JPH08325626A - Method for reducing and recovering valuable metal in slag improved in hit accuracy of molten steel component - Google Patents

Method for reducing and recovering valuable metal in slag improved in hit accuracy of molten steel component

Info

Publication number
JPH08325626A
JPH08325626A JP3434996A JP3434996A JPH08325626A JP H08325626 A JPH08325626 A JP H08325626A JP 3434996 A JP3434996 A JP 3434996A JP 3434996 A JP3434996 A JP 3434996A JP H08325626 A JPH08325626 A JP H08325626A
Authority
JP
Japan
Prior art keywords
slag
molten steel
reducing
oxygen concentration
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3434996A
Other languages
Japanese (ja)
Other versions
JP3634046B2 (en
Inventor
Akito Komatsu
昭人 小松
Junichi Katsuki
淳一 香月
Yukio Yashima
幸雄 八島
Takashi Yamauchi
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP03434996A priority Critical patent/JP3634046B2/en
Publication of JPH08325626A publication Critical patent/JPH08325626A/en
Application granted granted Critical
Publication of JP3634046B2 publication Critical patent/JP3634046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To smelt molten steel having high component hit accuracy by adding a reducing agent in an optimum amt. of addition to the molten steel, thereby deoxidizing the molten steel. CONSTITUTION: The oxygen quantity of the easily reducing oxide in a slag is determined from the oxygen concn. in the molten steel or the decreased quantity of the Si concn. and Cr concn. before and after decarburization measured by an oxygen concn. battery or emission spectrochemical analysis method and the surface positions of the slag and the molten steel are detected at the time of reducing and recovering the valuable metals in the easily reducing oxide from the slag suspended on the surface of the molten steel to the molten steel. The thickness of the slag is calculated from the difference between the detected surface positions and the weight of the slag is determined in accordance with the slag thickness. The required addition amt. of the reducing agent is calculated from the oxygen quantity of the easily reducing oxide and the slag weight and the reducing agent is charged into the slag at the addition amt. which is the result of the calculation. As a result, the valuable metals, such as Fe, Mn and Cr, are recovered to the molten steel from the slag with the decreased consumption of the reducing agent. The molten steel having the compsn. coinciding with the target compsn. with high accuracy is thus smelted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製錬後の溶鋼表面を覆
うスラグ層に懸濁している易還元性酸化物中の有価金属
を溶鋼に還元回収する際、溶鋼の成分適中精度を高めた
スラグ中有価金属の還元回収方法に関する。
BACKGROUND OF THE INVENTION The present invention improves the precision of the composition of molten steel when reducing and recovering valuable metals in easily reducible oxides suspended in a slag layer covering the surface of molten steel after smelting into molten steel. A method for reducing and recovering valuable metals in slag.

【0002】[0002]

【従来の技術】転炉,真空脱ガス装置等でステンレス鋼
等の合金鋼を脱炭精錬するとき、溶鋼中の炭素が吹錬酸
素と反応しCOガスとなって溶鋼から除去されると同時
に、有用成分であるCr,Fe,Mn等も一部が次の反
応に従って酸化される。 4[Cr]+3O2 →2(Cr23 ) 2[Fe]+O2 →2(FeO) 2[Mn]+O2 →2(MnO) 酸化物となったCr,Fe,Mn等の金属元素は、溶鋼
表面に浮遊しているスラグに移行する。スラグ中の金属
元素は、製鋼の最終段階で酸化物から金属状態に還元さ
れ、メタルとして溶鋼に回収される。回収は、Cr,F
e,Mn等の金属元素がSiによって容易に金属状態に
還元されることを利用し、たとえば真空精錬時に所定量
のSiを取鍋内溶鋼に添加することにより行われてい
る。Siによる還元反応は、次の通りである。 2(Cr23 )+3Si→4[Cr]+3(SiO
2 ) 2(FeO)+Si→2[Fe]+(SiO2 ) 2(MnO)+Si→2[Mn]+(SiO2
2. Description of the Related Art When decarburizing and refining alloy steel such as stainless steel in a converter, a vacuum degassing device, etc., carbon in molten steel reacts with blowing oxygen to form CO gas and is simultaneously removed from molten steel. A part of useful components such as Cr, Fe, and Mn is also oxidized according to the following reaction. 4 [Cr] + 3O 2 → 2 (Cr 2 O 3 ) 2 [Fe] + O 2 → 2 (FeO) 2 [Mn] + O 2 → 2 (MnO) Metal elements such as Cr, Fe, Mn, etc. Migrates to the slag floating on the surface of the molten steel. The metal element in the slag is reduced from the oxide to a metal state in the final stage of steel making, and is recovered as molten metal in the molten steel. Recovery is Cr, F
Utilizing the fact that metallic elements such as e and Mn are easily reduced to a metallic state by Si, for example, a predetermined amount of Si is added to molten steel in a ladle during vacuum refining. The reduction reaction with Si is as follows. 2 (Cr 2 O 3 ) + 3Si → 4 [Cr] +3 (SiO
2 ) 2 (FeO) + Si → 2 [Fe] + (SiO 2 ) 2 (MnO) + Si → 2 [Mn] + (SiO 2 ).

【0003】金属状態になったCr,Fe,Mn等は溶
鋼に移行し、その結果、溶鋼成分濃度が変化する。成分
調整を高精度で行うためには、最終段階でスラグから溶
鋼に移行する金属元素を定量的に把握しておく必要があ
る。また、最近では、Si含有量に関する規格が極めて
厳しい鋼種が使用され始めている。このような高精度の
成分調整やSi含有量が厳格に管理された鋼種に対応す
るためには、Siによって還元される易還元性酸化物が
スラグ中に含まれている量を正確に把握することが必要
である。スラグに含まれている易還元性酸化物の酸素量
は、Siで還元されるCr23 ,FeO,MnO等の
金属酸化物中の酸素濃度及びスラグ量に対する割合で示
される。算出された酸素量は、還元剤として必要なSi
の添加量を定めるときの基準になる。
Cr, Fe, Mn, etc. in the metallic state are transferred to the molten steel, and as a result, the molten steel component concentration changes. In order to adjust the composition with high accuracy, it is necessary to quantitatively grasp the metal elements that migrate from the slag to the molten steel at the final stage. Recently, steel grades with extremely strict standards for Si content have begun to be used. In order to cope with such high-accuracy component adjustment and steel grades in which the Si content is strictly controlled, the amount of the easily reducible oxide reduced by Si contained in the slag is accurately grasped. It is necessary. The oxygen content of the easily reducible oxide contained in the slag is indicated by the proportion of the oxygen content and the slag content in the metal oxide such as Cr 2 O 3 , FeO, and MnO that is reduced by Si. The calculated amount of oxygen is the amount of Si required as a reducing agent.
It becomes the standard when determining the amount of addition of.

