JP4022347B2 - Analytical oxygen analysis method - Google Patents

Analytical oxygen analysis method Download PDF

Info

Publication number
JP4022347B2
JP4022347B2 JP28120299A JP28120299A JP4022347B2 JP 4022347 B2 JP4022347 B2 JP 4022347B2 JP 28120299 A JP28120299 A JP 28120299A JP 28120299 A JP28120299 A JP 28120299A JP 4022347 B2 JP4022347 B2 JP 4022347B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
flow rate
inert gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28120299A
Other languages
Japanese (ja)
Other versions
JP2001099825A (en
Inventor
知子 伊勢
嘉夫 塗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP28120299A priority Critical patent/JP4022347B2/en
Publication of JP2001099825A publication Critical patent/JP2001099825A/en
Application granted granted Critical
Publication of JP4022347B2 publication Critical patent/JP4022347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属、耐火物、スラグなどの分析試料中の全酸素量を分析する方法に関する。さらに詳しくは、金属などの分析試料中の全酸素量を迅速かつ正確に測定する方法に関する。
【0002】
【従来の技術】
近年、金属、耐火物、スラグなどの分析試料中の酸素量の迅速かつ正確な分析技術が求められている。
【0003】
例えば、製鋼分野では、酸化物の形態を制御した極低酸素鋼や高純度鉄の開発が進められており、ppm(百万分率)レベルの微量の酸素濃度を精度よく定量することが要求されている。なかでも過酷な条件下で用いられる軸受鋼では、微量の介在物の中で特にAl23、MgO・Al23、(Ca,Mg)O・Al23のような介在物は大きな粒を作りやすく、これらが疲労破壊の原因となるため、製品中の介在物量の低減と介在物の形態の制御は重要であり、その前提としてまず製鋼中の全酸素量を迅速かつ正確に測定する分析技術が望まれているのである。
【0004】
分析試料中の全酸素量分析方法としては、酸素分析装置を用いた次のような方法が提案されている。抽出炉内の分析試料を不活性ガス雰囲気下で加熱融解して、炭素源と分析試料中の酸素と反応させ、分析試料中の酸素が炭素源と反応して発生する一酸化炭素ガス(以下「COガス」という)を不活性ガス流中に抽出し、該抽出したCOガスを検知器で検出し、COガス量から換算して試料中の酸素量を測定するというものである。
【0005】
しかし、この方法では、分析試料中の酸素量が小さい場合、発生する一酸化炭素量が小さいため連続昇温分析時にガス抽出開始点が不明確となる傾向があり、坩堝やガス中に含有される酸素に起因するブランク値と明確に分離することが困難という点などで不都合である。また、分析試料中の酸素量が大きい場合にはガス抽出時間が長くなるため分析時間が長くなり、またガスの抽出完了時点が不明確になる傾向があり、ガス抽出完了前の段階で測定値を算出してしまい、実際の酸素量よりも低い測定値となってしまうことがある。
【0006】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決し、より迅速かつ正確に分析試料中の全酸素量を測定する方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意研究を進めたところ、炭素と試料中の酸化物由来の酸素とを反応させる際に不活性ガスの流量を漸次増大させることにより上記の課題を解決できることを見出し、本発明を完成させるに至った。
【0008】
すなわち、本発明は、不活性ガスが送入、排出され不活性ガス雰囲気状態である抽出炉内で、分析試料を加熱して、抽出炉内の炭素源と分析試料中の酸素とを反応させ、抽出炉内で生成した一酸化炭素を不活性ガスの排出とともに抽出炉から排出し、排出された一酸化炭素から分析試料中の酸素量を求める分析方法であって、前記不活性ガスの送入・排出流量を、前記炭素源と前記酸素との反応開始直後の流量である 200 500ml/minから、大流量 1000 ml/minまで漸次増大させることを特徴とする酸素量分析方法である。
【0009】
また、本発明は、赤外線吸収法により、前記排出された一酸化炭素の量を測定して分析試料中の酸素量を求めることを特徴とする前記酸素量分析方法である。また、本発明は、分析試料が金属試料である前記酸素量分析方法である。
【0010】
【発明の実施の形態】
本発明では、抽出炉内の分析試料を不活性ガス雰囲気下で加熱して、炭素源と分析試料中の酸素と反応させ、分析試料中の酸素が炭素源と反応して発生するCOガスを抽出炉内を流れる不活性ガス流中に抽出し、抽出したCOガスから分析試料中の酸素量を求める。COガスから酸素量を求めるには、例えば、抽出したCOガスを赤外線吸収法などによって計測・分析し、COガス量を求め、COガスから試料中の酸素量を算出する。抽出炉内を不活性ガス雰囲気状態とするため、抽出炉には不活性ガスが送入され、また不活性ガスの送入により、発生したCOガスを不活性ガスとともに抽出炉から押し出して排出する。本発明は、上記のようにCOガスを搬出する不活性ガスの流量を制御して迅速かつ正確な分析を行うものである。
【0011】
なお、不活性ガス雰囲気下の抽出炉内で分析試料から測定対象となるガスを発生させ、不活性ガスで抽出炉から搬送して測定対象ガスを赤外線吸収分析装置で測定する方法のことを不活性ガス搬送−赤外線吸収法ということがある。
【0012】
本発明により分析の対象となる試料としては、例えば、金属、耐火物、スラグなどが挙げられ、具体的には好適なものとして鉄鋼材料などが挙げられる。
【0013】
