JPH08335643A - Semiconductor storage device and its manufacturing method - Google Patents

Semiconductor storage device and its manufacturing method

Info

Publication number
JPH08335643A
JPH08335643A JP14029895A JP14029895A JPH08335643A JP H08335643 A JPH08335643 A JP H08335643A JP 14029895 A JP14029895 A JP 14029895A JP 14029895 A JP14029895 A JP 14029895A JP H08335643 A JPH08335643 A JP H08335643A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
channel layer
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14029895A
Other languages
Japanese (ja)
Other versions
JP3524213B2 (en
Inventor
Toshiyuki Mine
利之 峰
Kazuo Yano
和男 矢野
Tomoyuki Ishii
智之 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14029895A priority Critical patent/JP3524213B2/en
Publication of JPH08335643A publication Critical patent/JPH08335643A/en
Application granted granted Critical
Publication of JP3524213B2 publication Critical patent/JP3524213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Non-Volatile Memory (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: To form channel width narrower than the resolution limit, by selectively oxidizing an ultra thin film polycrystal Si film, acting as a channel layer, formed on an Si nitride film, with an Si oxide film acting as a part of a gate insulation film and the Si nitride film worked into a specified form on its upper layer, as a mask. CONSTITUTION: An monocrystalline Si substrate 101 is thermal-oxidized for farming an SiO2 film 102, and then, in CVD manner, an Si3 N4 film 103 and a phosphorus dope polycrystalline Si film 104 are deposited. And then an amorphous Si film, acting as a channel layer, whose thickness is 3nm, an SiO2 film 106 acting as a part of a gate insulation film and an Si3 N4 film 107 are deposited sequentially. At the temperature where the SiO2 film 106 is deposited, the amorphous Si film whose thickness is 3nm is transformed into a polycrystalline Si film 105. Then, in dry oxidation manner, the polycrystalline Si film 105 is selectively oxidized, so that an element separation Si oxide film 108 is formed. Thus the channel layer width is formed narrower than the resolution limit, so that enough shift amount of threshold value is secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method.

【0002】[0002]

【従来の技術】単一電子素子は究極の高集積低電力素子
として期待されているが、これまで極低温でしか動作し
ないという大きな障害があった。1993年、日立の矢
野等は、超薄膜多結晶Siトランジスタを用いることに
より、世界で始めて単一電子素子(単一電子メモリ)の
室温動作に成功した。以下、矢野等が開発した単一電子
メモリの構造とその動作原理の概要を、図10を用いて
説明する。
2. Description of the Related Art Single-electron devices are expected to be the ultimate highly integrated low-power devices, but there has been a major obstacle so far that they operate only at extremely low temperatures. In 1993, Hitachi's Yano et al. Succeeded in operating a single-electron device (single-electron memory) at room temperature for the first time in the world by using an ultra-thin film polycrystalline Si transistor. The structure of the single electronic memory developed by Yano et al. And the outline of its operating principle will be described below with reference to FIG.

【0003】図10に超薄膜多結晶Siトランジスタの
従来構造の平面図(a)、及び断面図(b),(c)を示
す。先ず最初に、単結晶Si基板601を熱酸化して5
00nmのSiO2 膜602を形成した後、化学気相成
長法(CVD法)を用いて、リンを含んだ多結晶Si膜
603を50nm堆積する。次に、周知のリソグラフィ
ー及びドライエッチング法により、リンドープ多結晶膜
603を所望の形状に加工してソース603(a),ド
レイン603(b)配線を形成する。続いて、CVD法
によりチャネル層604となる4nmの非晶質Si膜、
及びゲート絶縁膜605の一部となる10nmのSiO
2 膜606を堆積する。この時、非晶質Si膜は、Si
2 膜606を堆積する温度(750℃)により、多結
晶Si膜604となる。
FIG. 10 shows a plan view (a) and cross-sectional views (b) and (c) of a conventional structure of an ultrathin film polycrystalline Si transistor. First, the single crystal Si substrate 601 is thermally oxidized to 5
After the SiO 2 film 602 having a thickness of 00 nm is formed, a polycrystalline Si film 603 containing phosphorus is deposited to a thickness of 50 nm by the chemical vapor deposition method (CVD method). Next, the phosphorus-doped polycrystalline film 603 is processed into a desired shape by well-known lithography and dry etching to form a source 603 (a) and a drain 603 (b) wiring. Then, a 4 nm amorphous Si film to be the channel layer 604 is formed by the CVD method,
And 10 nm of SiO that becomes a part of the gate insulating film 605.
2 Film 606 is deposited. At this time, the amorphous Si film is
The polycrystalline Si film 604 is formed by the temperature (750 ° C.) at which the O 2 film 606 is deposited.

【0004】チャネル多結晶Si膜604上のSiO2
膜605は、ゲート絶縁膜605,606の一部として
も用いられるが、チャネル多結晶Si膜604をドライ
エッチングする際の汚染やダメージに対する保護膜、ま
た、後洗浄工程によるチャネル多結晶Si膜604のエ
ッチング防止膜として用いられている。
SiO 2 on the channel polycrystalline Si film 604
The film 605, which is also used as a part of the gate insulating films 605 and 606, is a protective film against contamination and damage when the channel polycrystalline Si film 604 is dry-etched, and a channel polycrystalline Si film 604 by a post-cleaning process. Is used as an etching preventive film.

【0005】次に、電子線(EB)リソグラフィーとド
ライエッチング技術を用いて、SiO2 保護膜605、
及びチャネル多結晶Si膜604を加工する。最後に、
CVD法によりゲート絶縁膜606となるSiO2 膜6
06を30nm、ゲート電極607となるリンドープ多
結晶Si607を100nm堆積した後、周知の技術に
よりゲート電極607を形成し、超薄膜多結晶Siトラ
ンジスタの形成を終了する。
Next, using an electron beam (EB) lithography and a dry etching technique, a SiO 2 protective film 605,
The channel polycrystalline Si film 604 is processed. Finally,
SiO 2 film 6 to be the gate insulating film 606 by the CVD method
After depositing 30 nm of 06 and 100 nm of phosphorus-doped polycrystalline Si 607 to be the gate electrode 607, the gate electrode 607 is formed by a known technique, and the formation of the ultrathin film polycrystalline Si transistor is completed.