【0004】[0004]

【発明が解決しようとする課題】金属酸化物中の酸素濃
度を定量する方法として、スラグ試料を蛍光X線分析す
る方法が知られている。蛍光X線分析は、ガラスビード
法又はプレス成形法の何れにおいても試料の秤量から分
析値の算出までに20〜25分を必要とする。しかも、
試料に含まれている金属酸化物が化学量論的な形態を採
っているものと仮定し、金属と酸化物との化学量論的な
関係から定まる係数を金属元素の定量値に乗じることに
よって酸素分析値を算出している。そのため、金属状態
のCr,Fe,Mn等が含まれている試料や、酸素価が
異なる金属酸化物等が含まれている試料では、必然的に
測定誤差が生じる。本発明者等は、このような測定誤差
を解消し、分析時間の短縮を図るため、製鋼スラグから
採取された試料と炭素源との反応により系外に排出され
る酸素濃度に基づき、製鋼スラグに含まれている易還元
性酸化物の酸素濃度を定量する方法を開発し、特願平4
−319364号として出願した。この方法によると、
分析誤差を最小限に抑え、約10分間でスラグを酸素定
量することが可能になる。
A method of fluorescent X-ray analysis of a slag sample is known as a method for quantifying the oxygen concentration in a metal oxide. The fluorescent X-ray analysis requires 20 to 25 minutes from the weighing of the sample to the calculation of the analysis value in either the glass bead method or the press molding method. Moreover,
Assuming that the metal oxide contained in the sample is in the stoichiometric form, multiply the quantitative value of the metal element by the coefficient determined from the stoichiometric relationship between the metal and the oxide. Oxygen analysis value is calculated. Therefore, a measurement error is inevitably caused in a sample containing Cr, Fe, Mn and the like in a metallic state, or a sample containing a metal oxide having a different oxygen value. In order to eliminate such measurement error and shorten the analysis time, the inventors of the present invention, based on the oxygen concentration discharged to the outside of the system by the reaction between the sample collected from the steelmaking slag and the carbon source, steelmaking slag Developed a method for quantifying the oxygen concentration of easily reducible oxides contained in
Filed as No. 319364. According to this method,
Oxygen determination of the slag is possible in about 10 minutes with minimal analytical error.

【0005】ところで、ステンレス鋼の需要が増加して
きている近年、既存設備で需要量に応答するためには単
位時間当りの生産量を増やす必要があり、タップ時間の
短縮が課題とされる。そのため、スラグ中の易還元性酸
素量を更に短時間で把握するための技術開発が急務とさ
れる。本発明は、このような要望に応えるべく案出され
たものであり、溶鋼酸素濃度又は脱炭精錬前後における
溶鋼中のCr濃度及びSi濃度の減少量からスラグ中で
有価金属と結合している酸素の濃度を容易且つ迅速に把
握し、この値と別途求めたスラグ量に基づき最適添加量
を決定して還元剤を投入することにより、有価金属を効
率よく溶鋼に回収すると共に、高い適中精度で成分調整
された溶鋼を得ることを目的とする。
By the way, in recent years, where the demand for stainless steel is increasing, it is necessary to increase the production amount per unit time in order to respond to the demand amount in the existing equipment, and shortening the tap time is an issue. Therefore, there is an urgent need to develop a technology for grasping the amount of easily reducing oxygen in slag in a shorter time. The present invention has been devised to meet such a demand, and is combined with a valuable metal in the slag from the amount of decrease in the molten steel oxygen concentration or the Cr concentration and Si concentration in the molten steel before and after decarburization refining. Easily and quickly grasp the oxygen concentration, determine the optimum addition amount based on this value and the separately obtained slag amount, and add the reducing agent to efficiently collect valuable metals in molten steel and to obtain high appropriate precision. The purpose is to obtain molten steel whose composition has been adjusted in 1.

【0006】[0006]

【課題を解決するための手段】本発明の有価金属還元回
収方法は、その目的を達成するため、溶鋼の表面に浮遊
するスラグから易還元性酸化物中の有価金属を前記溶鋼
に還元回収する際、酸素濃淡電池を用いて溶鋼酸素値を
測定し、溶鋼酸素値からスラグ中易還元性酸化物の酸素
濃度を推定すると共に、前記スラグ及び前記溶鋼の表面
位置を検出し、検出された表面位置の差からスラグの厚
みを算出し、該スラグの厚みに基づいて前記スラグの重
量を求め、前記スラグ中易還元酸化物の酸素濃度及び前
記スラグ重量から還元剤の必要添加量を演算し、演算結
果の添加量で前記還元剤を前記スラグに投入することを
特徴とする。溶鋼酸素値としては、スラグ中易還元酸化
物の酸素濃度を求める際に発光分光分析法で測定した溶
鋼酸素値が使用される。Si及びCrを含む合金鋼を転
炉又は真空脱ガス装置で脱炭精錬する際には、脱炭精錬
前後の溶鋼中のCr濃度及びSi濃度の減少量を用いて
スラグ中易還元酸化物の酸素濃度を推定する。
In order to achieve the object, the method for reducing and recovering valuable metals of the present invention recovers valuable metals in easily reducible oxides into the molten steel from slag floating on the surface of the molten steel. At this time, the molten steel oxygen value is measured using an oxygen concentration battery, and the oxygen concentration of the easily reducing oxide in the slag is estimated from the molten steel oxygen value, and the surface positions of the slag and the molten steel are detected, and the detected surface is detected. The thickness of the slag is calculated from the difference in position, the weight of the slag is calculated based on the thickness of the slag, and the oxygen concentration of the easily reducing oxide in the slag and the necessary addition amount of the reducing agent from the slag weight are calculated, It is characterized in that the reducing agent is added to the slag in the addition amount of the calculation result. As the molten steel oxygen value, the molten steel oxygen value measured by the emission spectroscopic analysis method when the oxygen concentration of the easily reduced oxide in the slag is obtained is used. When decarburizing and refining an alloy steel containing Si and Cr in a converter or a vacuum degassing apparatus, the reduction amount of Cr concentration and Si concentration in the molten steel before and after decarburization refining is used. Estimate oxygen concentration.