炭素源は特に限定されるものではないが、黒鉛坩堝、黒鉛粉末、黒鉛カプセルや分析試料中に含まれる炭素などが炭素源として使用できる。中でも炭素源として黒鉛坩堝を用い、分析試料を黒鉛坩堝中に投入して加熱溶融してCOガスを発生させる手段が実用的である。炭素源として黒鉛粉末を用い、分析試料と混合あして加熱する方法でも良い。
【0014】
不活性ガスの種類としては、好ましくはヘリウムガス、アルゴンガスなどが挙げられ、特に好ましくはヘリウムガスが挙げられる。
【0015】
炭素源と分析試料中の酸素とを反応させるため分析試料を加熱する。加熱の程度は分析試料の種類により異なるが、試料中に介在する酸化物を還元分解し、酸化物由来の酸素と、抽出炉中の炭素源とを反応させることができる温度まで加熱する。例えば、鉄鋼材料を分析試料とする場合であれば、分析試料を好ましくは融点以上に加熱し、特に好ましくは2000〜3000℃に加熱する。
【0016】
本発明の分析方法では、炭素と試料中の酸化物由来の酸素とが反応している間に不活性ガスの流量を制御する。具体的には、炭素源と酸化物由来の酸素との反応直後から抽出炉中への不活性ガスの送入流量を増大させ、抽出炉中のCO分圧を下げる。MO+C→M+CO(M:金属、O:酸素、C:炭素)という反応中にCO分圧を低下させることにより、当該反応は右側への進行は促進されることになる。また、不活性ガスは抽出炉外へCOガスを搬送するキャリアガスであり、反応中に不活性ガスの送入流量を増大させること等により、不活性ガスおよびCOガスの抽出炉からの排出速度を増大させることができる。すなわち、試料中の酸化物由来の酸素と炭素とが反応している間に不活性ガスの流量を増大させることで、反応を促進させ、さらにはCOガスの排出時間を短縮できるため、試料の分析時間全体を短縮することができる。また、反応の促進およびCOガスの排出速度増大により、ガスの抽出開始点を明確化することができる。また、反応の促進およびCOガスの排出速度増大により、ガスの抽出完了時点を明確化させることができ、COガス抽出完了前の段階で測定値を算出してしまい、実際の酸素量よりも低い測定値となってしまうおそれも少ない。
【0017】
COガスの生成反応中に不活性ガスの流量を増大させる際には、不活性ガス流量を反応開始直後から漸次増大させる。漸次増大させるというのは、言い換えると連続的に滑らかに増大させることである。不活性ガス流量を一気に増加させると、急激に坩堝が冷却されてしまい熱効率が悪くなりやすい。また不活性ガス流量が急激に増大すると、ブランク値が急増するおそれがあり、微量酸素を測定する場合にはブランクと測定酸素値の分離が困難となるおそれがある。
【0018】
なお、最初から不活性ガスの流量を多くして分析を行うこと、例えば本発明の方法における不活性ガス流量を増大させた後の最大流量に相当する流量を初期設定流量としその流量を維持して分析を行うことは、流量が多いため坩堝の冷却効果が大きく分析試料の加熱が効率的ではない。
【0019】
不活性ガスの流量を増加させ始める時期は、抽出炉中の炭素源と分析試料に由来する酸素とが反応を開始した直後であり、例えば、赤外線吸収分析装置などによりCOガス量を測定する場合、波形の現れた時点を分析装置のモニター上で目視することなどにより判別することができる。
【0020】
不活性ガス流量を増加させる前の流量、すなわち炭素源と酸素とが反応を開始する以前の状態での不活性ガスの流量は、好ましくは200〜500ml/minであり、特に好ましくは400〜500ml/minである。
【0021】
また、不活性ガスの流量は、所定の最大流量まで増大させるが、発生したCOガスを速く搬送させるためにはできるだけ多い流量まで増大させた方が好ましい。しかし、試料の種類や分析装置の性能などにもよるが、分析精度の観点も考慮すると不活性ガスの最大流量は、1000ml/minを上限とすることが好ましい。COガスを抽出する不活性ガス流量が1000ml/minを越えると、ピークを検知する手段によっても異なるが、発生したCOガスが希釈されすぎ、ブランクとの分離がかえって難しくなる場合や、検知したガス量の値のばらつきが大きくなりやすいからである。
【0022】
不活性ガスの流量の増大速度は、COガスが発生しピークが検出されている期間全般にわたり、不活性ガス流量の初期設定値流量から最終的な最大流量まで漸次増大させるようにしてもよいし、また、上記のようにあまりに急激に流量を増大させたときに生じ得るブランク値急増などの弊害が発生しなければ、必ずしもピーク検出終了時点まで待たずに所定の最大流量まで不活性ガス流量を漸次増大させ、その後ピーク検出終了時点まで最大流量を維持するようにしてもよい。不活性ガス搬送−赤外線吸収法によりCOガス濃度を測定する場合について具体的に例を上げると次のような方法をとることができる。例えば、初期設定の不活性ガス流量を400〜500ml/minとし、COガスのピークが検出され始めた時点からピークの検出が終了する時点まで全般にわたって徐々に不活性ガスの流量を増大させていき、不活性ガスの最大流量は1000ml/min以下に留めるようにする。あるいは、ピークが検出され始めた時点からピーク検出終了時点までに要する測定時間のおよそ3分の1程度の時間内で最大ガス流量である1000ml/minまで漸次増大させ、その後ピーク検出終了時まで1000ml/minを維持するという方法なども採ることもできる。
【0023】
なお、ガス流量の増大のさせ方と、ピークの検出され始めた時点からピークの検出終了時点までに要する所要時間との関係は、予めいくつかのパターンについて測定しておくことで、さまざまな種類の分析試料についての分析作業を容易にすることができる。
【0024】
不活性ガス流量制御手段としては、例えば、流量計と不活性ガス流量制御弁を用い、任意の流量調整が可能とするように構成すれば良い。具体的には、不活性ガス流量は、例えば図1に示される赤外線CO吸収検出装置で言えば、図1中の、8、9のガス流量制御器で流量調整することができる。
【0025】
さらに本発明者は本発明の方法による分析を行う場合に、分析試料の溶解量も重要であるという新しい知見を得た。すなわち、例えば極低酸素量の金属などの分析試料や、全酸素量が低く、酸化物の種類が多い分析試料の場合には、それぞれの酸化物から発生する酸素量が極少量であるため、酸素の抽出波形が酸素量とは関係のない装置特有のノイズと重なり、分析試料中の酸化物から発生した酸素量のみの分離が困難となる傾向がある。これを防止するためには、溶解させる分析試料の量を多くすれば良いが、分析能率と均一溶解の点から、分析試料の量は0.5〜5gとすることが好ましい。
【0026】