【0006】超薄膜ポリシリコントランジスタの特性を
決定するキーポイントは、チャネル多結晶Si膜604
の膜厚とそのチャネル幅(図10の平面図のWに対応す
る)である。単一電子メモリはフラッシュメモリと同様
に、情報(1又は0)の有無をトランジスタのしきい値
の違いにより判定する。従って、情報の書き込み時と消
去時のしきい値の差が大きい程安定した動作が行える。
このしきい値の差は、チャネル多結晶Si膜の膜厚は薄
い程、またその幅Wが小さい程大きくなる。
The key point for determining the characteristics of the ultra-thin polysilicon transistor is the channel polycrystalline Si film 604.
And the channel width thereof (corresponding to W in the plan view of FIG. 10). Similar to the flash memory, the single electronic memory determines the presence / absence of information (1 or 0) by the difference in the threshold value of the transistor. Therefore, the larger the difference between the thresholds at the time of writing and the erasing of information, the more stable the operation can be.
This difference in threshold becomes larger as the film thickness of the channel polycrystalline Si film becomes thinner and as the width W becomes smaller.

【0007】[0007]

【発明が解決しようとする課題】超薄膜多結晶Siトラ
ンジスタを用いた単一電子メモリの技術的課題の一つ
は、安定したチャネル層の形成である。上述したよう
に、単一電子メモリではチャネル多結晶Si膜の膜厚が
薄い程、又その幅が小さい程、しきい値の差が大きくな
る。多結晶Si膜の膜厚は、下地膜の種類や堆積時間の
制御により、薄い膜を得ることが可能であるが、チャネ
ル層の幅はリソグラフィーの解像限界で決まるため、解
像限界以下にすることは非常に難しい。
One of the technical problems of the single-electron memory using the ultra-thin film polycrystalline Si transistor is the formation of a stable channel layer. As described above, in the single-electron memory, the smaller the thickness of the channel polycrystalline Si film and the smaller the width thereof, the larger the difference in threshold value. The thickness of the polycrystalline Si film can be obtained as a thin film by controlling the type of base film and the deposition time. However, the width of the channel layer is determined by the resolution limit of lithography, so it is below the resolution limit. Very difficult to do.

【0008】現状のリソグラフィーで最小のパターンを
形成出来る技術は、EBリソグラフィーであるが、EB
リソグラフィー技術を用いても100nm以下の微細パ
ターンを制御性良く形成することは非常に困難である。
また、EBリソグラフィーは、スーループットや制御性
の面で未だ問題点が多く、大容量のメモリを量産化する
際のネックとなる。
The technique capable of forming the smallest pattern by the current lithography is EB lithography.
It is very difficult to form a fine pattern of 100 nm or less with good controllability even by using a lithography technique.
Further, EB lithography still has many problems in terms of throughput and controllability, which becomes a bottleneck in mass production of a large capacity memory.

【0009】従って、単一電子メモリの特性、及びその
歩留まりを向上させるためには、幅100nm以下のチ
ャネル層を、より安定に制御出来る技術が必須となる。
Therefore, in order to improve the characteristics of the single electron memory and the yield thereof, a technique capable of more stably controlling the channel layer having a width of 100 nm or less is essential.

【0010】[0010]

【課題を解決するための手段】上記目的は、Si窒化膜
上に形成したチャネル層となる超薄膜多結晶Si膜を、
ゲート絶縁膜の一部となるSi酸化膜と、その上層に所
定の形状に加工したSi窒化膜をマスクとして、選択酸
化することにより達成される。
The above object is to provide an ultra-thin polycrystalline Si film, which becomes a channel layer formed on a Si nitride film,
This is achieved by performing selective oxidation using a Si oxide film that will be a part of the gate insulating film and a Si nitride film processed into a predetermined shape as an upper layer thereof as a mask.

【0011】[0011]

【作用】プレーナアイソレーションに代表される周知の
LOCOS法では、バッファ層となるSi酸化膜の膜
厚,酸化のマスクとなるSi窒化膜に膜厚、及び酸化条
件(酸化膜厚,温度,雰囲気)を制御することで、Si
酸化膜の横方向の延び、即ちバーズビーク長を調整する
ことができる。
In the well-known LOCOS method typified by planar isolation, the film thickness of the Si oxide film serving as the buffer layer, the film thickness of the Si nitride film serving as the oxidation mask, and the oxidizing conditions (oxide film thickness, temperature, atmosphere) ) To control Si
The lateral extension of the oxide film, that is, the bird's beak length can be adjusted.

【0012】本発明は、この酸化に伴う横方向の延びを
積極的に利用し、超薄膜多結晶Si層のチャネル幅を制
御すると共に、隣接する素子との素子間分離膜も同時に
形成する方法である。
The present invention positively utilizes the lateral extension due to this oxidation to control the channel width of the ultrathin polycrystalline Si layer and simultaneously form an element isolation film with an adjacent element. Is.

【0013】チャネル多結晶Si膜の下地には、Si窒
化膜を用いているので下層の素子が酸化されることはな
く、多結晶Si膜のみが酸化される。また、選択酸化量
が通常のLOCOS法に比べ非常に小さい(50nm以
下)ため、マスクとなるSi窒化膜の膜厚は20nm以
下で十分である。更にこのSi窒化膜は、ゲート絶縁膜
としても用いるので除去する必要はない。
Since the Si nitride film is used as the base of the channel polycrystalline Si film, the lower element is not oxidized, but only the polycrystalline Si film is oxidized. Further, since the selective oxidation amount is much smaller than that in the usual LOCOS method (50 nm or less), it is sufficient that the film thickness of the Si nitride film serving as a mask is 20 nm or less. Furthermore, since this Si nitride film is also used as a gate insulating film, it need not be removed.