【0007】[0007]

【作用】製鋼スラグに含まれている易還元性酸化物は、
脱炭精錬時の吹錬酸素によって生成したものであり、そ
の酸素値は溶鋼中の酸素濃度と高い相関関係をもってい
る。また、本発明者等の調査・研究によるとき、脱炭精
錬前後の溶鋼中にCr濃度及びSi濃度の減少量から算
出した易還元酸化物の酸素値とも高い相関関係にあるこ
とが判明した。以上のことは、溶鋼中の酸素濃度又は脱
炭精錬前後における溶鋼中のCr濃度及びSi濃度の減
少量を測定することにより、製鋼スラグに含まれている
易還元性酸化物の酸素濃度が求められることを示唆す
る。溶鋼の酸素濃度は、酸素濃淡電池又は発光分光分析
装置によってわずか2分程度で容易に測定できる。ま
た、脱炭精錬前後の溶鋼中のCr濃度及びSi濃度の減
少量は、それぞれ脱炭精錬前後の溶鋼中のSi濃度及び
Cr濃度の差である。これらの濃度差は、発光分光分析
装置によってわずか2分程度で容易に測定できる。した
がって、溶鋼中の酸素濃度又はSi濃度及びCr濃度か
ら製鋼スラグの酸素濃度を推定するとき、スラグの採取
作業時間,粉砕から分析値を得るための一連の作業時間
が省略され、結果としてタップ時間の大幅な短縮が図ら
れる。
[Operation] The easily reducible oxide contained in the steelmaking slag is
It is generated by blown oxygen during decarburization refining, and its oxygen value has a high correlation with the oxygen concentration in the molten steel. Further, according to the investigations and studies by the present inventors, it was found that there is a high correlation with the oxygen value of the easily reduced oxide calculated from the reduction amounts of Cr concentration and Si concentration in the molten steel before and after decarburization refining. As described above, the oxygen concentration of the easily reducing oxide contained in the steelmaking slag is obtained by measuring the oxygen concentration in the molten steel or the reduction amount of the Cr concentration and the Si concentration in the molten steel before and after decarburization refining. Suggest that it be done. The oxygen concentration of molten steel can be easily measured by an oxygen concentration cell or an emission spectrophotometer in about 2 minutes. Further, the reduction amounts of the Cr concentration and the Si concentration in the molten steel before and after the decarburization refining are the differences between the Si concentration and the Cr concentration in the molten steel before and after the decarburization refining, respectively. These concentration differences can be easily measured by an emission spectroscopic analyzer in only about 2 minutes. Therefore, when estimating the oxygen concentration of the steelmaking slag from the oxygen concentration in the molten steel or the Si concentration and the Cr concentration, a series of working time for obtaining the analytical value from the slag sampling operation and crushing is omitted, resulting in tap time. Can be significantly shortened.

【0008】他方、スラグ重量を計量する方法として
は、基準点からのスラグ面の位置X1と溶鋼面の位置X2
を検出し、その位置の差からスラグの厚み(X1 −X2
)を求めると共に、真空脱ガス容器,取鍋等の容器内
径Rからスラグ体積VS を求め、前記スラグの比重ρを
乗じることによってスラグ重量WS を演算する方法が採
用される。スラグの表面位置は、渦電流,レーザ,マイ
クロ波,放射線等を用いた距離計や、スラグ表面に直接
接触させるタッチ式センサー,スラグの輝度を測定する
方法等によって検出される。渦電流センサーとしては、
周波数が500kHz以上で1MHz以下の高周波交流
電流が供給される渦電流式センサーを使用することが好
ましい。周波数が500kHz以上で1MHz以下の高
周波交流電流は、スラグの表面にのみ渦電流を発生させ
るため、スラグの表面位置を検出できる。
On the other hand, as a method for measuring the weight of the slag, the position X 1 of the slag surface from the reference point and the position X 2 of the molten steel surface are measured.
Of the slag (X 1 -X 2
), The slag volume V S is calculated from the inner diameter R of the vacuum degassing container, the ladle, etc., and the specific gravity ρ of the slag is multiplied to calculate the slag weight W S. The surface position of the slag is detected by a range finder using eddy current, laser, microwave, radiation, etc., a touch type sensor that directly contacts the slag surface, a method of measuring the brightness of the slag, and the like. As an eddy current sensor,
It is preferable to use an eddy current sensor to which a high frequency alternating current having a frequency of 500 kHz or more and 1 MHz or less is supplied. A high-frequency alternating current with a frequency of 500 kHz or more and 1 MHz or less generates an eddy current only on the surface of the slag, so that the surface position of the slag can be detected.

【0009】スラグ下にある湯面の位置は、渦電流式セ
ンサーを使用して検出する方法,一対の電極をスラグか
らメタルにわたって浸漬させ、スラグ,メタルそれぞれ
の導電性の差を電気的にとらえる方法,常に一定量のガ
スが流れているガスプローブをスラグからメタルにわた
って浸漬させ、スラグとメタルの比重差から生じるガス
プローブ中の背圧変化を用いる方法等で検出される。た
とえば、渦電流センサーを使用するとき、周波数0.5
〜500kHzの高周波交流電流を供給して溶鋼の表面
位置を検出する。周波数0.5〜500kHzの高周波
交流電流を供給することにより、スラグ層に懸濁してい
る金属液滴に起因する渦電流による誤差要因が渦電流セ
ンサーの受信コイルに取り込まれることなく、スラグ下
にある溶鋼の表面位置が高精度で検出される。
The position of the molten metal surface under the slag is detected by using an eddy current type sensor, a pair of electrodes is immersed from the slag to the metal, and the difference in conductivity between the slag and the metal is electrically detected. The method is such that a gas probe in which a constant amount of gas always flows is dipped from the slag to the metal, and a change in back pressure in the gas probe caused by a difference in specific gravity between the slag and the metal is used for detection. For example, when using an eddy current sensor, a frequency of 0.5
A high frequency alternating current of up to 500 kHz is supplied to detect the surface position of the molten steel. By supplying a high-frequency alternating current with a frequency of 0.5 to 500 kHz, the error factor due to the eddy current caused by the metal droplets suspended in the slag layer is not taken into the receiving coil of the eddy current sensor, and the error is caused under the slag. The surface position of a certain molten steel is detected with high accuracy.