発生したCOガス量を検知する手段としては、電量法、導電率法、ガスクロマトグラフ法、赤外線吸収法、非水溶媒法といった手段を用いることができ、好ましい方法としては赤外線吸収法などが挙げられる。検出されたCOガス量から酸素量を換算して分析試料中の酸素量を求めることができる。
【0027】
図1は本発明の方法に用いることのできる試料分析装置の要部の構成を概略的に例示したものである。この図において、1は直接通電方式の抽出炉で、その内部には試料を収容する坩堝2を挟持してこれを通電加熱するための上部電極、下部電極3、4が設けられている。5は交流電源で、その一端は電流計6を介して上部電極3に接続してあり、他端は下部電極4に接続してある。7は両電極3、4間の電圧を測定するための電圧計である。
【0028】
16は本試料分析装置のガス流路であり、このガス流路には抽出炉1への導入ガスの流量を調整する流量制御器8、赤外線CO吸収検出装置10へのガスの流量を調整する流量制御器9が接続してあり、赤外線CO吸収検出装置10で試料中の酸素を分析する。赤外線CO吸収検出装置10の後には、ガス中のCOを選択的に酸化してCO2に変換する常温酸化器11、この常温酸化器で生成されたCO2のみを選択的に除去するCO2除去器12、ガス中のH2Oを選択的に除去するH2O除去器13を介して熱伝導型分析計14が接続してあり、試料中の窒素を分析するように構成されている。17は電気信号制御回路であり、抽出ガス信号を15のマイクロコンピューターに送るとともに、雰囲気ガスのHe量制御の信号を8、9のガス流量制御弁に送る。15はマイクロコンピューターなどの演算制御部で試料から抽出ガス信号を演算処理して、分析試料中の酸素量を定量する。
【0029】
さらに、図2は、本発明の分析方法に用いることができる赤外線CO吸収検出装置10の一例を示したものである。図2に示した赤外線CO吸収検出装置10の参照セル21には赤外吸収のない窒素などが、検出器22には高濃度の被測定成分ガスが満たされている。検出器22は薄い隔板23で二つの部屋に仕切られており、この隔板23につけた金属板がコンデンサー24の一極となっている。試料中に被測定成分があると、それによって吸収された分だけ検出器22に入る光量が減少し、検出器22の両室間に圧力差が生じて隔板23が変位し、コンデンサー24の容量が変化する。この容量変化を測定して被測定成分の濃度を知ることが出来る。
【0030】
赤外線CO吸収検出装置10の感度は参照セル21と測定セル25の光量差に依存する。この光量差を大きくするには赤外線CO吸収検出装置の光路長Lが重要となる。光路長Lが50mmを越えると、赤外光源26の強度との組み合わせにもよるが、抽出波形の信号とノイズの判別が困難になったり、正常な波形が得られなくなる。また、光路長Lが短すぎると、参照セル21と測定セル25の光量の差が現れにくくなる。このことから、赤外線CO吸収検出装置の光路長Lは≦50mmが好ましい。
【0031】
【実施例】
<実施例1、比較例1,2>
酸素を全重量中0.001%含む鋼材を分析試料とし、赤外線CO吸収分析装置を用い、異なる不活性ガス流量条件下で不活性ガス搬送−赤外線吸収法により酸素量を測定し、測定精度について比較検討した。実施例1においては、COガスの検知され始めた時点をモニターで確認し、その時点から10秒間でガス流量400ml/minから800ml/minにまで手動で流量を増大させ、その後は測定終了時点まで流量を一定とした。比較例1はガス流量を400ml/min、比較例2は800ml/minとし、それぞれ一定に維持したまま測定を行った。
【0032】
測定には赤外線CO吸収分析装置を用い、ガスを搬送する不活性ガスとしてヘリウムを用い、1回当たりの分析試料の量は1gとして、これを黒鉛坩堝内で2500℃加熱してCOガスを発生させた。試験は、各ガス流量条件についてそれぞれ3回繰り返した。
【0033】
ガス流量条件および分析結果を表1に示す。
【0034】
【表1】

Figure 0004022347
実施例1の方法は、比較例1に比べて酸素量の測定に要する時間が短く、また比較例2と比べると分析結果、偏差などの点から精度がより優れることが明らかになった。
【0035】
<実施例2,3、比較例3,4>
酸素を全重量中に酸素を0.001%含む鋼材と、0.0005%含む鋼材について、異なる不活性ガスの流量条件下で、不活性ガス搬送−赤外線吸収法により酸素量を測定し、測定精度について比較検討した。
【0036】
実施例2、3においては、COガスが検知され始めた時点を分析装置のモニターで確認し、10秒間でガス流量400ml/minから800ml/minにまで手動で流量を増大させ、その後は測定終了時点まで流量を一定とした。比較例3および4ではガス流量を400ml/minとし、一定に維持したまま測定を行った。その他の条件は、上記「<実施例1、比較例1,2>」と同様とした。
【0037】
ガス流量条件および分析結果を表2に示す。
【0038】
【表2】
Figure 0004022347
比較例3、4に比べ、実施例2、3では測定に要する時間を短くすることができ、しかも分析精度は比較例の場合と同等レベルを維持することができることが明らかになった。
【0039】
【発明の効果】
本発明によれば、炭素と試料中の酸素との反応を促進し、COガス抽出時間を短縮し、分析時間を短縮することができる。
【0040】
また、本発明によれば、分析試料中の酸素の量がごくわずかである場合でも、ガス抽出開始点を 明確化することができる。また、ガスの抽出完了時点も明確化させることができ、分析試料中の酸素量が多くてもCOガス抽出完了前の段階で測定値を算出してしまい、実際の酸素量よりも低い測定値となってしまうおそれは少ない。
【図面の簡単な説明】
【図1】本発明の分析方法に用いることができる試料分析装置の一例を示す装置構造図である。
【図2】赤外線CO吸収検出装置を概略的に示す説明図である。
【図3】実施例1および比較例1による測定結果を示す図である。(a)は比較例1、(b)は実施例1を示す。
【符号の説明】
1…直接通電方式の抽出炉
2…坩堝
3…上部電極
4…下部電極
5…交流電源
6…電流計
7…電圧計
8,9…ガス流量制御弁
10…赤外線CO吸収検出装置
11…常温酸化器
12…CO2除去器
13…H2O除去器
14…熱伝導型分析計
15…マイクロコンピューター
16…ガス流路
17…電気信号制御回路
21…参照セル
22…検出器
23…隔板
24…コンデンサー
25…試料セル
26…光源
27…凹面鏡
28…試料ガス流入口
29…試料ガス排出口
30…干渉ガスセル