【0014】一方、選択酸化により、チャネル多結晶S
i層のチャネル幅は、マスクSi窒化膜のパターンエッ
ジより内側に後退するので、ゲート絶縁膜の信頼性等に
関し、パターンエッジの悪影響はない。
On the other hand, by selective oxidation, the channel polycrystal S
Since the channel width of the i layer recedes inward from the pattern edge of the mask Si nitride film, the pattern edge has no adverse effect on the reliability of the gate insulating film and the like.

【0015】本発明によれば、解像限界以下のチャネル
幅を極めて容易に形成でき、トランジスタのしきい値の
シフト量を十分に確保できる。また、エキシマレーザリ
ソグラフィー技術も適用できるので、量産性が飛躍的に
向上する。
According to the present invention, a channel width below the resolution limit can be formed extremely easily, and a sufficient shift amount of the threshold value of the transistor can be secured. Moreover, since excimer laser lithography technology can be applied, mass productivity is dramatically improved.

【0016】[0016]

【実施例】【Example】

(実施例1)以下、図1を用いて本発明の第1の実施例
を説明する。先ず最初にP型、(100)単結晶Si基
板101を1000℃の水蒸気雰囲気中で熱酸化して、
厚さ500nmのSiO2 膜102を形成した後、CV
D法により50nmのSi34膜103、及びリンを4
×1020/cm3 含んだリンドープ多結晶Si膜104を
70nm堆積する。本実施例では、モノシラン(SiH
4 )とフォスフィン(PH3 )を用い、600℃の温度
でリンドープ多結晶Si膜104の堆積を行った(図1
(a))。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to FIG. First, the P-type (100) single crystal Si substrate 101 is thermally oxidized in a steam atmosphere at 1000 ° C.,
After forming the SiO 2 film 102 with a thickness of 500 nm, CV
The Si 3 N 4 film 103 of 50 nm and phosphorus of
A phosphorus-doped polycrystalline Si film 104 containing x10 20 / cm 3 is deposited to 70 nm. In this embodiment, monosilane (SiH
4 ) and phosphine (PH 3 ) were used to deposit the phosphorus-doped polycrystalline Si film 104 at a temperature of 600 ° C. (FIG. 1).
(A)).

【0017】次に、クリプトンフロライド(KrF)エ
キシマレーザリソグラフィー、及びドライエッチング法
によりリンドープ多結晶Si膜104をエッチングして
ソース,ドレイン配線を形成する(図1には図示せず
(図10参照))。
Next, the phosphorus-doped polycrystalline Si film 104 is etched by krypton fluoride (KrF) excimer laser lithography and dry etching to form source and drain wirings (not shown in FIG. 1 (see FIG. 10). )).

【0018】次に、CVD法により、チャネル層となる
厚さ3nmの非晶質Si膜,ゲート絶縁膜の一部となる
20nmのSiO2 膜106、及び15nmのSi34
膜107を順次堆積する。本実施例では非晶質Si膜の
堆積にモノシラン(SiH4)を用い520℃の温度で堆積
を行ったが、ジシラン(Si26)を用いることも無論
可能である。また、SiO2 膜106を堆積する温度
(750℃)で、厚さ3nmの非晶質Si膜は多結晶S
i膜105に変換される。
Next, a 3 nm thick amorphous Si film to be a channel layer, a 20 nm SiO 2 film 106 to be a part of the gate insulating film, and a 15 nm Si 3 N 4 film are formed by the CVD method.
The film 107 is sequentially deposited. In the present embodiment, monosilane (SiH 4 ) was used to deposit the amorphous Si film at a temperature of 520 ° C. However, it is of course possible to use disilane (Si 2 H 6 ). Further, at the temperature (750 ° C.) at which the SiO 2 film 106 is deposited, the amorphous Si film having a thickness of 3 nm is polycrystalline S.
It is converted to the i film 105.

【0019】続いて、電子線(EB)リソグラフィーと
ドライエッチング法を用いて、最上層のSi34膜10
7のパターンニングを行う(図1(b))。本実施例で
は、短辺長が約100nmのSi34膜107パターン
を形成した。
Subsequently, the uppermost Si 3 N 4 film 10 is formed by using electron beam (EB) lithography and dry etching.
7 patterning is performed (FIG. 1B). In this example, a pattern of Si 3 N 4 film 107 having a short side length of about 100 nm was formed.

【0020】次に、850℃のドライ酸化法により、厚
さ3nmの多結晶Si膜105の選択酸化を行い素子分
離Si酸化膜108を形成する。Si34膜107で被
覆されていない部分の多結晶Si膜は酸化されるため、
自己整合的にチャネル層105のパターンニングと隣接す
る素子間の絶縁分離が行われる。また、素子分離酸化膜
108の横方向の広がりにより、チャネル多結晶Si膜
105は、Si34膜107のパターンエッジより25
nm後退し、幅50nmのチャネル層が得られた(図1
(c))。本実施例では、素子分離酸化膜108の形成
にドライ酸化法を用いたが、ウェット酸化法を用いても
同様の効果が得られる。ただし、ウェット酸化では、S
i窒化膜の酸化速度が大きいため、Si窒化膜の膜厚を
厚めに形成する必要がある。
Next, a 3 nm-thick polycrystalline Si film 105 is selectively oxidized by a dry oxidation method at 850 ° C. to form an element isolation Si oxide film 108. Since the polycrystalline Si film in the portion not covered with the Si 3 N 4 film 107 is oxidized,
Patterning of the channel layer 105 and insulation isolation between adjacent elements are performed in a self-aligned manner. Further, due to the lateral expansion of the element isolation oxide film 108, the channel polycrystalline Si film 105 is 25 degrees from the pattern edge of the Si 3 N 4 film 107.
and a channel layer having a width of 50 nm was obtained (Fig. 1).
(C)). In this embodiment, the dry oxidation method is used for forming the element isolation oxide film 108, but the same effect can be obtained by using the wet oxidation method. However, in wet oxidation, S
Since the i-nitride film has a high oxidation rate, it is necessary to form the Si nitride film with a large thickness.