【0010】以上のようにして測定された溶鋼の酸素濃
度又は脱炭精錬前後の溶鋼中のCr濃度及びSi濃度の
減少量とスラグの重量から、図1に示すフローに従って
還元剤の必要添加量が演算される。この添加量で還元剤
を投入するとき、スラグ中の易還元性酸化物が還元さ
れ、金属状態で溶鋼に回収される。この方法によると
き、過剰の還元剤を添加することがないので、溶鋼に持
ち込まれる余分な還元剤を少なくすることができる。す
なわち、スラグの組成及び重量を基準にして定められた
量の還元剤を添加することにより、還元剤Siが溶鋼に
規格成分以上に余分に持ち込まれることなく、しかもM
n,Cr等の合金成分の含有量適中精度を向上させた溶
鋼が得られる。溶鋼に還元回収される有価金属は、使用
する還元剤の還元能に応じて選択できる。たとえば、S
i又はフェロシリコンを還元剤として使用すると、F
e,Mn及びCrが溶鋼に還元回収される。Al,T
i,Ca,Mg又はそれらの合金を還元剤として使用す
ると、Fe,Mn,Cr及びSiが還元回収される。A
l,Ca,Mg又はそれらの合金を還元剤として添加す
ると、Fe,Mn,Cr,Si及びTiが溶鋼に還元回
収される。何れの場合にも、スラグ中の易還元性酸化物
の酸素量及びスラグ重量から還元剤の必要添加量が定ま
っているので、規格成分以上に余分な還元剤を添加する
ことなく、目標組成に高精度で一致した溶鋼が得られ
る。
From the oxygen concentration of the molten steel measured as described above or the reduction amount of Cr concentration and Si concentration in the molten steel before and after decarburization refining and the weight of the slag, the required addition amount of the reducing agent according to the flow shown in FIG. Is calculated. When the reducing agent is added in this addition amount, the easily reducible oxide in the slag is reduced and is recovered in the molten steel in a metallic state. According to this method, since an excess reducing agent is not added, it is possible to reduce the excess reducing agent brought into the molten steel. That is, by adding the reducing agent in an amount determined based on the composition and weight of the slag, the reducing agent Si is not brought into the molten steel more than the standard component, and moreover, M
It is possible to obtain molten steel with improved precision of the content of alloying components such as n and Cr. The valuable metal reduced and recovered by the molten steel can be selected according to the reducing ability of the reducing agent used. For example, S
When i or ferrosilicon is used as a reducing agent, F
e, Mn and Cr are reduced and recovered in molten steel. Al, T
When i, Ca, Mg or an alloy thereof is used as a reducing agent, Fe, Mn, Cr and Si are reduced and recovered. A
When 1, l, Ca, Mg or their alloys are added as a reducing agent, Fe, Mn, Cr, Si and Ti are reduced and recovered in molten steel. In each case, the required addition amount of the reducing agent is determined from the oxygen amount of the easily reducing oxide in the slag and the weight of the slag. Molten steel can be obtained with high precision.

【0011】−スラグ重量の計測− スラグ及び溶鋼の表面位置が基準点からの距離X1 ,X
2 として検出される。溶鋼の表面位置はスラグ層との界
面にあるので、スラグ層の厚みは(X1 −X2)と算出
される。他方、真空脱ガス容器,取鍋等の容器の内側半
径Rは予め判っているので、スラグの体積VS はVS
πR2 ×(X1 −X2 )となる。スラグの重量WS は、
体積VS にスラグの比重ρを乗じることにより、WS
ρ×VS=ρ×πR2 ×(X1 −X2 )として算出され
る。得られたスラグ重量WS は、溶鋼重量WM を介在さ
せることなく、スラグ層の厚みから直接的に算出された
値である。図1は、この間のフローを示す。このように
して、誤差要因が取り込まれることが少なく、スラグ重
量WS が高精度で求められる。
-Measurement of slag weight-The surface positions of slag and molten steel are distances X 1 and X from the reference point.
Detected as 2 . Since the surface position of the molten steel at the interface between the slag layer, the thickness of the slag layer is calculated as (X 1 -X 2). On the other hand, since the inner radius R of a container such as a vacuum degassing container and a ladle is known in advance, the slag volume V S is V S =
.pi.R 2 a × (X 1 -X 2). The weight of the slag W S is
By multiplying the volume V S by the specific gravity ρ of the slag, W S =
It is calculated as ρ × V S = ρ × πR 2 × (X 1 −X 2 ). The obtained slag weight W S is a value directly calculated from the thickness of the slag layer without interposing the molten steel weight W M. FIG. 1 shows the flow during this period. In this way, error factors are rarely taken in, and the slag weight W S can be obtained with high accuracy.

【0012】−還元剤の必要添加量の算出− 還元剤の必要添加量は、スラグ中に含まれている易還元
酸化物濃度を求めて、スラグ重量を掛け合せることによ
り定まる。スラグ中に含まれている易還元性酸化物濃度
は、酸素濃淡電池又は発光分光分析法を用いて求めた溶
鋼の酸素濃度又は脱炭精錬前後の溶鋼中のCr濃度及び
Si濃度の減少量から定まる。本発明者等が種々実験を
重ねた結果、スラグ中易還元酸化物の酸素濃度(O)
は、それぞれ次式で精度良く推定できることが判明し
た。 (O)=a・[O]+b (O)=c・ΔCr+d・ΔSi+e 式中、a,b,c,d,eは、係数又は定数を示す。ま
た、[O]は酸素濃淡電池又は発光分光分析法で求めた
溶鋼の酸素濃度を示し、ΔCr,ΔSiはそれぞれ脱炭
精錬前後の溶鋼中のCr濃度及びSi濃度の減少量を示
す。得られたスラグ中易還元酸化物の酸素濃度(O)に
スラグ重量WS を乗じることによって、取鍋内にあるス
ラグの易還元酸化物の酸素量が求められる。算出された
酸素量に応じて、還元に必要は還元剤の投入量が定めら
れる。このようにして調整された量の還元剤を投入する
とき、スラグから溶鋼に所定の量で易還元性酸化物中の
Cr,Fe,Mn等が回収され、また投入された還元剤
が過剰に持ち込まれることがなくなる。その結果、還元
剤を効率よく消費できることは勿論、溶製後の溶鋼成分
適中度が向上する。特に還元剤に由来するSiの含有量
に関して厳格な管理が要求される鋼種を精度良く溶製す
ることが可能になる。
-Calculation of Required Addition Amount of Reducing Agent-The required addition amount of a reducing agent is determined by obtaining the concentration of easily reducing oxide contained in the slag and multiplying it by the weight of the slag. The concentration of easily reducible oxides contained in the slag was calculated from the oxygen concentration of the molten steel obtained using the oxygen concentration cell or the emission spectroscopy method or the decrease in the Cr concentration and Si concentration in the molten steel before and after decarburization refining. Determined. As a result of various experiments conducted by the present inventors, the oxygen concentration (O) of the easily reduced oxide in slag
It has been found that can be accurately estimated by the following equations. (O) = a · [O] + b (O) = c · ΔCr + d · ΔSi + e In the formula, a, b, c, d, and e represent coefficients or constants. Further, [O] represents the oxygen concentration of the molten steel obtained by the oxygen concentration battery or the emission spectroscopy, and ΔCr and ΔSi represent the reduction amounts of the Cr concentration and the Si concentration in the molten steel before and after decarburizing and refining, respectively. By multiplying the oxygen concentration (O) of the obtained easily reduced oxide in the slag by the slag weight W S , the oxygen amount of the easily reduced oxide of the slag in the ladle can be obtained. Depending on the calculated oxygen amount, the amount of reducing agent input required for reduction is determined. When an amount of reducing agent adjusted in this way is added, Cr, Fe, Mn, etc. in the easily reducible oxides are recovered from the slag in a predetermined amount in the molten steel, and the amount of the reducing agent added is excessive. It will not be brought in. As a result, the reducing agent can be efficiently consumed, and the appropriateness of the molten steel components after melting is improved. In particular, it becomes possible to accurately manufacture a steel type that requires strict control regarding the Si content derived from the reducing agent.