31…回転セクター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for analyzing the total amount of oxygen in analytical samples such as metals, refractories, and slags. More specifically, the present invention relates to a method for quickly and accurately measuring the total oxygen amount in an analysis sample such as a metal.
[0002]
[Prior art]
In recent years, a rapid and accurate analysis technique for the amount of oxygen in analysis samples such as metals, refractories, and slag has been demanded.
[0003]
For example, in the steelmaking field, the development of ultra-low oxygen steel and high-purity iron with controlled oxide morphology is underway, and it is required to accurately quantify a minute amount of oxygen at the ppm (parts per million) level. Has been. In particular, in bearing steel used under severe conditions, inclusions such as Al 2 O 3 , MgO · Al 2 O 3 , (Ca, Mg) O · Al 2 O 3 are particularly small among inclusions. Since it is easy to make large grains and these cause fatigue failure, it is important to reduce the amount of inclusions in the product and control the form of the inclusions. An analytical technique to measure is desired.
[0004]
As a method for analyzing the total amount of oxygen in an analysis sample, the following method using an oxygen analyzer has been proposed. The analysis sample in the extraction furnace is heated and melted in an inert gas atmosphere to react with the oxygen in the carbon source and the analysis sample, and the carbon monoxide gas generated by the oxygen in the analysis sample reacting with the carbon source (below) ("CO gas") is extracted into an inert gas flow, the extracted CO gas is detected by a detector, and the amount of oxygen in the sample is measured by conversion from the amount of CO gas.
[0005]
However, in this method, when the amount of oxygen in the analysis sample is small, the amount of generated carbon monoxide is small, and thus the gas extraction start point tends to be unclear during continuous temperature rise analysis, and it is contained in the crucible or gas. This is disadvantageous in that it is difficult to clearly separate from a blank value caused by oxygen. In addition, when the amount of oxygen in the analysis sample is large, the gas extraction time becomes longer, so the analysis time becomes longer, and the gas extraction completion point tends to be unclear. May be calculated, resulting in a measured value lower than the actual oxygen amount.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide a method for measuring the total amount of oxygen in an analysis sample more quickly and accurately.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies in order to solve the above-mentioned problems. As a result, when the carbon and the oxide-derived oxygen in the sample are reacted with each other, the flow rate of the inert gas is gradually increased. The present inventors have found that the problems can be solved and have completed the present invention.