【0021】最後に、CVD法によりリンを4×1020
/cm3 含んだリンドープ多結晶Si膜109を100n
m堆積した後、パターンニングを行いゲート電極109
とする(図1(d))。
Finally, 4 × 10 20 phosphorus is added by the CVD method.
100 n of phosphorus-doped polycrystalline Si film 109 containing / cm 3
After deposition, the gate electrode 109 is patterned.
(FIG. 1 (d)).

【0022】本方法により試作した単一電子メモリは、
従来の方法で試作したものに比べ、約2.3 倍のしきい
値シフトが得られた。また、Si窒化膜は耐フッ酸性が
非常に大きく、前洗浄等による膜削れ量が少ないため、
ゲート耐圧や歩留まりに関しても従来法以上の結果が得
られた。
The single electronic memory prototyped by this method is
Approximately 2.3 times the threshold shift was obtained compared with the prototype manufactured by the conventional method. Further, since the Si nitride film has a very high hydrofluoric acid resistance and the amount of film abrasion due to pre-cleaning is small,
The gate breakdown voltage and yield were also better than those of the conventional method.

【0023】(実施例2)次に、本発明の第2の実施例
を図2を用いて説明する。実施例1と同様の方法で、単
結晶Si基板201上に500nmのSiO2 膜202
を形成した後、CVD法により、30nmのSi34
203、及び50nmのSiO2 膜204を堆積する。続
いて、700℃のアンモニア(NH3 )雰囲気中で5分
間の熱処理を行い、SiO2 膜204を窒化処理した
後、CVD法によりリンを4×1020/cm3 含んだリンド
ープ多結晶Si膜205を70nm堆積する(図2
(a))。この後、KrFエキシマレーザリソグラフィ
ー、及びドライエッチング法によりリンドープ多結晶S
i膜205をエッチングしてソース,ドレイン配線を形
成する(図示せず)。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. In the same manner as in Example 1, a 500 nm SiO 2 film 202 was formed on a single crystal Si substrate 201.
After forming, a 30 nm Si 3 N 4 film 203 and a 50 nm SiO 2 film 204 are deposited by the CVD method. Subsequently, a heat treatment is performed for 5 minutes in an ammonia (NH 3 ) atmosphere at 700 ° C. to nitride the SiO 2 film 204, and then a phosphorus-doped polycrystalline Si film containing phosphorus of 4 × 10 20 / cm 3 by a CVD method. 205 is deposited to 70 nm (FIG. 2)
(A)). Thereafter, phosphorus-doped polycrystalline S is formed by KrF excimer laser lithography and dry etching.
The i film 205 is etched to form source and drain wirings (not shown).

【0024】次に、CVD法により、チャネル層206
となる厚さ3nmの非晶質Si膜,ゲート絶縁膜の一部
となる15nmのSiO2膜207、及び10nmのSi
34膜208を順次堆積する。本実施例では非晶質Si
膜の堆積にジシラン(Si2H6)を用い450℃の温度で堆
積を行った。また、非晶質Si膜は、15nmのSiO
2 膜207を堆積する際、炉内の温度(750℃)によ
り多結晶Si膜206に変換される。続いて、EBリソ
グラフィーとドライエッチング法を用いて、最上層のS
34膜208のパターンニングを行う(図2
(b))。本実施例でも、短辺長が約100nmのSi
34膜208パターンを形成した。
Next, the channel layer 206 is formed by the CVD method.
Which has a thickness of 3 nm, a 15 nm SiO 2 film 207 which is a part of the gate insulating film, and a 10 nm Si film.
A 3 N 4 film 208 is sequentially deposited. In this embodiment, amorphous Si
Disilane (Si 2 H 6 ) was used to deposit the film at a temperature of 450 ° C. In addition, the amorphous Si film is 15 nm SiO 2.
When the 2 film 207 is deposited, it is converted into a polycrystalline Si film 206 by the temperature (750 ° C.) in the furnace. Then, the EB lithography and the dry etching method are used to form the uppermost S layer.
The i 3 N 4 film 208 is patterned (see FIG. 2).
(B)). Also in this embodiment, Si having a short side length of about 100 nm is used.
A pattern of 3 N 4 film 208 was formed.

【0025】次に、800℃のドライ酸化法により、厚
さ3nmの多結晶Si膜206の選択酸化を行い素子分
離SiO2 膜209を形成する。この選択酸化により、
チャネル多結晶Si膜206幅は、Si34膜208の
パターンエッジより15nm後退し、幅70nmのチャ
ネル層206が得られた(図2(c))。
Next, by a dry oxidation method at 800 ° C., the polycrystalline Si film 206 having a thickness of 3 nm is selectively oxidized to form an element isolation SiO 2 film 209. By this selective oxidation,
The width of the channel polycrystalline Si film 206 was set back by 15 nm from the pattern edge of the Si 3 N 4 film 208, and a channel layer 206 having a width of 70 nm was obtained (FIG. 2C).

【0026】最後に、CVD法によりリンを4×1020
/cm3 含んだリンドープ多結晶Si膜210を100n
m堆積した後、パターンニングを行いゲート電極210
とする(図2(d))。
Finally, 4 × 10 20 phosphorus is formed by the CVD method.
100 n of phosphorus-doped polycrystalline Si film 210 containing 1 / cm 3
After the deposition, the gate electrode 210 is patterned.
(FIG. 2 (d)).

【0027】本方法のように、チャネル層直下がSi酸
化膜であっても、その下層に酸化のストッパとなるSi
窒化膜があれば、実施例1と同様の効果が得られる。本
実施例による方法で試作した単一電子メモリは、従来の
方法で試作したものに比べ、約1.8 倍のしきい値シフ
トが得られた。
As in the present method, even if the Si oxide film is directly under the channel layer, the Si layer serving as an oxidation stopper is formed under the Si oxide film.
With the nitride film, the same effect as that of the first embodiment can be obtained. The single-electron memory prototyped by the method according to this example provided a threshold shift of about 1.8 times that of the prototype manufactured by the conventional method.