【0013】[0013]

【実施例】【Example】

実施例1:転炉吹錬が終了したCr含有量が11〜20
重量%の範囲にあるフェライト系ステンレス鋼及びオー
ステナイト系ステンレス鋼の合計100チャージ(77
〜81トン/チャージ)について、酸素濃淡電池を浸漬
して酸素濃度を測定した。このとき、全チャージとも酸
素濃度が得られるまでの時間は、僅か10秒であった。
溶鋼を取鍋に出鋼した後、直ちにセンサーを用いてスラ
グ面及び湯面位置を検出した。このときの測定時間は、
約1分であった。なお、スラグ面の位置は直接接触させ
るタッチ式センサーを用いて測定し、湯面の位置は渦電
流式センサーで測定した。スラグ厚みを計測した後、ス
ラグ体積を算出し、一定値のスラグ比重を乗じてスラグ
重量を求めた。得られた酸素濃度とスラグ重量からスラ
グ中の易還元性酸化物の全重量を算出し、還元に必要な
還元剤の投入量を求めた。
Example 1: Cr content after completion of converter blowing is 11 to 20
A total of 100 charges of ferritic stainless steel and austenitic stainless steel in the weight% range (77
About 81 tons / charge), the oxygen concentration battery was immersed and the oxygen concentration was measured. At this time, the time until the oxygen concentration was obtained for all the charges was only 10 seconds.
Immediately after tapping the molten steel in the ladle, the positions of the slag surface and the molten metal surface were detected by using a sensor. The measurement time at this time is
It was about 1 minute. The position of the slag surface was measured using a touch-type sensor in direct contact, and the position of the molten metal surface was measured using an eddy current sensor. After measuring the slag thickness, the slag volume was calculated, and the slag weight was calculated by multiplying the slag specific gravity by a constant value. The total weight of easily reducible oxides in the slag was calculated from the obtained oxygen concentration and the slag weight, and the amount of the reducing agent required for the reduction was determined.

【0014】100チャージ中の一例を具体的に説明す
る。転炉脱炭精錬後の酸素濃淡電池で求めた溶鋼酸素濃
度は、0.11重量%であった。この溶鋼酸素濃度に対
応するスラグ中の易還元性酸化物の酸素濃度は、図2の
相関線図から12.4重量%であることが判る。なお、
図2は、Cr含有量が11〜20重量%の範囲にあるフ
ェライト系ステンレス鋼及びオーステナイト系ステンレ
ス鋼の合計100チャージ(77〜81トン/チャー
ジ)の溶鋼について、スラグ中易還元性酸化物の酸素濃
度を炭素還元法で求め、酸素濃淡電池で測定した溶鋼中
の酸素濃度との関係から予め求めた検量線である。
An example of 100 charges will be specifically described. The molten steel oxygen concentration determined by the oxygen concentration battery after the converter decarburization refining was 0.11% by weight. The oxygen concentration of the easily reducible oxide in the slag corresponding to this molten steel oxygen concentration is 12.4 wt% from the correlation diagram of FIG. In addition,
FIG. 2 shows a total of 100 charges (77 to 81 tons / charge) of ferritic stainless steel and austenitic stainless steel having Cr contents in the range of 11 to 20% by weight. It is a calibration curve which was obtained in advance by the carbon reduction method and was previously obtained from the relationship with the oxygen concentration in molten steel measured by an oxygen concentration battery.

【0015】一方、スラグ重量は、測定したスラグ厚み
22.3cmに予め求められているスラグの比重3.5
を乗じて4.1トンと算出された。したがって、スラグ
中の易還元性酸化物の酸素濃度は、12.4重量%×
4.4トン=508kgとなり、Cr,Fe,Mnを溶
鋼に回収するために必要なSi量は445kgと算出さ
れた。このSi純分445kgに相当するフェロシリコ
ンを投入した後、真空脱ガス,脱酸処理を施し、スラグ
を再度サンプリングし、スラグに含まれている易還元性
酸化物の酸素濃度を測定した。その結果、易還元性酸化
物の酸素濃度は、0.03重量%であった。このことか
ら、Cr,Fe及びMnは、十分に溶鋼に回収されてい
ることが確認された。
On the other hand, the slag weight is the specific gravity of the slag which is previously determined to be 22.3 cm for the measured slag thickness of 3.5.
It was calculated to be 4.1 tons. Therefore, the oxygen concentration of the easily reducing oxide in the slag was 12.4% by weight x
The amount of Si required for recovering Cr, Fe, and Mn in molten steel was calculated to be 445 kg. After introducing ferrosilicon corresponding to 445 kg of pure Si, vacuum degassing and deoxidation were performed, slag was sampled again, and the oxygen concentration of the easily reducing oxide contained in the slag was measured. As a result, the oxygen concentration of the easily reducing oxide was 0.03% by weight. From this, it was confirmed that Cr, Fe and Mn were sufficiently recovered in the molten steel.

【0016】実施例2:転炉脱炭精錬が終了したCr含
有量が11〜20重量%の範囲にあるフェライト系ステ
ンレス鋼及びオーステナイト系ステンレス鋼の計100
チャージ(77〜81トン/チャージ)の溶鋼につい
て、発光分光分析法で酸素濃度を測定した。このとき、
全チャージとも酸素濃度の測定値が得られるまでの時間
はわずか2分程度であった。溶鋼を取鍋に出鋼した後、
直ちにタッチ式センサーでスラグ面位置を測定し、渦電
流式センサーで湯面位置を測定した。スラグ厚みを計測
した後、スラグ体積を算出し、一定値のスラグ比重を乗
じてスラグ重量を求めた。得られたスラグ中の易還元酸
化物の酸素濃度とスラグ重量からスラグ中の易還元酸化
物の全酸素量を算出し、還元に必要な還元剤の投入量を
求めた。
Example 2: A total of 100 ferritic stainless steels and austenitic stainless steels having a Cr content in the range of 11 to 20% by weight after completion of converter decarburization refining.
The oxygen concentration of the molten steel having a charge (77 to 81 tons / charge) was measured by an emission spectroscopy. At this time,
It took only about 2 minutes to obtain the measured oxygen concentration for all charges. After tapping molten steel in a ladle,
Immediately, the slag surface position was measured with a touch sensor, and the molten metal surface position was measured with an eddy current sensor. After measuring the slag thickness, the slag volume was calculated, and the slag weight was calculated by multiplying the slag specific gravity by a constant value. The total oxygen amount of the easily reducing oxide in the slag was calculated from the oxygen concentration of the easily reducing oxide in the obtained slag and the slag weight, and the input amount of the reducing agent necessary for the reduction was determined.

