layer has a recovery rate after room temperature elongation of 300% (room temperature elongation recovery rate) of 20% or more and after holding 10% elongation at 70 ° C. for 24 hours. The mat according to claim 1, wherein the recovery rate (70 ° C extension recovery rate) is 30% or more.
【請求項3】 クッション層を構成する網状体の線径が
0.01mm以上、見掛けの密度が0.01g/cm3 から
0.08g/cm3 、厚みが10mm以上である請求項1記
載のマット類。
3. The reticulate body constituting the cushion layer has a wire diameter of 0.01 mm or more, an apparent density of 0.01 g / cm 3 to 0.08 g / cm 3 , and a thickness of 10 mm or more. Mats.
【請求項4】 クッション層を構成する網状体の線径が
0.1mm以上2mm以下、見掛けの密度が0.02g/cm
3 から0.06g/cm3 、厚みが20mm以上500mm以
下である請求項1記載のマット類。
4. The wire diameter of the net-like body constituting the cushion layer is 0.1 mm or more and 2 mm or less, and the apparent density is 0.02 g / cm.
The mat according to claim 1, which has a thickness of 3 to 0.06 g / cm 3 and a thickness of 20 mm or more and 500 mm or less.
【請求項5】 ワディング層の空隙率が90%以上で厚
みが2mm以上10mm以下である請求項1記載のマッ
ト類。
5. The mat according to claim 1, wherein the wadding layer has a porosity of 90% or more and a thickness of 2 mm or more and 10 mm or less.
【請求項6】 クッション層とワディング層が布帛を介
して積層一体化した請求項1記載のマット類。
6. The mat according to claim 1, wherein the cushion layer and the wadding layer are laminated and integrated via a cloth.
【請求項7】 クッション層に熱可塑性弾性樹脂からな
る成分を示差走査型熱量計で測定した融解曲線に室温以
上融点以下の温度に吸熱ピ−クを持つ網状体を用いた請
求項1記載のマット類。
7. A reticulated body having an endothermic peak at a temperature above room temperature and below its melting point in a melting curve of a component comprising a thermoplastic elastic resin measured by a differential scanning calorimeter in the cushion layer. Mats.
【請求項8】 クッション層を構成する網状体の該線条
の断面形状が中空断面又は及び異形断面である請求項1
記載のマット類。
8. The cross-sectional shape of the filaments of the net-like body forming the cushion layer is a hollow cross section or an irregular cross section.
The listed mats.
【請求項9】 クッション体の通気度が50cc/cm2
以上である請求項1記載のマット類。
9. The mat according to claim 1, wherein the cushion body has an air permeability of 50 cc / cm 2 seconds or more.
【請求項10】 クッション層を構成する熱可塑性弾性
樹脂がポリエステルである請求項1記載のマット類。
10. The mat according to claim 1, wherein the thermoplastic elastic resin constituting the cushion layer is polyester.
【請求項11】 天然繊維が絹からなる請求項1記載の
マット類。
11. The mat according to claim 1, wherein the natural fiber is silk.
【請求項12】 天然繊維が羊毛からなる請求項1記載
のマット類。
12. The mat according to claim 1, wherein the natural fiber is wool.
【請求項13】 天然繊維が麻からなる請求項1記載の
マット類。
13. The mat according to claim 1, wherein the natural fiber comprises hemp.
【請求項14】 複数のオリフィスを持つ多列ノズルよ
り熱可塑性弾性樹脂をその融点より20℃から80℃高
い溶融温度で、該ノズルより下方に向けて吐出させ、溶
融状態で連続線条のループを形成し、それぞれのループ
を互いに接触させて融着させ3次元構造を形成しつつ、
引取り装置で挟み込み冷却槽で冷却せしめた後、得られ
た3次元構造体の上、下両面又は片面に天然繊維をマト
リックスとし、熱可塑性弾性樹脂を熱接着成分とした繊
維で接合された硬綿を積層し、側地を被せることを特徴
とするマット類の製法。
14. A continuous linear loop in a molten state in which a thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature 20 ° C. to 80 ° C. higher than the melting point of the multi-row nozzle having a plurality of orifices. Is formed, and each loop is brought into contact with each other and fused to form a three-dimensional structure,
After being sandwiched by a take-up device and cooled in a cooling tank, the three-dimensional structure obtained was bonded to the upper, lower, or one side of the three-dimensional structure using natural fibers as a matrix and thermoplastic elastic resin as a heat-bonding component. A method for producing mats, which is characterized by laminating cotton and covering the sides.
【請求項15】 製品化に至る任意の工程で網状体を構
成する熱可塑性弾性樹脂の融点より少なくとも10℃以
下の温度でアニ−リングよる疑似結晶化処理を行う請求
項14記載のマット類の製法
15. The matte according to claim 14, wherein the pseudo-crystallization treatment by annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin forming the reticulated body in any step leading to commercialization. Manufacturing method
JP14631795A 1995-06-13 1995-06-13 Mattresses and manufacturing method Pending JPH08336446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14631795A JPH08336446A (en) 1995-06-13 1995-06-13 Mattresses and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14631795A JPH08336446A (en) 1995-06-13 1995-06-13 Mattresses and manufacturing method

Publications (1)

Publication Number Publication Date
JPH08336446A true JPH08336446A (en) 1996-12-24

Family

ID=15404943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14631795A Pending JPH08336446A (en) 1995-06-13 1995-06-13 Mattresses and manufacturing method

Country Status (1)

Country Link
JP (1) JPH08336446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340177A (en) * 2000-06-01 2001-12-11 Toyobo Co Ltd Mattress bedding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001340177A (en) * 2000-06-01 2001-12-11 Toyobo Co Ltd Mattress bedding
JP4660886B2 (en) * 2000-06-01 2011-03-30 東洋紡績株式会社 Bedclothes

Similar Documents

Publication Publication Date Title
JP3541969B2 (en) Bed mat
JP3526041B2 (en) Mat and its manufacturing method
JP3637930B2 (en) Pillow and its manufacturing method
JP3585003B2 (en) Bed mat and its manufacturing method
JP3627826B2 (en) Mat and its manufacturing method
JP3627827B2 (en) Mat and manufacturing method thereof
JP3690532B2 (en) Mat and its manufacturing method
JPH08851A (en) Fibrous wadding material and its production
JP3627825B2 (en) Mat and its manufacturing method
JP3431097B2 (en) Multilayer laminated net, manufacturing method and product using the same
JPH08336446A (en) Mattresses and manufacturing method
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3637929B2 (en) Mat and its manufacturing method
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH0813310A (en) Polyester wadding material and its production
JP3351489B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH07324272A (en) Flame-retardant reinforced netty form, its production and product using the same
JPH07300760A (en) Nonwoven fabric laminated network material, its production and product using the same