【0028】(実施例3)次に、図3を用いて本発明の
第3の実施例を説明する。実施例1と同様の方法で、P
型、(100)単結晶Si基板301上に、厚さ500
nmのSiO2 膜302,50nmのSi34膜30
3、及びリンを4×1020/cm3 含んだ70nmのリン
ドープ多結晶Si膜を形成した後、KrFエキシマレー
ザリソグラフィー、及びドライエッチング法によりリン
ドープ多結晶Si膜をエッチングしてソース,ドレイン
配線を形成する(図示せず)。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. In the same manner as in Example 1, P
Die, (100) single crystal Si substrate 301, thickness 500
nm SiO 2 film 302, 50 nm Si 3 N 4 film 30
3, and after forming a 70 nm phosphorus-doped polycrystalline Si film containing 4 × 10 20 / cm 3 of phosphorus, the phosphorus-doped polycrystalline Si film is etched by KrF excimer laser lithography and dry etching to form source and drain wirings. Formed (not shown).

【0029】次に、CVD法により、チャネル層となる
厚さ2.5nm の多結晶Si膜304,ゲート絶縁膜の一部
となる15nmのSiO2 膜305、及び5nmのSi
34膜306を順次形成した後、電子線(EB)リソグ
ラフィーとドライエッチング法を用いて、最上層のSi
34膜306のパターンニングを行う(図3(a))。本
実施例では、短辺長が約80nmのSi34膜306パ
ターンを形成した。
Next, a CVD method is used to form a polycrystalline Si film 304 having a thickness of 2.5 nm as a channel layer, a SiO 2 film 305 having a thickness of 15 nm as a part of the gate insulating film, and a Si film having a thickness of 5 nm.
After sequentially forming the 3 N 4 film 306, the uppermost Si layer is formed by electron beam (EB) lithography and dry etching.
Patterning of the 3 N 4 film 306 is performed (FIG. 3A). In this example, a Si 3 N 4 film 306 pattern having a short side length of about 80 nm was formed.

【0030】次に、850℃のドライ酸化法により、厚
さ2.5nm の多結晶Si膜304を選択酸化し、素子
分離SiO2 膜307を形成する。本実施例では、選択
酸化後のチャネル多結晶Si膜304幅は、約40nm
であった(図3(b))。
Then, the polycrystalline Si film 304 having a thickness of 2.5 nm is selectively oxidized by a dry oxidation method at 850 ° C. to form an element isolation SiO 2 film 307. In this embodiment, the width of the channel polycrystalline Si film 304 after selective oxidation is about 40 nm.
Was (Fig. 3 (b)).

【0031】次に、ゲート容量を調整するため、ゲート
絶縁膜を追加堆積を行う。本実施例では、CVD法によ
り15nmのSiO2 膜308を堆積した。単一電子ト
ランジスタでは、書き込み速度と、しきい値シフト量の
大きさはトレードオフの関係がある。即ち、一定電源電
圧の下で書き込み速度を速くするには、ゲート酸化膜の
薄膜化を必要とするが、同時にしきい値シフト量が減少
してしまう。このしきい値シフト量の減少分は、チャネ
ル幅の微細化により補正することができる。
Next, in order to adjust the gate capacitance, a gate insulating film is additionally deposited. In this embodiment, a 15 nm SiO 2 film 308 is deposited by the CVD method. In a single-electron transistor, there is a trade-off relationship between the writing speed and the amount of threshold shift amount. That is, in order to increase the writing speed under a constant power supply voltage, the gate oxide film needs to be thinned, but at the same time, the threshold shift amount decreases. This decrease in the threshold shift amount can be corrected by making the channel width finer.

【0032】最後に、CVD法によりリンを4×1020
/cm3 含んだリンドープ多結晶Si膜309を100n
m堆積した後、パターンニングを行いゲート電極309
とする(図3(d))。
Finally, 4 × 10 20 phosphorus is added by the CVD method.
100 n of phosphorus-doped polycrystalline Si film 309 containing / cm 3
After the deposition, the gate electrode 309 is patterned.
(FIG. 3 (d)).

【0033】本方法により試作した単一電子メモリは、
従来の方法で試作したものに比べ、約3倍のしきい値シ
フトが得られた。
The single electronic memory prototyped by this method is
About three times the threshold shift was obtained as compared with the prototype manufactured by the conventional method.

【0034】(実施例4)次に、図4を用いて本発明の
第4の実施例の説明を行う。実施例1と同様の方法で、
P型、(100)単結晶Si基板401上に、厚さ50
0nmのSiO2膜402,50nmのSi34膜40
3、及びリンを4×1020/cm3 含んだ70nmのリン
ドープ多結晶Si膜を形成した後、KrFエキシマレー
ザリソグラフィー、及びドライエッチング法によりリン
ドープ多結晶Si膜をエッチングしてソース,ドレイン
配線を形成する(図示せず)。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to FIG. In the same manner as in Example 1,
A P-type (100) single crystal Si substrate 401 with a thickness of 50
0 nm SiO 2 film 402, 50 nm Si 3 N 4 film 40
3, and after forming a 70 nm phosphorus-doped polycrystalline Si film containing 4 × 10 20 / cm 3 of phosphorus, the phosphorus-doped polycrystalline Si film is etched by KrF excimer laser lithography and dry etching to form source and drain wirings. Formed (not shown).

【0035】次に、CVD法により、チャネル層となる
厚さ4nmの多結晶Si膜404,ゲート絶縁膜となる
40nmのSiO2 膜405、及び15nmのSi34
膜406を順次形成した後、レベンソン型位相シフト法
を用いたKrFエキシマレーザリソグラフィー、及びド
ライエッチング法により、最上層のSi34膜406のパ
ターンニングを行う(図4(a))。本実施例では、短
辺長が約150nmのSi34膜406パターンを形成
した。
Next, a 4 nm-thick polycrystalline Si film 404 which becomes a channel layer, a 40 nm SiO 2 film 405 which becomes a gate insulating film, and a 15 nm Si 3 N 4 film are formed by the CVD method.
After sequentially forming the films 406, the uppermost Si 3 N 4 film 406 is patterned by KrF excimer laser lithography using the Levenson-type phase shift method and dry etching (FIG. 4A). In this example, a Si 3 N 4 film 406 pattern having a short side length of about 150 nm was formed.