【0017】100チャージ中の一例を具体的に説明す
る。転炉脱炭精錬後に発光分光分析法で測定した溶鋼酸
素濃度は、0.09重量%であった。分光法で求めたこ
の溶鋼酸素濃度に対応するスラグ中の易還元性酸化物の
酸素濃度は、図2に示した酸素濃淡電池を用いて求めた
溶鋼酸素濃度とスラグ中の易還元酸化物の酸素濃度との
関係に一致したことから、図2の相関線図において溶鋼
酸素濃度0.09重量%に対応する11.1重量%がス
ラグ中易還元性酸化物の酸素濃度であることが判る。一
方、スラグ重量は、測定したスラグ厚み29.3cmに
予め求められているスラグの比重3.5を乗じて5.4
トンと算出された。したがって、スラグ中の易還元性酸
化物の酸素濃度は、11.1重量%×5.4トン=60
0kgとなり、Cr,Fe,Mnを溶鋼に回収するため
に必要なSi量は525kgと算出された。このSi純
分525kgに相当するフェロシリコンを投入した後、
真空脱ガス,脱酸処理を施し、スラグを再度サンプリン
グし、スラグに含まれている易還元性酸化物の酸素濃度
を測定した。その結果、易還元性酸化物の酸素濃度は、
0.02重量%であった。このことから、Cr,Fe及
びMnは、十分に溶鋼に回収されていることが確認され
た。
An example of 100 charges will be specifically described. The molten steel oxygen concentration measured by emission spectroscopy after the converter decarburization refining was 0.09% by weight. The oxygen concentration of the easily reducible oxide in the slag corresponding to this molten steel oxygen concentration obtained by spectroscopy is the molten steel oxygen concentration obtained by using the oxygen concentration battery shown in FIG. 2 and the easily reduced oxide in the slag. Since it matches the relationship with the oxygen concentration, it can be seen from the correlation diagram of FIG. 2 that 11.1 wt% corresponding to the molten steel oxygen concentration of 0.09 wt% is the oxygen concentration of the easily reducing oxide in the slag. . On the other hand, the slag weight is 5.4 by multiplying the measured slag thickness of 29.3 cm by the specific gravity of 3.5 of the slag obtained in advance.
Calculated as tons. Therefore, the oxygen concentration of the easily reducing oxide in the slag was 11.1% by weight × 5.4 tons = 60.
The amount of Si was 0 kg, and the amount of Si required to recover Cr, Fe, and Mn in molten steel was calculated to be 525 kg. After introducing ferrosilicon equivalent to 525 kg of this Si pure content,
Vacuum degassing and deoxidation treatment were performed, the slag was sampled again, and the oxygen concentration of the easily reducing oxide contained in the slag was measured. As a result, the oxygen concentration of the easily reducing oxide is
It was 0.02% by weight. From this, it was confirmed that Cr, Fe and Mn were sufficiently recovered in the molten steel.

【0018】実施例3:転炉脱炭精錬が終了したCr含
有量が11〜20重量%の範囲にあるフェライト系ステ
ンレス鋼及びオーステナイト系ステンレス鋼の計100
チャージ(77〜81トン/チャージ)の溶鋼につい
て、転炉脱炭精錬前後の溶鋼中のCr濃度及びSi濃度
の減少量、すなわち転炉脱炭精錬前後の溶鋼中のCr及
びSiの濃度差を発光分光分析法で測定した。このと
き、全チャージとも転炉脱炭精錬前後の溶鋼中のCr濃
度及びSi濃度の減少量を表した測定値が得られるまで
の時間はわずか2分程度であった。溶鋼を取鍋に出鋼し
た後、直ちにタッチ式センサーでスラグ面位置を測定
し、渦電流式センサーで湯面位置を測定した。スラグ厚
みを計測した後、スラグ体積を算出し、一定値のスラグ
比重を乗じてスラグ重量を求めた。得られたスラグ中の
易還元酸化物の酸素濃度とスラグ重量からスラグ中の易
還元酸化物の全酸素量を算出し、還元に必要な還元剤の
投入量を求めた。
Example 3: A total of 100 ferritic stainless steels and austenitic stainless steels having a Cr content in the range of 11 to 20% by weight after completion of converter decarburization refining.
For molten steel with a charge (77 to 81 tons / charge), the reduction amount of Cr concentration and Si concentration in the molten steel before and after the converter decarburization refining, that is, the difference in the concentration of Cr and Si in the molten steel before and after the converter decarburization refining It was measured by optical emission spectroscopy. At this time, it took only about 2 minutes for all the charges to obtain the measured values showing the reduction amounts of the Cr concentration and Si concentration in the molten steel before and after the converter decarburization refining. Immediately after tapping the molten steel in the ladle, the position of the slag surface was measured by the touch type sensor, and the position of the molten metal surface was measured by the eddy current type sensor. After measuring the slag thickness, the slag volume was calculated, and the slag weight was calculated by multiplying the slag specific gravity by a constant value. The total oxygen amount of the easily reducing oxide in the slag was calculated from the oxygen concentration of the easily reducing oxide in the obtained slag and the slag weight, and the input amount of the reducing agent necessary for the reduction was determined.

