JP3288800B2 - Oxygen determination method for reduced oxides contained in steelmaking slag - Google Patents

Oxygen determination method for reduced oxides contained in steelmaking slag

Info

Publication number
JP3288800B2
JP3288800B2 JP11596593A JP11596593A JP3288800B2 JP 3288800 B2 JP3288800 B2 JP 3288800B2 JP 11596593 A JP11596593 A JP 11596593A JP 11596593 A JP11596593 A JP 11596593A JP 3288800 B2 JP3288800 B2 JP 3288800B2
Authority
JP
Japan
Prior art keywords
oxygen
metal oxide
reducible metal
slag
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11596593A
Other languages
Japanese (ja)
Other versions
JPH06331577A (en
Inventor
昭人 小松
幸雄 八島
富也 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP11596593A priority Critical patent/JP3288800B2/en
Publication of JPH06331577A publication Critical patent/JPH06331577A/en
Application granted granted Critical
Publication of JP3288800B2 publication Critical patent/JP3288800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、製鋼段階で脱炭吹錬等
によって生成する製鋼スラグに含まれている酸素量を定
量分析する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively analyzing the amount of oxygen contained in steelmaking slag produced by decarburization blowing at the steelmaking stage.

【0002】[0002]

【従来の技術】転炉,真空脱ガス装置等でステンレス鋼
等の合金鋼を脱炭吹錬するとき、溶鋼中の炭素が吹錬酸
素と反応し、COガスとして溶鋼から除去される。この
とき、有用性分であるCr,Fe,Mn等も、一部が次
の反応に従って同時に酸化される。 4[Cr]+3O2 →2 (Cr23) 2[Fe]+O2 →2(FeO) 2[Mn]+O2 →2(MnO)
2. Description of the Related Art When decarburizing and blowing alloy steel such as stainless steel in a converter or a vacuum degassing apparatus, carbon in the molten steel reacts with blowing oxygen and is removed from the molten steel as CO gas. At this time, some of the useful components such as Cr, Fe, and Mn are simultaneously oxidized according to the following reaction. 4 [Cr] + 3O 2 → 2 (Cr 2 O 3 ) 2 [Fe] + O 2 → 2 (FeO) 2 [Mn] + O 2 → 2 (MnO)

【0003】酸化物となったCr,Fe,Mn等の金属
元素は、溶鋼表面に浮遊しているスラグに移行する。ス
ラグ中の金属元素は、製鋼の最終段階で酸化物から金属
状態に還元され、メタルとして溶鋼に回収される。回収
反応は、Cr,Fe,Mn等の金属元素がSiによって
容易に金属状態に還元されることを利用している。たと
えば、真空精錬時に所定量の金属状Si源を取鍋内溶鋼
に添加し、次の還元反応を行わせている。金属状態に還
元されたCr,Fe,Mn等は、溶鋼に取り込まれる。 2 (Cr23)+3Si→4[Cr]+3 (SiO2) 2(FeO)+Si→2[Fe]+ (SiO2) 2(MnO)+Si→2[Mn]+ (SiO2) スラグからCr,Fe,Mn等を溶鋼に回収しながら精
錬するとき、高精度で溶鋼を成分調整するためには、最
終段階でスラグから溶鋼に移行する金属元素を定量的に
把握する必要があある。また、最近では、Si含有量に
関する規格が厳しい鋼種が製造され始めている。高精度
に成分調整した溶鋼を得るときや、Si含有量が厳格に
管理された鋼種に対応するためには、Siにより還元さ
れる易還元性金属酸化物に含まれている酸素量を正確に
把握することが必要となる。
[0003] Metal elements such as Cr, Fe and Mn that have become oxides migrate to slag floating on the surface of molten steel. The metal elements in the slag are reduced from oxides to a metal state in the final stage of steel making, and are recovered as molten metal in molten steel. The recovery reaction utilizes the fact that metal elements such as Cr, Fe, and Mn are easily reduced to a metal state by Si. For example, a predetermined amount of metallic Si source is added to molten steel in a ladle during vacuum refining, and the following reduction reaction is performed. Cr, Fe, Mn, etc. reduced to a metallic state are taken into molten steel. 2 (Cr 2 O 3 ) + 3Si → 4 [Cr] +3 (SiO 2 ) 2 (FeO) + Si → 2 [Fe] + (SiO 2 ) 2 (MnO) + Si → 2 [Mn] + (SiO 2 ) From slag When refining while recovering Cr, Fe, Mn, etc. in molten steel, it is necessary to quantitatively grasp the metal elements that migrate from slag to molten steel in the final stage in order to adjust the composition of the molten steel with high accuracy. Also, recently, steel grades with strict standards for the Si content have begun to be manufactured. In order to obtain molten steel whose components are adjusted with high precision, and to respond to steel types whose Si content is strictly controlled, the amount of oxygen contained in the easily reducible metal oxide reduced by Si must be accurately determined. It is necessary to understand.