【0036】次に、850℃のドライ酸化法により、厚
さ4nmの多結晶Si膜404を選択酸化し、素子分離
SiO2 膜407を形成する。この選択酸化により、チ
ャネル多結晶Si膜404幅は、Si34膜406パタ
ーンエッジより30nm後退し、幅90nmのチャネル
層406が得られた(図4(b))。
Then, the polycrystalline Si film 404 having a thickness of 4 nm is selectively oxidized by a dry oxidation method at 850 ° C. to form an element isolation SiO 2 film 407. By this selective oxidation, the width of the channel polycrystalline Si film 404 was set back by 30 nm from the pattern edge of the Si 3 N 4 film 406, and a channel layer 406 having a width of 90 nm was obtained (FIG. 4B).

【0037】次に、160℃の熱燐酸を用いて、Si3
4膜406パターンを除去した後、窒素で希釈した2
%の酸素雰囲気中で熱処理を行いゲート絶縁膜405の
膜質を改善する。
Next, using hot phosphoric acid at 160 ° C., Si 3
After removing the N 4 film 406 pattern, it was diluted with nitrogen 2
Heat treatment is performed in an oxygen atmosphere of 100% to improve the film quality of the gate insulating film 405.

【0038】最後に、CVD法によりリンを4×1020
/cm3 含んだリンドープ多結晶Si膜409を100n
m堆積した後、パターンニングを行いゲート電極409
とする(図4(c))。
Finally, 4 × 10 20 phosphorus is added by the CVD method.
100 n of phosphorus-doped polycrystalline Si film 409 containing / cm 3
After the m deposition, patterning is performed to form the gate electrode 409.
(FIG. 4 (c)).

【0039】本実施例では、EBリソグラフィーを用い
ずに、チャネル層の選択酸化を行ったが、幅90nmの
非常に微細なチャネル層を形成できた。
In this example, the channel layer was selectively oxidized without using EB lithography, but a very fine channel layer having a width of 90 nm could be formed.

【0040】(実施例5)次に、実施例1で示した方法
を用いて試作した超薄膜多結晶Siトランジスタメモリ
の第5の実施例を示す(図5〜図9)。
(Embodiment 5) Next, a fifth embodiment of an ultrathin film polycrystalline Si transistor memory manufactured by using the method shown in Embodiment 1 will be described (FIGS. 5 to 9).

【0041】P型、(100)単結晶Si基板501を
熱酸化して、500nmのSiO2膜502を形成した
後、CVD法により50nmのSi34膜503、及び
高濃度にリンを含んだ70nmのリンドープ多結晶Si
膜504を順次堆積する。続いて、クリプトンフロライ
ド(KrF)エキシマレーザリソグラフィー及びドライ
エッチング法により、リンドープ多結晶Si膜504を
パターンニングして、多結晶Siトランジスタのソー
ス,ドレインとなる共通ソース線504(a)、及びデ
ータ線504(b)を形成する。本実施例では、リンド
ープ多結晶Si膜504の堆積にモノシラン(Si
4 )とフォスフィン(PH3 )ガスを用い、600℃
の温度で堆積を行った。また、図5(a)に示したよう
に配線幅を150nm、配線間隔を200nmとした。
The P-type (100) single crystal Si substrate 501 is thermally oxidized to form a 500 nm SiO 2 film 502, and then a 50 nm Si 3 N 4 film 503 and a high concentration of phosphorus are formed by a CVD method. 70nm phosphorus-doped polycrystalline Si
The film 504 is sequentially deposited. Subsequently, the phosphorus-doped polycrystalline Si film 504 is patterned by krypton fluoride (KrF) excimer laser lithography and dry etching to form a common source line 504 (a) which serves as a source and a drain of the polycrystalline Si transistor, and data. Form line 504 (b). In this embodiment, monosilane (Si) is used to deposit the phosphorus-doped polycrystalline Si film 504.
H 4 ) and phosphine (PH 3 ) gas, 600 ℃
Deposition was carried out at a temperature of. Further, as shown in FIG. 5A, the wiring width was 150 nm and the wiring interval was 200 nm.

【0042】次に、CVD法を用いて約2.5nm の非
晶質Si膜を堆積した後、短時間アニール法により90
0℃,30秒の熱処理を行い、非晶質Si膜を多結晶S
i膜505に変換する。本実施例では、非晶質Si膜の
堆積にジシラン(Si26)を用い、450℃の温度で
堆積を行った。
Next, an amorphous Si film having a thickness of about 2.5 nm is deposited by the CVD method, and then a 90-minute annealing method is performed.
Amorphous Si film is polycrystalline S
i film 505. In this example, disilane (Si 2 H 6 ) was used for depositing the amorphous Si film, and the deposition was performed at a temperature of 450 ° C.

【0043】次に、CVD法によりゲート絶縁膜の一部
となる20nmのSiO2 膜506、及び15nmのS
34膜507を順次堆積する(図5(a)(b)
(c))。
Next, a 20 nm SiO 2 film 506 which becomes a part of the gate insulating film and a 15 nm S film are formed by the CVD method.
The i 3 N 4 film 507 is sequentially deposited (FIGS. 5A and 5B).
(C)).

【0044】次に、EBリソグラフィーとドライエッチ
ング法を用いて、最上層のSi34膜507のパターン
ニングを行う。本実施例では、図6に示したように、共
通ソース線604(a)とデータ線604(b)の間に
は、100nm×250nmの穴パターンを、また、隣
接するデータ線604(b)間には、幅100nmの長
方形穴パターンを形成した。
Next, the uppermost Si 3 N 4 film 507 is patterned by EB lithography and dry etching. In this embodiment, as shown in FIG. 6, a hole pattern of 100 nm × 250 nm is provided between the common source line 604 (a) and the data line 604 (b), and the adjacent data line 604 (b) is formed. In between, a rectangular hole pattern having a width of 100 nm was formed.