【0019】100チャージ中の一例を具体的に説明す
る。転炉で脱炭精錬し、脱炭精錬前後のCr濃度及びS
i濃度を発光分光分析法で測定した。Cr濃度及びSi
濃度の減少量から推定したスラグ中の易還元酸化物の酸
素濃度は10.7重量%であり、この推定値から図3の
相関線図に基づいて求めたスラグ中の易還元酸化物の酸
素濃度は10.8重量%であった。なお、図3は、Cr
含有量が11〜20重量%の範囲にあるフェライト系ス
テンレス鋼及びオーステナイト系ステンレス鋼の合計1
00チャージ(77〜81トン/チャージ)の溶鋼につ
いて、脱炭精錬前後の溶鋼中にCr濃度及びSi濃度の
減少量を用いて推定したスラグ中易還元酸化物の酸素濃
度と炭素還元法で求めたスラグ中易還元性酸化物の酸素
濃度との関係から求めた検量線である。
An example of 100 charges will be specifically described. Decarburization refining in a converter, Cr concentration and S before and after decarburization refining
The i concentration was measured by optical emission spectroscopy. Cr concentration and Si
The oxygen concentration of the easily reduced oxide in the slag estimated from the amount of decrease in concentration was 10.7% by weight, and the oxygen of the easily reduced oxide in the slag obtained from this estimated value based on the correlation diagram of FIG. The concentration was 10.8% by weight. In addition, FIG.
Total 1 of ferritic stainless steel and austenitic stainless steel whose content is in the range of 11 to 20% by weight
Oxygen concentration of easily reduced oxide in slag estimated by using reduction amount of Cr concentration and Si concentration in molten steel before and after decarburization refining for 00 charge (77 to 81 ton / charge) molten steel and carbon reduction method It is a calibration curve obtained from the relationship with the oxygen concentration of easily reducing oxide in slag.

【0020】一方、スラグ重量は、測定したスラグ厚み
31.2cmに予め求められているスラグの比重3.5
を乗じて5.8トンと算出された。したがって、スラグ
中の易還元性酸化物の酸素濃度は、10.8重量%×
5.8トン=626kgとなり、Cr,Fe,Mnを溶
鋼に回収するために必要なSi量は548kgと算出さ
れた。このSi純分548kgに相当するフェロシリコ
ンを投入した後、真空脱ガス,脱酸処理を施し、スラグ
を再度サンプリングし、スラグに含まれている易還元性
酸化物の酸素濃度を測定した。その結果、易還元性酸化
物の酸素濃度は、0.03重量%であった。このことか
ら、Cr,Fe及びMnは、十分に溶鋼に回収されてい
ることが確認された。
On the other hand, the slag weight is the specific gravity of the slag, which is previously determined to be 31.2 cm for the measured slag thickness of 3.5.
Was calculated to be 5.8 tons. Therefore, the oxygen concentration of the easily reducing oxide in the slag was 10.8% by weight ×
5.8 tons = 626 kg, and the amount of Si required to recover Cr, Fe, and Mn into molten steel was calculated to be 548 kg. After introducing ferrosilicon corresponding to this Si pure content of 548 kg, vacuum degassing and deoxidation treatment were performed, the slag was sampled again, and the oxygen concentration of the easily reducing oxide contained in the slag was measured. As a result, the oxygen concentration of the easily reducing oxide was 0.03% by weight. From this, it was confirmed that Cr, Fe and Mn were sufficiently recovered in the molten steel.

【0021】表1に100チャージの溶鋼酸素濃度又は
転炉脱炭精錬前後の溶鋼中のCr濃度及びSi濃度の減
少量からスラグ中易還元性酸化物の酸素濃度を求め、投
入フェロシリコン量を決定した場合と、直接スラグを分
析して易還元性酸化物の酸素濃度を求めて投入フェロシ
リコン量を決定した場合、それぞれの溶鋼中のSi含有
量の適中率の平均値と作業時間の平均値とを比較して示
す。表1の結果に示されているように、溶鋼の酸素濃度
からスラグ中易還元性酸化物の酸素濃度を算出し、投入
フェロシリコン量を決定した場合における溶鋼中のSi
含有量の適中率の平均値は、直接スラグを分析して易還
元性酸化物の酸素濃度を求めて投入フェロシリコン量を
決定した場合に比較して作業所要時間が約10分間短縮
された。この短縮時間は、1時間当り80トンの粗鋼を
生産するラインを想定すると、月産9,600トンの増
産に相当する値であり、大幅な生産量のアップにつなが
ることが判る。また、作業時間も、変動が±1分以内に
収まることが判った。
In Table 1, the oxygen concentration of the easily reducing oxide in the slag is determined from the amount of the molten steel oxygen concentration of 100 charges or the reduction amount of Cr concentration and Si concentration in the molten steel before and after converter decarburization refining. When determined, and when the amount of ferrosilicon to be input is determined by directly analyzing the slag to obtain the oxygen concentration of the easily reducible oxide, the average value of the appropriate percentage of Si content in each molten steel and the average of working time It is shown in comparison with the value. As shown in the results of Table 1, Si in the molten steel when the oxygen concentration of the easily reducing oxide in the slag was calculated from the oxygen concentration of the molten steel and the amount of ferrosilicon added was determined
Regarding the average value of the appropriate ratio of the content, the work required time was shortened by about 10 minutes as compared with the case where the amount of ferrosilicon added was determined by directly analyzing the slag and determining the oxygen concentration of the easily reducible oxide. This shortening time is equivalent to an increase in monthly production of 9,600 tons, assuming a line producing 80 tons of crude steel per hour, and it can be seen that this leads to a significant increase in production. Further, it was found that the variation in working time was within ± 1 minute.

【0022】 [0022]

【0023】[0023]

【発明の効果】以上に説明したように、本発明において
は、最短時間で還元剤の最適添加量を知ることができ、
最適添加量で還元剤を添加することによりスラグに含ま
れているFe,Mn,Cr等の易還元性酸化物を金属状
態に還元して溶鋼に回収すると共に、還元剤の過剰添加
に起因して処理後の溶鋼におけるSi含有量,Al含有
量等が上昇することを抑制している。その結果、作業時
間が大幅に短縮され、目標組成に対する適中率が高い溶
鋼が溶製される。また、還元剤の消費量を必要最小限と
することができるので、製造コストも低減される。
As described above, in the present invention, the optimum addition amount of the reducing agent can be known in the shortest time,
By adding a reducing agent in an optimum amount, the easily reducing oxides such as Fe, Mn, and Cr contained in the slag are reduced to a metallic state and recovered in molten steel, and due to the excessive addition of the reducing agent. Suppresses the increase of Si content, Al content, etc. in the molten steel after the heat treatment. As a result, the working time is drastically shortened, and molten steel having a high predictive value for the target composition is smelted. Further, since the consumption amount of the reducing agent can be minimized, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従って脱酸剤の必要投入量を決定す
るまでのフロー
FIG. 1 is a flow of determining a required amount of a deoxidizer according to the present invention.

【図2】 酸素濃淡電池により測定した溶鋼の酸素濃度
と炭素還元法で求めたスラグ中易還元性酸化物の酸素濃
度との間に密接な関係があることを示したグラフ
FIG. 2 is a graph showing that there is a close relationship between the oxygen concentration of molten steel measured by an oxygen concentration battery and the oxygen concentration of easily reducible oxide in slag obtained by the carbon reduction method.