【0004】金属酸化物を酸素定量する手段として、ス
ラグ試料を蛍光X線分析する方法が知られている。蛍光
X線分析法では、精錬中の転炉,電気炉,取鍋等から採
取した溶融スラグからガラスビード法,プレス法等で分
析試料を作製している。そして、試料に含まれている金
属及び半金属元素状態の酸化物がそれぞれ固有の酸化物
形態であると仮定し、化学量論的な関係から定まる係数
を酸化物の定量値に乗じることによって酸素分析値を算
出する。そのため、金属状態のCr,Fe,Mn等が含
まれている試料や酸素価が異なる金属酸化物が含まれて
いる試料では、分析値は、必然的に測定誤差を包含した
値となる。そこで、本発明者等は、不活性雰囲気中で試
料を連続的に加熱しながら炭素源と反応させ、炭素と結
合して系外に排出される酸素量を時系列的に測定し、測
定値を積分するとき、試料に含まれ且つ溶融状態でSi
により還元されるCr,Fe,Mn等の易還元性金属酸
化物の酸素量が求められることを見い出し、製鋼スラグ
中の易還元性金属酸化物を酸素定量する方法を提案した
(特願平4−319364号)。
[0004] As a means for determining the amount of oxygen in a metal oxide, a method of performing X-ray fluorescence analysis of a slag sample is known. In the fluorescent X-ray analysis method, an analysis sample is prepared by a glass bead method, a press method, or the like from molten slag collected from a converter, an electric furnace, a ladle or the like during refining. Then, assuming that the oxides in the metal and metalloid element states contained in the sample are each in a specific oxide form, the oxygen determined by multiplying the quantitative value of the oxide by a coefficient determined from the stoichiometric relationship. Calculate analytical values. Therefore, in a sample containing metal-state Cr, Fe, Mn, or the like or a sample containing metal oxides having different oxygen values, the analysis value necessarily includes a measurement error. Then, the present inventors reacted the carbon source while continuously heating the sample in an inert atmosphere, and measured the amount of oxygen combined with carbon and discharged out of the system in time series, and measured the measured value. Is integrated, the Si contained in the sample and in the molten state
Found that the oxygen content of easily reducible metal oxides such as Cr, Fe, Mn, etc., reduced by oxygen is required, and proposed a method for quantifying oxygen in the easily reducible metal oxides in steelmaking slag (Japanese Patent Application No. Hei. -319364).

【0005】[0005]

【発明が解決しようとする課題】実操業においては、ス
ラグ中の酸化物を金属状態に還元するとき、Siよりも
酸素親和力が大きなAl,Ti,Ca,Mg或いはそれ
らの合金を還元剤として使用する場合がある。酸素親和
力が大きな還元剤を使用すると、Siで還元されるC
r,Fe,Mn等の易還元性金属酸化物だけでなく、使
用した還元剤よりも酸素親和力の小さい元素も同時に還
元される。たとえば、還元剤としてAlを使用すると
き、次の反応に従ってSiO2 ,TiO2 等の酸化物も
還元される。 3 (SiO2)+4Al→3[Si]+2 (Al23) 3 (TiO2)+4Al→3[Ti]+2 (Al23) したがって、Alによる還元処理を精度良く行うために
は、Cr,Fe,Mn等の易還元性金属酸化物に含まれ
ている酸素量の把握では不十分であり、Si,Ti等と
化合している難還元性金属酸化物中の酸素量も併せて把
握する必要がある。本発明は、このような問題を解消す
べく案出されたものであり、炭素還元分析法で求められ
る値と蛍光X線分析法で求められる値とを組み合わせる
ことにより、スラグに含まれている酸化物を還元する際
に必要な還元剤の量を正確且つ迅速に求めることを目的
とする。
In actual operation, when reducing oxides in slag to a metallic state, Al, Ti, Ca, Mg or an alloy thereof having an oxygen affinity higher than that of Si is used as a reducing agent. May be. When a reducing agent having a large oxygen affinity is used, C reduced by Si
In addition to easily reducible metal oxides such as r, Fe and Mn, elements having an oxygen affinity lower than that of the reducing agent used are simultaneously reduced. For example, when Al is used as a reducing agent, oxides such as SiO 2 and TiO 2 are also reduced according to the following reaction. 3 (SiO 2 ) +4 Al → 3 [Si] +2 (Al 2 O 3 ) 3 (TiO 2 ) +4 Al → 3 [Ti] +2 (Al 2 O 3 ) Therefore, in order to perform the reduction treatment with Al with high accuracy, It is not sufficient to grasp the amount of oxygen contained in easily reducible metal oxides such as Cr, Fe, and Mn, and the amount of oxygen in the hardly reducible metal oxide combined with Si, Ti, etc. Need to figure out. The present invention has been devised to solve such a problem, and is included in slag by combining a value obtained by carbon reduction analysis and a value obtained by X-ray fluorescence analysis. It is an object of the present invention to accurately and quickly determine the amount of a reducing agent necessary for reducing an oxide.