【0045】次に、850℃のドライ酸化法により、厚
さ2.5nm の多結晶Si膜505の選択酸化を行い素
子分離酸化膜508を形成する。Si34膜507で被
覆されていない部分の多結晶Si膜だけが酸化されるた
め、自己整合的にチャネル層505のパターンニングと
隣接する素子間の絶縁分離が行われる。また、素子分離
酸化膜508の横方向の広がりにより、チャネル多結晶
Si膜505は、Si34膜507のパターンエッジよ
り20nm後退し、幅60nmのチャネル層が得られた
(図7)。
Next, the element isolation oxide film 508 is formed by selectively oxidizing the polycrystalline Si film 505 having a thickness of 2.5 nm by a dry oxidation method at 850.degree. Since only the polycrystalline Si film in the portion not covered with the Si 3 N 4 film 507 is oxidized, patterning of the channel layer 505 and insulation isolation between adjacent elements are performed in a self-aligned manner. Further, due to the lateral expansion of the element isolation oxide film 508, the channel polycrystalline Si film 505 was recessed by 20 nm from the pattern edge of the Si 3 N 4 film 507, and a channel layer having a width of 60 nm was obtained (FIG. 7).

【0046】本実施例では、ゲート絶縁膜としてSi窒
化膜507/Si酸化膜506の積層膜を用いたが、図
8に示したように、CVD−Si酸化膜509を更に積
層した、Si酸化膜509/Si窒化膜507/Si酸
化膜506積層膜を用いると、更にゲート絶縁膜の信頼
性が向上する。
In this embodiment, a laminated film of Si nitride film 507 / Si oxide film 506 is used as the gate insulating film. However, as shown in FIG. 8, a CVD-Si oxide film 509 is further laminated to form a Si oxide film. When the film 509 / Si nitride film 507 / Si oxide film 506 laminated film is used, the reliability of the gate insulating film is further improved.

【0047】最後に、CVD法によりリンを4×1020
/cm3 含んだリンドープ多結晶Si膜510を70nm
堆積した後、パターンニングを行いワード線(ゲート電
極)510とする(図9)。
Finally, 4 × 10 20 phosphorus is added by the CVD method.
/ Cm 3 containing phosphorus-doped polycrystalline Si film 510 of 70 nm
After the deposition, patterning is performed to form a word line (gate electrode) 510 (FIG. 9).

【0048】本実施例で試作した超薄膜多結晶Siトラ
ンジスタメモリは、従来の方法で試作したそれに比べ、
しきい値シフト量が約2.5 倍に増大した。
The ultra-thin film polycrystalline Si transistor memory manufactured as a prototype in this embodiment is compared with that manufactured by a conventional method.
The amount of threshold shift increased by about 2.5 times.

【0049】[0049]

【発明の効果】本発明によれば、超薄膜多結晶Siトラ
ンジスタのチャネル層幅を、リソグラフィーの解像限界
以下に形成できるため、十分なしきい値シフト量を確保
できる。また、KrFエキシマレーザリソグラフィーと
超解像技術(位相シフト)を組み合わせた方法を適用し
ても、100nm以下のチャネル幅を実現できるので、
量産性が飛躍的に向上する。
According to the present invention, the channel layer width of the ultra-thin film polycrystalline Si transistor can be formed below the resolution limit of lithography, so that a sufficient threshold shift amount can be secured. Further, even if a method combining KrF excimer laser lithography and super-resolution technology (phase shift) is applied, a channel width of 100 nm or less can be realized,
Mass productivity is dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す断面図。FIG. 2 is a sectional view showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す断面図。FIG. 3 is a sectional view showing a third embodiment of the present invention.

【図4】本発明の第4の実施例を示す断面図。FIG. 4 is a sectional view showing a fourth embodiment of the present invention.

【図5】本発明の第5の実施例の第1工程の説明図。FIG. 5 is an explanatory diagram of a first step of the fifth embodiment of the present invention.

【図6】本発明の第5の実施例の第2工程の説明図。FIG. 6 is an explanatory view of a second step of the fifth embodiment of the present invention.

【図7】本発明の第5の実施例の第3工程の説明図。FIG. 7 is an explanatory diagram of a third step of the fifth embodiment of the present invention.

【図8】本発明の第5の実施例の第4工程の説明図。FIG. 8 is an explanatory diagram of a fourth step of the fifth embodiment of the present invention.

【図9】本発明の第5の実施例の第5工程の説明図。FIG. 9 is an explanatory diagram of a fifth step of the fifth embodiment of the present invention.

【図10】従来の方法を示す説明図。FIG. 10 is an explanatory diagram showing a conventional method.

【符号の説明】[Explanation of symbols]