【図3】 脱炭精錬前後で酸化した溶鋼中のSi濃度及
びCr濃度の減少量から推定したスラグ中易還元酸化物
の酸素濃度と炭素還元法で求めたスラグ中易還元酸化物
の酸素濃度分析値との間に密接な関係があることを示し
たグラフ
[Fig. 3] Oxygen concentration of easily reduced oxide in slag estimated from reduction amount of Si concentration and Cr concentration in molten steel oxidized before and after decarburization refining and oxygen concentration of easily reduced oxide in slag obtained by carbon reduction method Graph showing that there is a close relationship with the analysis value

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山内 隆 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Yamauchi 4976 Nomura-Minami-cho, Shinnanyo-shi, Yamaguchi Nisshin Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼の表面に浮遊するスラグから易還元
性酸化物中の有価金属を前記溶鋼に還元回収する際、酸
素濃淡電池を用いて溶鋼酸素値を測定し、溶鋼酸素値か
らスラグ中易還元性酸化物の酸素濃度を推定すると共
に、前記スラグ及び前記溶鋼の表面位置を検出し、検出
された表面位置の差からスラグの厚みを算出し、該スラ
グの厚みに基づいて前記スラグの重量を求め、前記スラ
グ中易還元酸化物の酸素濃度及び前記スラグ重量から還
元剤の必要添加量を演算し、演算結果の添加量で前記還
元剤を前記スラグに投入することを特徴とする溶鋼成分
適中精度を向上させたスラグ中の有価金属の還元回収方
法。
1. When the valuable metal in an easily reducible oxide is reduced and recovered to the molten steel from the slag floating on the surface of the molten steel, the oxygen concentration of the molten steel is measured by using an oxygen concentration battery, and the oxygen value of the molten steel is measured in the slag. While estimating the oxygen concentration of the easily reducing oxide, the surface position of the slag and the molten steel is detected, the thickness of the slag is calculated from the difference between the detected surface positions, and the slag is based on the thickness of the slag. Obtaining the weight, the oxygen concentration of the easily reducing oxide in the slag and the required addition amount of the reducing agent from the slag weight is calculated, and the reducing agent is added to the slag with the addition amount of the calculation result. A method for reducing and recovering valuable metals in slag with improved precision in the composition.
【請求項2】 請求項1記載の溶鋼酸素値として、スラ
グ中易還元酸化物の酸素濃度を求める際に発光分光分析
法で測定した溶鋼酸素値を使用するスラグ中有価金属の
還元回収方法。
2. A method for reducing and recovering valuable metals in slag, wherein the molten steel oxygen value measured by optical emission spectroscopy is used as the molten steel oxygen value according to claim 1 when determining the oxygen concentration of the easily reduced oxide in the slag.
【請求項3】 Si及びCrを含む合金鋼を転炉又は真
空脱ガス装置で脱炭精錬する際、脱炭精錬前後の溶鋼中
のCr濃度及びSi濃度の減少量を用いてスラグ中易還
元酸化物の酸素濃度を推定するスラグ中有価金属の還元
回収方法。
3. When the alloy steel containing Si and Cr is subjected to decarburization refining in a converter or a vacuum degassing device, the reduction amount of Cr concentration and Si concentration in the molten steel before and after decarburization refining is used to facilitate reduction in slag. A method for reducing and recovering valuable metals in slag by estimating the oxygen concentration of oxides.
JP03434996A 1995-03-28 1996-01-29 Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components Expired - Fee Related JP3634046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03434996A JP3634046B2 (en) 1995-03-28 1996-01-29 Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9433295 1995-03-28
JP9754195 1995-03-31
JP7-97541 1995-03-31
JP7-94332 1995-03-31
JP03434996A JP3634046B2 (en) 1995-03-28 1996-01-29 Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components

Publications (2)

Publication Number Publication Date
JPH08325626A true JPH08325626A (en) 1996-12-10
JP3634046B2 JP3634046B2 (en) 2005-03-30

Family

ID=27288396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03434996A Expired - Fee Related JP3634046B2 (en) 1995-03-28 1996-01-29 Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components

Country Status (1)

Country Link
JP (1) JP3634046B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925593B1 (en) * 2002-12-23 2009-11-06 주식회사 포스코 Molten slag deoxydation method for clean steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925593B1 (en) * 2002-12-23 2009-11-06 주식회사 포스코 Molten slag deoxydation method for clean steel

Also Published As

Publication number Publication date
JP3634046B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
JP5225308B2 (en) Vacuum decarburization refining method for chromium-containing molten steel
JP5458631B2 (en) Method for recovering molten metal
Kang et al. Thermodynamic basis of isothermal carbothermic reduction of oxide in liquid steel for simultaneous analysis of soluble/insoluble oxygen contents in the steel specimens
JPH08325626A (en) Method for reducing and recovering valuable metal in slag improved in hit accuracy of molten steel component
JP3553107B2 (en) Smelting reduction method with improved recovery of metal components
JP3471406B2 (en) Method for reducing and recovering valuable metals in slag with improved accuracy of molten steel components
JP3288800B2 (en) Oxygen determination method for reduced oxides contained in steelmaking slag
JP3432542B2 (en) Method for reducing and recovering valuable metals in slag with improved accuracy of molten steel components
JPS59136652A (en) Method for estimating molten steel constituent
JPH06258129A (en) Method for measuring molten metal surface level under slag
JP4816513B2 (en) Molten steel component estimation method
JPH09316514A (en) Method for estimating carbon and chromium contents in molten steel in converter process of chromium-containing steel and device therefor and method for tapping molten steel thereof
JPH06148167A (en) Oxygen quantitative analyzing method for easily reductive metal oxide contained in steel slug
JP5387012B2 (en) Control method of carbon concentration in molten steel in RH degassing refining
JP5760982B2 (en) Method for refining molten steel
JPH07116549B2 (en) Stainless steel manufacturing method
Björklund et al. Effect of temperature on oxygen activity during ladle treatment
Pesonen et al. In Situ Measurement of Silicon Content in Molten Ferrochrome
JPH0649890B2 (en) Method for estimating end point components in converter blowing
JP2006283089A (en) Aluminum addition method for production of electromagnetic steel
Reinholdsson et al. On-line determination of inclusion characteristics in bearing steels
Hansén et al. The use of the LSHR sampler to determine total oxygen contents in the ladle and tundish for different steel grades
JPS6035409B2 (en) Method for measuring properties of molten slag in converter
JPS6318015A (en) Method for estimating concentration of manganese in converter blowing
JPS6112811A (en) Manufacture of steel in converter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110107

LAPS Cancellation because of no payment of annual fees