【0006】[0006]

【課題を解決するための手段】本発明の酸素定量方法
は、その目的を達成するため、製鋼スラグから採取され
た試料を不活性雰囲気中で連続的に加熱しながら炭素源
と反応させ、炭素と結合して系外に排出される酸素量を
時系列的に測定し、前記試料に含まれ溶融状態でSiに
よって還元される易還元性金属酸化物の酸素量を測定結
果の積分値から求め、且つ同様に製鋼スラグから採取さ
れた試料にX線を照射し、発生する難還元性金属酸化物
の成分元素の蛍光X線強度を測定し、前記成分元素と化
合している酸素を定量し、前記易還元性金属酸化物及び
前記難還元性金属酸化物の酸素量から前記製鋼スラグに
含まれている酸化物の酸素量を定量分析することを特徴
とする。実操業における易還元性金属酸化物としては、
Cr,Ni,Fe,Mn等の酸化物がある。難還元性金
属酸化物としては、Si,Ti,Al,Ca,Mg等の
酸化物がある。
In order to achieve the object, the oxygen determination method of the present invention reacts a sample collected from steelmaking slag with a carbon source while continuously heating the sample in an inert atmosphere to obtain a carbon source. And the amount of oxygen discharged out of the system in combination with the time is measured in a time series, and the amount of oxygen of the easily reducible metal oxide contained in the sample and reduced by Si in a molten state is obtained from the integrated value of the measurement result. Similarly, a sample collected from steelmaking slag is irradiated with X-rays, the fluorescent X-ray intensity of the component element of the hardly reducible metal oxide generated is measured, and the oxygen compounded with the component element is determined. And quantitatively analyzing the oxygen content of the oxide contained in the steelmaking slag from the oxygen content of the easily reducible metal oxide and the hardly reducible metal oxide. As easily reducible metal oxides in actual operation,
There are oxides such as Cr, Ni, Fe, and Mn. Examples of the non-reducible metal oxide include oxides such as Si, Ti, Al, Ca, and Mg.

【0007】以下、本発明を具体的に説明する。 −易還元性金属酸化物の酸素定量− スラグ中のSiで還元される易還元性金属酸化物は、ス
ラグから採取した試料を活性炭,炭化物等の炭素源と共
に黒鉛ルツボに充填し、不活性雰囲気中で連続加熱昇温
し、炭素との間の還元反応によって発生するCOガスを
赤外線吸収法等で測定することによって酸素定量するこ
とができる。炭素還元は、酸素親和力の小さな元素から
始まり、次第に酸素親和力の大きな元素に移行する。試
料スラグに含まれているCr,Fe,Mn等の易還元性
金属酸化物は、比較的低温で還元反応を開始し、金属元
素から分離した酸素が抽出される。他方、Siで還元で
きないSi,Al,Ti,Ca,Mg等の難還元性金属
酸化物は、高温で還元反応を開始する。そのため、易還
元性金属酸化物からの酸素抽出が終了した後で、難還元
性金属酸化物の酸素抽出が始まる。
Hereinafter, the present invention will be described specifically. -Oxygen determination of easily reducible metal oxide-The easily reducible metal oxide reduced by Si in the slag is obtained by filling a sample taken from the slag together with a carbon source such as activated carbon or carbide into a graphite crucible, and supplying an inert atmosphere. Oxygen can be quantified by continuously heating and raising the temperature in the inside, and measuring CO gas generated by a reduction reaction with carbon by an infrared absorption method or the like. Carbon reduction starts with an element having a low oxygen affinity and gradually shifts to an element having a high oxygen affinity. The easily reducible metal oxides such as Cr, Fe, and Mn contained in the sample slag initiate a reduction reaction at a relatively low temperature, and oxygen separated from the metal element is extracted. On the other hand, non-reducible metal oxides such as Si, Al, Ti, Ca, and Mg that cannot be reduced by Si start a reduction reaction at a high temperature. Therefore, after the extraction of oxygen from the easily-reducible metal oxide ends, the oxygen extraction of the hardly-reducible metal oxide starts.