[0008]
That is, the present invention heats an analysis sample in an extraction furnace in which an inert gas is introduced and discharged and is in an inert gas atmosphere to react a carbon source in the extraction furnace with oxygen in the analysis sample. , carbon monoxide generated in the extraction furnace and discharged from the extraction furnace with the discharge of the inert gas, and an analytical method for determining the oxygen content of the analysis sample from the exhaust carbon monoxide, feeding of the inert gas the input and discharge flow rate, from 200 ~ 500 ml / min is the flow rate immediately after the start of the reaction of the carbon source and the oxygen, an oxygen weight analysis method characterized by gradually increased to 1000 ml / min of maximum flow rate is there.
[0009]
In addition, the present invention is the oxygen content analysis method characterized in that the amount of oxygen in the analysis sample is obtained by measuring the amount of the discharged carbon monoxide by an infrared absorption method. Moreover, this invention is the said oxygen content analysis method whose analysis sample is a metal sample.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the analysis sample in the extraction furnace is heated in an inert gas atmosphere to react with the oxygen in the carbon source and the analysis sample, and the CO gas generated by the reaction of the oxygen in the analysis sample with the carbon source is generated. Extraction is performed in an inert gas flow flowing in the extraction furnace, and the amount of oxygen in the analysis sample is obtained from the extracted CO gas. In order to obtain the oxygen amount from the CO gas, for example, the extracted CO gas is measured and analyzed by an infrared absorption method or the like, the CO gas amount is obtained, and the oxygen amount in the sample is calculated from the CO gas. In order to bring the inside of the extraction furnace into an inert gas atmosphere, the inert gas is sent into the extraction furnace, and the generated CO gas is pushed out of the extraction furnace together with the inert gas and discharged by the introduction of the inert gas. . The present invention performs quick and accurate analysis by controlling the flow rate of the inert gas that carries CO gas out as described above.
[0011]
It should be noted that a method for generating a gas to be measured from an analysis sample in an extraction furnace under an inert gas atmosphere, transporting it from the extraction furnace with an inert gas, and measuring the measurement target gas with an infrared absorption analyzer is inconvenient. It is sometimes referred to as an active gas transfer-infrared absorption method.
[0012]
Examples of the sample to be analyzed according to the present invention include, for example, metals, refractories, slags, and specifically, steel materials and the like are preferable.
[0013]
The carbon source is not particularly limited, but carbon contained in a graphite crucible, graphite powder, graphite capsule, analysis sample, or the like can be used as the carbon source. In particular, a means for using a graphite crucible as a carbon source and putting an analytical sample into the graphite crucible and heating and melting it to generate CO gas is practical. A method may be used in which graphite powder is used as a carbon source and mixed with an analysis sample and heated.
[0014]
As a kind of inert gas, helium gas, argon gas, etc. are mentioned preferably, Especially preferably, helium gas is mentioned.
[0015]
The analysis sample is heated in order to react the carbon source with oxygen in the analysis sample. Although the degree of heating varies depending on the type of analysis sample, the oxide present in the sample is reduced and decomposed, and heated to a temperature at which the oxygen derived from the oxide can react with the carbon source in the extraction furnace. For example, in the case of using a steel material as an analysis sample, the analysis sample is preferably heated to the melting point or higher, and particularly preferably 2000 to 3000 ° C.
[0016]
In the analysis method of the present invention, the flow rate of the inert gas is controlled while carbon and oxygen derived from oxide in the sample are reacted. Specifically, the feed flow rate of the inert gas into the extraction furnace is increased immediately after the reaction between the carbon source and oxygen derived from the oxide, and the CO partial pressure in the extraction furnace is lowered. By reducing the CO partial pressure during the reaction MO + C → M + CO (M: metal, O: oxygen, C: carbon), the reaction proceeds to the right. The inert gas is a carrier gas that conveys the CO gas to the outside of the extraction furnace, and the discharge rate of the inert gas and the CO gas from the extraction furnace is increased by increasing the flow rate of the inert gas during the reaction. Can be increased. That is, by increasing the flow rate of the inert gas while the oxygen derived from the oxide in the sample reacts with the carbon, the reaction can be promoted and further the CO gas discharge time can be shortened. The entire analysis time can be shortened. Moreover, the gas extraction start point can be clarified by promoting the reaction and increasing the CO gas discharge rate. In addition, the completion of gas extraction can be clarified by promoting the reaction and increasing the CO gas discharge rate, and the measured value is calculated before the CO gas extraction is completed, which is lower than the actual oxygen amount. There is little risk of measurement.
[0017]
When increasing the flow rate of the inert gas during the CO gas generation reaction, the flow rate of the inert gas is gradually increased immediately after the start of the reaction. Increasing gradually means, in other words, increasing continuously and smoothly. If the flow rate of the inert gas is increased at once, the crucible is rapidly cooled and the thermal efficiency tends to deteriorate. In addition, when the inert gas flow rate is rapidly increased, the blank value may increase rapidly, and when measuring a small amount of oxygen, it may be difficult to separate the blank from the measured oxygen value.
[0018]
The analysis is performed by increasing the flow rate of the inert gas from the beginning. For example, the flow rate corresponding to the maximum flow rate after increasing the inert gas flow rate in the method of the present invention is set as the initial flow rate, and the flow rate is maintained. In this analysis, since the flow rate is large, the cooling effect of the crucible is large and the heating of the analysis sample is not efficient.