501…単結晶Si基板、502…Si熱酸化膜、50
3,507…CVD−Si34膜、505…超薄膜多結
晶Si、506,507…ゲート酸化膜、510…ゲート
電極、504(a)…ソース、504(b)…ドレイ
ン。
501 ... Single crystal Si substrate, 502 ... Si thermal oxide film, 50
3 , 507 ... CVD-Si 3 N 4 film, 505 ... Ultra thin film polycrystalline Si, 506, 507 ... Gate oxide film, 510 ... Gate electrode, 504 (a) ... Source, 504 (b) ... Drain.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】両端が低抵抗導電膜に接続された、薄い多
結晶Si膜をチャネル層とする多結晶Si MIS型電
界効果トランジスタにおいて、前記チャネル層となる多
結晶Si膜のパターンニング及び素子間の絶縁分離が、
前記多結晶Si膜を選択的に酸化した熱酸化膜によって
行われていることを特徴とする半導体記憶装置。
1. A polycrystalline Si MIS field-effect transistor having a thin polycrystalline Si film as a channel layer, both ends of which are connected to a low-resistance conductive film. Insulation isolation between
A semiconductor memory device characterized in that a thermal oxide film is formed by selectively oxidizing the polycrystalline Si film.
【請求項2】請求項1に記載の多結晶Si MIS型電
界効果トランジスタにおいて、前記多結晶Si膜を選択
的に酸化するマスク膜としてパターンニングしたSi窒
化膜が含まれており、前記Si窒化膜の少なくとも一部
がゲート絶縁膜である半導体記憶装置。
2. The polycrystalline Si MIS field effect transistor according to claim 1, wherein a patterned Si nitride film is included as a mask film for selectively oxidizing the polycrystalline Si film. A semiconductor memory device in which at least a part of the film is a gate insulating film.
【請求項3】請求項2に記載の多結晶Si MIS型電
界効果トランジスタにおいて、チャネル層となる多結晶
Si膜のチャネル幅が、パターンニングしたSi窒化膜
の幅よりも小さい半導体記憶装置。
3. The polycrystalline Si MIS field effect transistor according to claim 2, wherein the channel width of the polycrystalline Si film serving as a channel layer is smaller than the width of the patterned Si nitride film.
【請求項4】前記チャネル層の膜厚が1nm以上10n
m以下で、前記チャネル層の幅が100nm以下である
請求項1,2または3に記載の半導体記憶装置。
4. The film thickness of the channel layer is 1 nm or more and 10 n.
4. The semiconductor memory device according to claim 1, wherein the width of the channel layer is 100 nm or less when m or less.
【請求項5】ゲート絶縁膜がSi酸化膜、ないしSi酸
化膜とSi窒化膜の複合膜から成り、チャネル層に接す
る最下層の絶縁膜がSi酸化膜である請求項1,2また
は3に記載の半導体記憶装置。
5. The method according to claim 1, wherein the gate insulating film is a Si oxide film or a composite film of a Si oxide film and a Si nitride film, and the lowermost insulating film in contact with the channel layer is a Si oxide film. The semiconductor memory device described.
【請求項6】請求項5に記載のゲート絶縁膜において、
チャネル層に接する最下層のSi酸化膜の膜厚が50n
m以下である請求項1,2または3に記載の半導体記憶
装置。
6. The gate insulating film according to claim 5, wherein
The film thickness of the lowermost Si oxide film in contact with the channel layer is 50 n
The semiconductor memory device according to claim 1, wherein the semiconductor memory device has a thickness of m or less.
【請求項7】請求項1,2または3に記載の多結晶Si
MIS型電界効果トランジスタを、メモリ素子として
用いる半導体記憶装置。
7. Polycrystalline Si according to claim 1, 2 or 3.
A semiconductor memory device using a MIS field effect transistor as a memory element.
【請求項8】Si窒化膜上に低抵抗導電膜を所定の形状
に加工する工程と、多結晶Si膜,Si酸化膜、及びS
i窒化膜を順次形成する工程と、前記Si窒化膜を所定
の形状に加工する工程と、前記Si窒化膜をマスクとし
て、下層の多結晶Si膜を選択的に酸化する工程を含ん
でいることを特徴とする半導体記憶装置の製造方法。
8. A step of processing a low resistance conductive film on a Si nitride film into a predetermined shape, a polycrystalline Si film, a Si oxide film, and S.
It includes a step of sequentially forming an i-nitride film, a step of processing the Si nitride film into a predetermined shape, and a step of selectively oxidizing the lower-layer polycrystalline Si film using the Si nitride film as a mask. And a method for manufacturing a semiconductor memory device.
JP14029895A 1995-06-07 1995-06-07 Semiconductor memory device and method of manufacturing the same Expired - Fee Related JP3524213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14029895A JP3524213B2 (en) 1995-06-07 1995-06-07 Semiconductor memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14029895A JP3524213B2 (en) 1995-06-07 1995-06-07 Semiconductor memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08335643A true JPH08335643A (en) 1996-12-17
JP3524213B2 JP3524213B2 (en) 2004-05-10

Family

ID=15265541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14029895A Expired - Fee Related JP3524213B2 (en) 1995-06-07 1995-06-07 Semiconductor memory device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3524213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534161A (en) * 2003-11-17 2007-11-22 マイクロン テクノロジー、インコーポレイテッド NROM type flash memory device in ultra-thin silicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007534161A (en) * 2003-11-17 2007-11-22 マイクロン テクノロジー、インコーポレイテッド NROM type flash memory device in ultra-thin silicon

Also Published As

Publication number Publication date
JP3524213B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US6010934A (en) Method of making nanometer Si islands for single electron transistors
JP3524213B2 (en) Semiconductor memory device and method of manufacturing the same
JP3436315B2 (en) Method of manufacturing MONOS type semiconductor nonvolatile memory device and method of manufacturing semiconductor device
JPH06260644A (en) Manufacture of semiconductor device
JP2720911B2 (en) Method for preparing substrate surface for semiconductor device
JP3625523B2 (en) Single electronic element, semiconductor memory device, and manufacturing method thereof
JPH03108329A (en) Manufacture of mos type field effect transistor
JP3614258B2 (en) Semiconductor element and method for manufacturing semiconductor device
JPS62117343A (en) Formation of contact of semiconductor device
JP2924472B2 (en) Method for manufacturing thin film transistor
JPH1084053A (en) Method of manufacturing semiconductor memory
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JPH0472622A (en) Semiconductor device and manufacture thereof
JP2530177B2 (en) Method for manufacturing semiconductor device
JP2001267551A (en) Semiconductor device and its manufacturing method
JP2581542B2 (en) Semiconductor nonvolatile memory and method of manufacturing the same
JPH0216019B2 (en)
JPH05183156A (en) Semiconductor device and fabrication thereof
JPS62206873A (en) Manufacture of semiconductor device
JPH10303418A (en) Manufacture of semiconductor device
JPH09129876A (en) Manufacture of semiconductor device
JPS61290771A (en) Manufacture of semiconductor memory device
JPH09251994A (en) Manufacturing method for semiconductor device
JPH053212A (en) Manufacture of thin-film transistor
JPS5918872B2 (en) Manufacturing method of insulated gate field effect semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20031222

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090220

LAPS Cancellation because of no payment of annual fees