【0008】試料スラグの炭素還元により発生したCO
ガスを赤外線吸収法で定量すると、図1に示す酸素抽出
曲線が得られる。酸素抽出曲線は、分析時間及び加熱時
間に伴って上昇するが、時点t1 に達する1800℃近
傍の温度T1 で一旦低下し、次いで再度立ち上がった
後、時点t2 で酸素強度0になる。時点t1 における分
析酸素強度の極小値I1 は、明瞭に検出される。そのた
め、易還元性金属酸化物の還元反応は、難還元性金属酸
化物の還元反応から明確に識別される。分析開始時点t
0 から時点t1 までの期間に排出されるCOガスは易還
元性金属酸化物に由来し、時点t1 から時点t2 までの
期間に排出されるCOガスは難還元性金属酸化物に由来
する。したがって、期間(t0 →t1 )の酸素強度を積
分し、図1に示した斜線領域の面積を濃度換算すること
によって、易還元性金属酸化物から抽出された酸素量を
求めることができる。
[0008] CO generated by carbon reduction of sample slag
When the gas is quantified by the infrared absorption method, an oxygen extraction curve shown in FIG. 1 is obtained. The oxygen extraction curve rises with the analysis time and the heating time, but once decreases at a temperature T 1 near 1800 ° C., which reaches the time point t 1 , and then rises again, and then the oxygen intensity becomes zero at the time point t 2 . Minimum value I 1 of the analytical oxygen intensity at time t 1 is clearly detected. Therefore, the reduction reaction of the easily reducible metal oxide is clearly distinguished from the reduction reaction of the hardly reducible metal oxide. Analysis start time t
CO gas discharged in the period from 0 to time t 1 is derived from the easily reducible metal oxides, CO gas discharged in the period from time t 1 to time t 2 is derived from the irreducible metal oxide I do. Therefore, by integrating the oxygen intensity during the period (t 0 → t 1 ) and converting the area of the shaded area shown in FIG. 1 to the concentration, the amount of oxygen extracted from the easily reducible metal oxide can be obtained. .

【0009】−難還元性金属酸化物の酸素定量− 酸素親和力が大きいSi,Al,Ti,Ca,Mg等の
金属元素は、易還元性金属酸化物と異なり、通常の転炉
操業の下で金属又は半金属として存在せず、全て酸化物
形態としてスラグ中に存在する。したがって、Si,A
l,Ti,Ca,Mg等の難還元性金属酸化物の酸素定
量には、金属又は半金属状態に起因する測定誤差が取り
込まれることなく、蛍光X線分析法を適用することがで
きる。蛍光X線分析法に使用する試料は、図2に示すよ
うにプレス成形法,ガラスビード法等によって用意され
る。なかでも、プレス成形法は、分析試料や融剤の正確
な秤量を必要とするガラスビード法と異なり、短時間で
試料を作製できる上から有利な方法である。プレス成形
法では、採取された適量のスラグをアルミニウム製キャ
ップに充填し、15〜20トンのプレスで加圧成形する
ことにより分析試料を作製する。このとき、試料スラグ
の十分な粉砕により粒子のバラツキに起因した分析誤差
が解消されるため、同一試料を使用した1回の測定によ
り高信頼性の分析結果が得られる。分析結果は、10分
以内の短時間で得られる。
-Oxygen determination of non-reducible metal oxide-Metal elements such as Si, Al, Ti, Ca, and Mg, which have a high oxygen affinity, are different from easily-reducible metal oxides in normal converter operation. Not present as metals or metalloids, all present in slag as oxide form. Therefore, Si, A
X-ray fluorescence analysis can be applied to the determination of oxygen in hardly reducible metal oxides such as l, Ti, Ca, and Mg without introducing measurement errors caused by the metal or metalloid state. The sample used for the fluorescent X-ray analysis method is prepared by a press molding method, a glass bead method or the like as shown in FIG. Among them, the press molding method is advantageous in that a sample can be prepared in a short time, unlike the glass bead method which requires accurate weighing of an analysis sample and a flux. In the press molding method, an appropriate amount of the collected slag is filled in an aluminum cap, and is subjected to pressure molding with a 15 to 20 ton press to produce an analysis sample. At this time, since the sample slag is sufficiently pulverized, the analysis error caused by the dispersion of the particles is eliminated, so that a highly reliable analysis result can be obtained by one measurement using the same sample. Analytical results are obtained in a short time of less than 10 minutes.