[0019]
The time to start increasing the flow rate of the inert gas is immediately after the carbon source in the extraction furnace and oxygen derived from the analysis sample start to react. For example, when measuring the amount of CO gas with an infrared absorption analyzer or the like The time when the waveform appears can be discriminated by visual observation on the monitor of the analyzer.
[0020]
The flow rate before increasing the inert gas flow rate, that is, the flow rate of the inert gas before the reaction between the carbon source and oxygen starts, is preferably 200 to 500 ml / min, particularly preferably 400 to 500 ml. / Min.
[0021]
Further, the flow rate of the inert gas is increased to a predetermined maximum flow rate. However, it is preferable to increase the flow rate of the inert gas to as high a flow rate as possible in order to transport the generated CO gas quickly. However, although depending on the type of sample and the performance of the analyzer, the maximum flow rate of the inert gas is preferably set to an upper limit of 1000 ml / min in view of analysis accuracy. When the inert gas flow rate for extracting the CO gas exceeds 1000 ml / min, depending on the means for detecting the peak, the generated CO gas is excessively diluted and separation from the blank becomes difficult. This is because variation in the quantity value tends to increase.
[0022]
The increase rate of the flow rate of the inert gas may be gradually increased from the initial set value flow rate of the inert gas flow rate to the final maximum flow rate throughout the period in which CO gas is generated and the peak is detected. In addition, if the adverse effect such as a sudden increase in the blank value that may occur when the flow rate is increased too rapidly as described above does not occur, the inert gas flow rate is not necessarily increased to the predetermined maximum flow rate without waiting for the end of peak detection. The maximum flow rate may be gradually increased and then the maximum flow rate may be maintained until the end of peak detection. In the case where the CO gas concentration is measured by the inert gas transfer-infrared absorption method, the following method can be taken as a specific example. For example, the initial inert gas flow rate is set to 400 to 500 ml / min, and the inert gas flow rate is gradually increased throughout the period from when the CO gas peak starts to be detected until the peak detection ends. The maximum flow rate of the inert gas is kept at 1000 ml / min or less. Alternatively, the flow rate is gradually increased to 1000 ml / min, which is the maximum gas flow rate, within about one-third of the measurement time required from when the peak starts to be detected until the end of peak detection, and then 1000 ml until the end of peak detection. A method of maintaining / min can also be adopted.
[0023]
Note that the relationship between how to increase the gas flow rate and the time required from when peak detection starts to when peak detection ends can be measured in various patterns by measuring several patterns in advance. It is possible to facilitate the analysis work for the analysis sample.
[0024]
As the inert gas flow rate control means, for example, a flow meter and an inert gas flow rate control valve may be used to allow arbitrary flow rate adjustment. Specifically, the flow rate of the inert gas can be adjusted by the gas flow controllers 8 and 9 in FIG. 1, for example, in the infrared CO absorption detection apparatus shown in FIG.
[0025]
Furthermore, the present inventor has obtained a new finding that the amount of analysis sample dissolved is also important when performing the analysis according to the method of the present invention. That is, for example, in the case of an analysis sample such as a metal with a very low oxygen amount, or an analysis sample having a low total oxygen amount and a large number of oxide types, the amount of oxygen generated from each oxide is extremely small. The extracted waveform of oxygen overlaps with noise peculiar to the apparatus not related to the oxygen amount, and it tends to be difficult to separate only the oxygen amount generated from the oxide in the analysis sample. In order to prevent this, the amount of the analysis sample to be dissolved may be increased, but the amount of the analysis sample is preferably 0.5 to 5 g from the viewpoint of analysis efficiency and uniform dissolution.
[0026]
As a means for detecting the amount of generated CO gas, means such as a coulometric method, a conductivity method, a gas chromatographic method, an infrared absorption method, and a nonaqueous solvent method can be used, and a preferred method includes an infrared absorption method. . The amount of oxygen in the analysis sample can be obtained by converting the amount of oxygen from the detected amount of CO gas.
[0027]
FIG. 1 schematically illustrates a configuration of a main part of a sample analyzer that can be used in the method of the present invention. In this figure, reference numeral 1 denotes a direct energization type extraction furnace, in which an upper electrode and lower electrodes 3 and 4 for energizing and heating a crucible 2 containing a sample are provided. Reference numeral 5 denotes an AC power supply, one end of which is connected to the upper electrode 3 via the ammeter 6, and the other end is connected to the lower electrode 4. Reference numeral 7 denotes a voltmeter for measuring the voltage between the electrodes 3 and 4.
[0028]
Reference numeral 16 denotes a gas flow path of the present sample analyzer. The gas flow path adjusts the flow rate of the gas introduced into the extraction furnace 1 and the flow rate of the gas to the infrared CO absorption detector 10 in the gas flow path. A flow rate controller 9 is connected, and the infrared CO absorption detector 10 analyzes oxygen in the sample. After the infrared CO absorption detector 10, CO 2 to selectively remove only normal temperature oxidizer 11, CO 2 generated by the room temperature oxidizer to convert the CO 2 to selectively oxidize CO in the gas remover 12, the heat conduction type analyzer 14 via of H 2 O remover 13 for selectively removing of H 2 O in the gas Yes connected, is configured to analyze the nitrogen in the sample . Reference numeral 17 denotes an electric signal control circuit which sends an extraction gas signal to 15 microcomputers and sends an He gas control signal for atmospheric gas to 8 and 9 gas flow rate control valves. Reference numeral 15 denotes an arithmetic control unit such as a microcomputer that performs arithmetic processing on the extracted gas signal from the sample to quantify the amount of oxygen in the analysis sample.