【0010】スラグに含まれている難還元性金属酸化物
の蛍光X線による酸素定量法を、Siを例にとって図3
に示す。なお、蛍光X線分析法では複数の元素を同時に
定量できるので、Si以外にAl,Ti,Ca,Mg等
と化合している酸素量が同時に測定される。スラグ試料
のプレス成形面にX線を照射すると、Si原子が励起状
態になる。励起されたSi原子が安定準位に戻るとき、
Si固有の蛍光X線が発生する。Siの蛍光X線を分光
結晶で分光し、ガスフロー型比例計数管でX線強度を測
定する。測定されたX線強度は、スラグのSi含有率と
比例関係にある。このことは、スラグ中のSiが全て酸
化物状態で存在していることを示す。したがって、予め
SiO2 含有率とX線強度との関係で求めた検量線(図
4)にX線強度の測定値を代入することにより、スラグ
試料のSiO2 濃度が算出される。
FIG. 3 shows an oxygen determination method using X-ray fluorescence of a hard-to-reduce metal oxide contained in slag, using Si as an example.
Shown in In the X-ray fluorescence analysis method, since a plurality of elements can be simultaneously quantified, the amount of oxygen combined with Al, Ti, Ca, Mg, etc. other than Si is measured simultaneously. When X-rays are irradiated on the press-formed surface of the slag sample, Si atoms are excited. When the excited Si atom returns to a stable level,
X-rays unique to Si are generated. The fluorescent X-rays of Si are separated by a spectral crystal, and the X-ray intensity is measured by a gas flow type proportional counter. The measured X-ray intensity is proportional to the Si content of the slag. This indicates that all the Si in the slag exists in an oxide state. Therefore, the SiO 2 concentration of the slag sample is calculated by substituting the measured value of the X-ray intensity into the calibration curve (FIG. 4) previously obtained from the relationship between the SiO 2 content and the X-ray intensity.

【0011】スラグ中のSiは、金属状態で存在するこ
となく、全て酸化物状態になっている。したがって、図
4の検量線を参照して求められたSiO2 濃度をO2
換算することにより、迅速且つ正確な酸素定量が可能と
なる。蛍光X線分析法で求めたSiと化合している酸素
は、たとえば表1の試料Aについて次のように算出され
る。 理論計算酸素量=SiO2 × (O2 /SiO2) =18.31×(32/60.1)= 9.8 炭素還元分析法及び蛍光X線分析法を併用した分析シス
テムを図5に示す。炭素還元分析法で易還元性金属酸化
物から抽出された酸素量が測定され、蛍光X線分析装置
によってSi,Al,Ti,Ca,Mg等と化合してい
る酸素の量が迅速且つ正確に測定される。これら2種類
の酸素量から、スラグ中の全酸素量が求められる。その
結果、酸素親和力が大きな還元剤を使用する精錬の際
に、スラグに含まれている易還元性金属酸化物と共に添
加還元剤よりも酸素親和力が小さい金属の酸化物を還元
するために必要な還元剤添加量が正確に求められる。
The Si in the slag is in an oxide state without being present in a metal state. Therefore, by converting the SiO 2 concentration determined with reference to the calibration curve of FIG. 4 to O 2 , quick and accurate oxygen quantification becomes possible. The oxygen combined with Si obtained by the fluorescent X-ray analysis is calculated, for example, as follows for the sample A in Table 1. Theoretical calculation oxygen content = SiO 2 × (O 2 / SiO 2 ) = 18.31 × (32 / 60.1) = 9.8 An analysis system using both the carbon reduction analysis method and the fluorescent X-ray analysis method is shown in FIG. Show. The amount of oxygen extracted from the easily reducible metal oxide is measured by the carbon reduction analysis method, and the amount of oxygen combined with Si, Al, Ti, Ca, Mg, etc. is quickly and accurately determined by a fluorescent X-ray analyzer. Measured. From these two types of oxygen amounts, the total oxygen amount in the slag is determined. As a result, during refining using a reducing agent having a large oxygen affinity, it is necessary to reduce the metal oxide having a smaller oxygen affinity than the added reducing agent together with the easily reducible metal oxide contained in the slag. The amount of the reducing agent added can be determined accurately.

【0012】[0012]

【実施例】【Example】

実施例1:酸素定量されるスラグとして、表1に組成を
示す4種類のステンレス鋼の転炉スラグを使用した。な
お、表1の易還元酸素量の理論計算値は、スラグ中のメ
タルを沃素アルコールで分離除去した後、蛍光X線分析
で得られた測定値を係数倍した値である。
Example 1 Four types of stainless steel converter slag whose compositions are shown in Table 1 were used as slags to be subjected to oxygen determination. In addition, the theoretical calculation value of the amount of easily reduced oxygen in Table 1 is a value obtained by multiplying a measurement value obtained by X-ray fluorescence analysis after separating and removing metal in slag with iodine alcohol.

【0013】[0013]

【表1】 [Table 1]

【0014】分析試料を0.05g秤量し、空焼きした
容量2.5mlの二重ルツボに同量の炭素質還元剤を添
加し、4℃/秒の昇温速度で加熱した。図1に示した期
間 (t0 →t1)の間に検出された酸素強度を積分し、易
還元性金属酸化物の酸素濃度を測定した。測定結果を示
す表2から明らかなように、このようにして測定された
酸素濃度は、理論計算値に高精度で一致していた。
An analytical sample was weighed in an amount of 0.05 g, and the same amount of a carbonaceous reducing agent was added to an empty-baked 2.5-ml double crucible and heated at a heating rate of 4 ° C./sec. The oxygen intensity detected during the period (t 0 → t 1 ) shown in FIG. 1 was integrated, and the oxygen concentration of the easily reducible metal oxide was measured. As is evident from Table 2 showing the measurement results, the oxygen concentration measured in this way matched the theoretical calculation value with high accuracy.

【0015】[0015]

【表2】 [Table 2]

【0016】易還元性金属酸化物の炭素還元は、図1に
示すように800℃以下の低温領域ではほとんど進行し
ない。そこで、低温領域を瞬時に通過する急速加熱で8
00℃まで昇温した後、還元剤として活性炭を添加し、
以降は4℃/秒の昇温速度で加熱した。この加熱条件下
で、易還元性金属酸化物の酸素濃度を同様に測定した。
測定結果を示す表3から明らかなように、このときの測
定値も、理論計算値に対して高い一致性をもっていた。
The carbon reduction of the easily reducible metal oxide hardly proceeds in a low temperature range of 800 ° C. or lower as shown in FIG. Therefore, rapid heating that instantaneously passes through the low-temperature region
After the temperature was raised to 00 ° C, activated carbon was added as a reducing agent,
Thereafter, heating was performed at a heating rate of 4 ° C./sec. Under this heating condition, the oxygen concentration of the easily reducible metal oxide was measured in the same manner.
As is clear from Table 3 showing the measurement results, the measured values at this time also had high consistency with the theoretically calculated values.

【0017】[0017]

【表3】 [Table 3]

【0018】実施例2:分析試料をアルミニウム製カッ
プに充填し、15〜20トンのプレスで加圧成形するこ
とにより分析試料を作製した。管電圧:50kV,管電
流:55mA,積分時間40秒の条件で蛍光X線分析し
たとき、表4に示すSi,Al,Ti,Mg及びCaの
酸素量が算出された。これら酸素量は、湿式分析法で算
出した理論計算酸素量と良く一致していた。
Example 2 An analysis sample was prepared by filling an analysis sample into an aluminum cup and press-forming with a 15 to 20 ton press. When fluorescent X-ray analysis was performed under the conditions of tube voltage: 50 kV, tube current: 55 mA, and integration time: 40 seconds, the oxygen amounts of Si, Al, Ti, Mg, and Ca shown in Table 4 were calculated. These oxygen amounts were in good agreement with the theoretically calculated oxygen amounts calculated by the wet analysis method.

【0019】[0019]

【表4】 [Table 4]

【0020】実施例3:表5に示す組成をもつ転炉スラ
グを使用して、炭素還元分析法及び蛍光X線分析法を併
用して製鋼スラグに含まれている被還元酸化物を酸素定
量した。表5に示した組成は、何れも湿式法で定量分析
した値である。メタル分については沃素アルコール法で
得た値、酸化物については湿式分析で得た値をそれぞれ
化学量論的に係数倍した。
Example 3 Oxygen determination of reduced oxides contained in steelmaking slag by using a converter slag having the composition shown in Table 5 together with carbon reduction analysis and X-ray fluorescence analysis did. Each of the compositions shown in Table 5 is a value quantitatively analyzed by a wet method. The value obtained by the iodine alcohol method for the metal component and the value obtained by the wet analysis for the oxide were multiplied by the stoichiometric coefficient.

【0021】[0021]

【表5】 [Table 5]

【0022】試料H及びIの分析値を酸素量に換算した
理論計算酸素量と比較して、炭素還元分析法及び蛍光X
線分析法を併用して求めた酸素量を表6に示す。
The analysis values of Samples H and I were compared with the theoretically calculated oxygen amount converted to oxygen amount, and the carbon reduction analysis method and fluorescence X
Table 6 shows the amount of oxygen determined by the combined use of the line analysis method.

【0023】[0023]

【表6】 [Table 6]

【0024】蛍光X線法によるとき、難還元性金属酸化
物の酸素量を個々の元素について分離でき、それぞれ酸
素量の理論計算値と良く一致していた。しかし、Cr,
Fe,Mn等が酸化物の他にメタル状でスラグに存在す
るため、易還元性金属酸化物の酸素量が高く、理論計算
値に比較して誤差が生じていた。他方、炭素還元分析法
によるとき、易還元性金属酸化物の酸素量は理論計算値
と良く一致しているものの、難還元性金属酸化物の酸素
量を測定することはできなかった。そこで、易還元性金
属酸化物の酸素量を炭素還元分析法で求め、難還元性金
属酸化物の酸素量を蛍光X線分析法で求め、両者の値を
組み合わせるとき、理論計算酸素量に一致した酸素量が
得られた。この酸素量を基にして、精錬中の溶鋼に対す
る還元剤の添加量を決定するとき、高精度に成分調整さ
れた溶鋼が得られる。
According to the fluorescent X-ray method, the oxygen content of the hardly reducible metal oxide was able to be separated for each element, and each of them was in good agreement with the theoretical calculation value of the oxygen content. However, Cr,
Since Fe, Mn, and the like are present in the slag in the form of a metal in addition to the oxide, the oxygen content of the easily reducible metal oxide is high, and an error has occurred as compared with the theoretical calculation value. On the other hand, according to the carbon reduction analysis method, although the oxygen amount of the easily reducible metal oxide was in good agreement with the theoretical calculation value, the oxygen amount of the hardly reducible metal oxide could not be measured. Therefore, the oxygen content of the easily reducible metal oxide is obtained by the carbon reduction analysis method, and the oxygen content of the hardly reducible metal oxide is obtained by the fluorescent X-ray analysis method. The obtained oxygen amount was obtained. When determining the amount of the reducing agent to be added to molten steel during refining based on this oxygen amount, molten steel whose components are adjusted with high precision can be obtained.

【0025】[0025]

【発明の効果】以上に説明したように、本発明において
は、炭素還元分析法と蛍光X線分析法とを組み合わせる
ことにより、製鋼スラグに含まれている被還元酸化物を
迅速且つ高精度で酸素定量でき、安定した製鋼操業が可
能となる。たとえば、スラグに含まれているCr,F
e,Mn等の易還元性金属酸化物をAlで還元すると
き、Alよりも酸素親和力が弱いSi,Ti等が還元さ
れるため、Si,Ti等と結合している酸素量を把握す
ることが必要になる。このような場合に本発明が適用さ
れ、還元反応に必要なAl,Al合金,Al化合物等の
還元剤の添加量が正確に求められる。その結果、過剰な
還元剤を必要とすることなく、Cr,Fe,Mn等の回
収率及びSi,Ti等の成分的中精度が向上する。
As described above, in the present invention, by combining the carbon reduction analysis method and the fluorescent X-ray analysis method, the oxides to be reduced contained in the steelmaking slag can be quickly and accurately determined. Oxygen can be determined and stable steelmaking operation is possible. For example, Cr, F contained in slag
When reducing easily-reducible metal oxides such as e and Mn with Al, Si, Ti, and the like, which have a lower oxygen affinity than Al, are reduced. Therefore, it is necessary to grasp the amount of oxygen bonded to Si, Ti, and the like. Is required. In such a case, the present invention is applied, and the addition amount of a reducing agent such as Al, an Al alloy, or an Al compound required for the reduction reaction can be accurately obtained. As a result, the recovery rate of Cr, Fe, Mn and the like and the medium accuracy of the components such as Si and Ti are improved without requiring an excessive reducing agent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 不活性ガス雰囲気中で転炉スラグを4℃/秒
の昇温速度で加熱しながら炭素還元したときの酸素抽出
曲線
FIG. 1 is an oxygen extraction curve obtained when carbon slag is reduced while heating a converter slag at a rate of 4 ° C./sec in an inert gas atmosphere.

【図2】 蛍光X線分析法に使用される試料の調製工程Fig. 2 Sample preparation process used for X-ray fluorescence analysis

【図3】 蛍光X線分析法の測定原理Fig. 3 Measurement principle of X-ray fluorescence analysis

【図4】 蛍光X線分析法におけるSiO2 の検量線FIG. 4 Calibration curve of SiO 2 in X-ray fluorescence analysis

【図5】 本発明に従った製鋼スラグの分析システムFIG. 5 is a steelmaking slag analysis system according to the present invention.

フロントページの続き (56)参考文献 特開 平6−148167(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 31/00 C21C 5/00 G01N 23/223 G01N 33/20 (56) References JP-A-6-148167 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 31/00 C21C 5/00 G01N 23/223 G01N 33 / 20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 製鋼スラグから採取された試料を不活性
雰囲気中で連続的に加熱しながら炭素源と反応させ、炭
素と結合して系外に排出される酸素量を時系列的に測定
し、前記試料に含まれ溶融状態でSiによって還元され
る易還元性金属酸化物の酸素量を測定結果の積分値から
求め、且つ同様に製鋼スラグから採取された試料にX線
を照射し、発生する難還元性金属酸化物の成分元素の蛍
光X線強度を測定し、前記成分元素と化合している酸素
を定量し、前記易還元性金属酸化物及び前記難還元性金
属酸化物の酸素量から前記製鋼スラグに含まれている酸
化物の酸素量を定量分析することを特徴とする製鋼スラ
グに含まれている被還元酸化物の酸素定量方法。
1. A sample collected from a steelmaking slag is reacted with a carbon source while continuously heating in an inert atmosphere, and the amount of oxygen combined with carbon and discharged out of the system is measured in a time series. The amount of oxygen in the easily reducible metal oxide contained in the sample and reduced by Si in the molten state is determined from the integrated value of the measurement results, and the sample similarly collected from steelmaking slag is irradiated with X-rays to generate The fluorescent X-ray intensity of the component element of the hardly reducible metal oxide to be measured is measured, the oxygen combined with the component element is quantified, and the oxygen content of the easily reducible metal oxide and the hardly reducible metal oxide is determined. A quantitative analysis of the oxygen content of the oxides contained in the steelmaking slag from the above.
【請求項2】 請求項1記載の易還元性金属酸化物がC
r,Ni,Fe,Mn等の酸化物であり、難還元性金属
酸化物がSi,Ti,Al,Ca,Mg等の酸化物であ
る酸素定量方法。
2. The easily reducible metal oxide according to claim 1, wherein
An oxygen determination method in which an oxide such as r, Ni, Fe, and Mn is used, and the non-reducible metal oxide is an oxide such as Si, Ti, Al, Ca, and Mg.
JP11596593A 1993-05-18 1993-05-18 Oxygen determination method for reduced oxides contained in steelmaking slag Expired - Fee Related JP3288800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11596593A JP3288800B2 (en) 1993-05-18 1993-05-18 Oxygen determination method for reduced oxides contained in steelmaking slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11596593A JP3288800B2 (en) 1993-05-18 1993-05-18 Oxygen determination method for reduced oxides contained in steelmaking slag

Publications (2)

Publication Number Publication Date
JPH06331577A JPH06331577A (en) 1994-12-02
JP3288800B2 true JP3288800B2 (en) 2002-06-04

Family

ID=14675526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11596593A Expired - Fee Related JP3288800B2 (en) 1993-05-18 1993-05-18 Oxygen determination method for reduced oxides contained in steelmaking slag

Country Status (1)

Country Link
JP (1) JP3288800B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5285895B2 (en) * 2007-11-13 2013-09-11 日本冶金工業株式会社 Stainless steel refining method
CN104089967B (en) * 2014-07-15 2017-04-19 南京市产品质量监督检验院 Quick measurement method for aluminum, calcium or silicon content of solid plane material product
BR112018071126B1 (en) * 2016-04-13 2022-12-27 Jfe Steel Corporation METHOD FOR ANALYZING SLAG AND METHOD FOR REFINING MOLTEN IRON
CN113189085A (en) * 2021-04-12 2021-07-30 东北大学 Method for measuring Mg activity coefficient of Mg-containing blast furnace slag

Also Published As

Publication number Publication date
JPH06331577A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
JP3288800B2 (en) Oxygen determination method for reduced oxides contained in steelmaking slag
US11035014B2 (en) Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP3235884B2 (en) Method for quantitative analysis of oxygen in readily reducible metal oxides contained in steelmaking slag
CA1070598A (en) Method for analyzing the latent gas content of molten samples
JP3553107B2 (en) Smelting reduction method with improved recovery of metal components
Vermaak et al. Equilibrium slag losses in ferrovanadium production
CN113188862B (en) Method for measuring content of dissolved elements in molten steel
JP2856006B2 (en) Trace oxygen analysis method for steel
JP3432542B2 (en) Method for reducing and recovering valuable metals in slag with improved accuracy of molten steel components
JPS61261445A (en) Treatment of copper converter slag
JP3634046B2 (en) Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components
JP3550666B2 (en) Analysis method of iridium alloy
JP3471406B2 (en) Method for reducing and recovering valuable metals in slag with improved accuracy of molten steel components
Coedo et al. Analytical system for the analysis of ferrovanadium using spark ablation coupled with inductively coupled plasma atomic emission spectrometry
JPS59136652A (en) Method for estimating molten steel constituent
US4329868A (en) Method for the determination of hydrogen content in inorganic materials
JP4022347B2 (en) Analytical oxygen analysis method
JP3439974B2 (en) Method and apparatus for analyzing oxygen or oxide by type of oxide in analysis sample
JP3259224B2 (en) Method for measuring silicon and phosphorus contents in molten cast iron
Shibaev et al. Deoxidation with silicon and the control of oxide inclusions in electrical steels
JPS62165145A (en) Quick measuring method for carbon weight % concentration in molten iron
CN113267419A (en) Detection method of aluminum deoxidizer
JP3553372B2 (en) Analysis of trace amounts of oxygen in metals
JPH0649890B2 (en) Method for estimating end point components in converter blowing
CN114088652A (en) Method suitable for detecting carbon content and sulfur content in various alloys

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

LAPS Cancellation because of no payment of annual fees