[0029]
Further, FIG. 2 shows an example of an infrared CO absorption detector 10 that can be used in the analysis method of the present invention. The reference cell 21 of the infrared CO absorption detector 10 shown in FIG. 2 is filled with nitrogen or the like that does not absorb infrared, and the detector 22 is filled with a high concentration of component gas to be measured. The detector 22 is divided into two rooms by a thin partition plate 23, and a metal plate attached to the partition plate 23 serves as one pole of the capacitor 24. If there is a component to be measured in the sample, the amount of light entering the detector 22 is reduced by the amount absorbed thereby, a pressure difference is generated between the two chambers of the detector 22, and the diaphragm 23 is displaced. The capacity changes. By measuring this change in capacitance, it is possible to know the concentration of the component to be measured.
[0030]
The sensitivity of the infrared CO absorption detection device 10 depends on the light amount difference between the reference cell 21 and the measurement cell 25. In order to increase this light quantity difference, the optical path length L of the infrared CO absorption detector is important. If the optical path length L exceeds 50 mm, although it depends on the combination with the intensity of the infrared light source 26, it becomes difficult to distinguish the extracted waveform signal and noise, or a normal waveform cannot be obtained. On the other hand, if the optical path length L is too short, a difference in the amount of light between the reference cell 21 and the measurement cell 25 is difficult to appear. Therefore, the optical path length L of the infrared CO absorption detector is preferably ≦ 50 mm.
[0031]
【Example】
<Example 1, Comparative Examples 1 and 2>
Using steel material containing 0.001% of oxygen in the total weight as an analysis sample, using an infrared CO absorption analyzer, measure the amount of oxygen by the inert gas transport-infrared absorption method under different inert gas flow conditions, and measure accuracy A comparative study was conducted. In Example 1, the point in time when CO gas is detected is confirmed on the monitor, and the gas flow rate is manually increased from 400 ml / min to 800 ml / min in 10 seconds from that point, and thereafter until the end of measurement. The flow rate was constant. In Comparative Example 1, the gas flow rate was 400 ml / min, and in Comparative Example 2 was 800 ml / min.
[0032]
Infrared CO absorption analyzer is used for the measurement. Helium is used as the inert gas to carry the gas. The amount of analysis sample per one is 1g, and this is heated at 2500 ° C in a graphite crucible to generate CO gas. I let you. The test was repeated three times for each gas flow rate condition.
[0033]
The gas flow conditions and analysis results are shown in Table 1.
[0034]
[Table 1]
Figure 0004022347
The method of Example 1 was found to have a shorter time required for measuring the amount of oxygen compared to Comparative Example 1, and more accurate than the Comparative Example 2 in terms of analysis results and deviations.
[0035]
<Examples 2 and 3, Comparative Examples 3 and 4>
Measure and measure the amount of oxygen by the inert gas transfer-infrared absorption method for steel materials containing 0.001% oxygen in the total weight and steel materials containing 0.0005% under different inert gas flow conditions. The accuracy was compared.
[0036]
In Examples 2 and 3, when the CO gas starts to be detected, it is confirmed on the monitor of the analyzer, the gas flow rate is manually increased from 400 ml / min to 800 ml / min in 10 seconds, and then the measurement is completed. The flow rate was constant until the time. In Comparative Examples 3 and 4, the gas flow rate was set to 400 ml / min, and the measurement was performed while maintaining the gas flow rate constant. Other conditions were the same as in the above “<Example 1, Comparative Examples 1 and 2>”.
[0037]
The gas flow rate conditions and analysis results are shown in Table 2.
[0038]
[Table 2]
Figure 0004022347
As compared with Comparative Examples 3 and 4, it was found that the time required for measurement can be shortened in Examples 2 and 3, and the analysis accuracy can be maintained at the same level as in the comparative example.
[0039]
【The invention's effect】
According to the present invention, the reaction between carbon and oxygen in the sample can be promoted, the CO gas extraction time can be shortened, and the analysis time can be shortened.
[0040]
Further, according to the present invention, the gas extraction start point can be clarified even when the amount of oxygen in the analysis sample is very small. The gas extraction completion point can also be clarified, and even if the amount of oxygen in the analysis sample is large, the measured value is calculated at the stage before the CO gas extraction is completed, and the measured value is lower than the actual oxygen amount. There is little risk of becoming.
[Brief description of the drawings]
FIG. 1 is an apparatus structure diagram showing an example of a sample analyzer that can be used in an analysis method of the present invention.
FIG. 2 is an explanatory diagram schematically showing an infrared CO absorption detection apparatus.
FIG. 3 is a diagram showing measurement results according to Example 1 and Comparative Example 1; (A) shows Comparative Example 1, and (b) shows Example 1.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Direct energization type extraction furnace 2 ... Crucible 3 ... Upper electrode 4 ... Lower electrode 5 ... AC power supply 6 ... Ammeter 7 ... Voltmeter 8, 9 ... Gas flow control valve 10 ... Infrared CO absorption detector 11 ... Room temperature oxidation Unit 12 ... CO 2 remover 13 ... H 2 O remover 14 ... Heat conduction analyzer 15 ... Microcomputer 16 ... Gas flow path 17 ... Electric signal control circuit 21 ... Reference cell 22 ... Detector 23 ... Separator 24 ... Condenser 25 ... Sample cell 26 ... Light source 27 ... Concave mirror 28 ... Sample gas inlet 29 ... Sample gas outlet 30 ... Interference gas cell 31 ... Rotating sector

Claims (3)

不活性ガスが送入、排出され不活性ガス雰囲気状態である抽出炉内で、分析試料を加熱して、抽出炉内の炭素源と分析試料中の酸素とを反応させ、抽出炉内で生成した一酸化炭素を不活性ガスの排出とともに抽出炉から排出し、排出された一酸化炭素から分析試料中の酸素量を求める分析方法であって、
前記不活性ガスの送入・排出流量を、前記炭素源と前記酸素との反応開始直後の流量である 200 500ml/minから、大流量 1000 ml/minまで漸次増大させることを特徴とする酸素量分析方法。
Generated in the extraction furnace by reacting the carbon source in the extraction furnace with the oxygen in the analysis sample by heating the analysis sample in the extraction furnace where inert gas is sent and discharged and in an inert gas atmosphere. The carbon monoxide is discharged from the extraction furnace together with the discharge of the inert gas, and the amount of oxygen in the analysis sample is obtained from the discharged carbon monoxide,
The fed-discharge flow rate of the inert gas, from 200 ~ 500 ml / min is the flow rate immediately after the start of the reaction between the carbon source and the oxygen, and characterized by progressively increased to 1000 ml / min of maximum flow rate To analyze the amount of oxygen.
赤外線吸収法により、前記排出された一酸化炭素の量を測定して分析試料中の酸素量を求めることを特徴とする請求項1に記載の酸素量分析方法。  2. The oxygen content analysis method according to claim 1, wherein an amount of oxygen in the analysis sample is obtained by measuring an amount of the discharged carbon monoxide by an infrared absorption method. 分析試料が金属試料である、請求項1または2に記載の酸素量分析方法。  The oxygen content analysis method according to claim 1 or 2, wherein the analysis sample is a metal sample.
JP28120299A 1999-10-01 1999-10-01 Analytical oxygen analysis method Expired - Fee Related JP4022347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28120299A JP4022347B2 (en) 1999-10-01 1999-10-01 Analytical oxygen analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28120299A JP4022347B2 (en) 1999-10-01 1999-10-01 Analytical oxygen analysis method

Publications (2)

Publication Number Publication Date
JP2001099825A JP2001099825A (en) 2001-04-13
JP4022347B2 true JP4022347B2 (en) 2007-12-19

Family

ID=17635784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28120299A Expired - Fee Related JP4022347B2 (en) 1999-10-01 1999-10-01 Analytical oxygen analysis method

Country Status (1)

Country Link
JP (1) JP4022347B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056578A (en) * 2009-09-14 2011-03-24 Sumitomo Metal Ind Ltd Method for continuously casting molten steel
JP2013160594A (en) 2012-02-03 2013-08-19 Horiba Ltd Element analyzer
CN103033473B (en) * 2012-12-20 2014-12-10 长沙开元仪器股份有限公司 Element analyzing system

Also Published As

Publication number Publication date
JP2001099825A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
CN103063602B (en) Method for measuring free carbon and silicon carbide in silicon carbide deoxidizing agent
Distin et al. Solubility of oxygen in liquid iron from 1785 to 1960 C. A new technique for the study of slag-metal equilibria
JP5846344B1 (en) Method for analyzing nitrogen in metal sample, analyzer for nitrogen in metal sample, method for adjusting nitrogen concentration in molten steel, and method for producing steel
JP4022347B2 (en) Analytical oxygen analysis method
CN108680530A (en) Free Carbon analysis method in titanium carbide slag
WO2013024766A1 (en) Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
KR100371621B1 (en) Making of metal products using a gas analyzer
JP3439974B2 (en) Method and apparatus for analyzing oxygen or oxide by type of oxide in analysis sample
JP2856006B2 (en) Trace oxygen analysis method for steel
JP5896153B2 (en) Desulfurization method and manufacturing method of molten steel
JP5704019B2 (en) Secondary refining method and manufacturing method of molten steel
US9068237B2 (en) Method for desulfurizing hot metal
JP2001116710A (en) Method for judging steel refining state
JPS642210B2 (en)
JP3288800B2 (en) Oxygen determination method for reduced oxides contained in steelmaking slag
JP2014096307A (en) Impurity removing method and microwave heating apparatus
JPS61283866A (en) Method and apparatus for analyzing trace of carbon contained in steel material
JP3198841B2 (en) Method and apparatus for atomic absorption analysis of suspended particles in gas
JP2001234230A (en) Method for deciding end point of decarburization refining
JPH0518962A (en) Method for analyzing carbon and sulfur contents of metallic sample
JPH07118723A (en) Converter refining method
CN114414726A (en) Detection device and detection method for carbon content in alkali metal
JPH0221547B2 (en)
CN111650295A (en) Method for detecting carbon content of silicon powder
SU539262A1 (en) Device for the determination of gases in metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees