JPH0221547B2 - - Google Patents

Info

Publication number
JPH0221547B2
JPH0221547B2 JP57025998A JP2599882A JPH0221547B2 JP H0221547 B2 JPH0221547 B2 JP H0221547B2 JP 57025998 A JP57025998 A JP 57025998A JP 2599882 A JP2599882 A JP 2599882A JP H0221547 B2 JPH0221547 B2 JP H0221547B2
Authority
JP
Japan
Prior art keywords
hot metal
gas
partial pressure
amount
collected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57025998A
Other languages
Japanese (ja)
Other versions
JPS58143266A (en
Inventor
Kenzo Yamada
Katsuhiro Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP57025998A priority Critical patent/JPS58143266A/en
Publication of JPS58143266A publication Critical patent/JPS58143266A/en
Publication of JPH0221547B2 publication Critical patent/JPH0221547B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高炉から出銑された溶銑中のSi量
を連続的にかつ迅速に分析する溶銑中のSi量の連
続分析法に関するものである。 溶銑中のSi量は、高炉の操作過程において、約
0.3%から約0.6%まで変動する。このような溶銑
中のSi量を迅速に分析し、その変動を把握するこ
とは、例えば溶銑の事前脱Si処理その他溶銑の精
錬を行なう上において極めて重要なことである。 従来、溶融金属の成分を迅速に分析する手段と
しては、例えばスパーク法、プラズマジエツト
法、GPレーザー法等が知られている。しかるに、
これらの方法は、何れも発光分光分析によるもの
であるため、発光に高エネルギーの出力を必要と
し、例えばGPレーザー法の場合には、出力が
50MWの高エネルギーを要するため、極めて経済
的でなく、実用には供されていない。 本発明者等は上述のような観点から、経済的に
溶銑中のSi量を連続的にかつ迅速に分析する溶銑
中のSi量の連続分析法を開発すべく鋭意研究を重
ねた。 溶銑中にはCが飽和濃度まで含有されていて、
その酸素分圧Po2は、10-16〜10-14atmと低く、酸
素分圧がこの範囲の溶銑中には、SiOガスが存在
する。このSiOガスのガス分圧Psioは、Po2やSi
の濃度にもよるが、10-2〜10-8と考えられる。 本発明者等は、上述したことから、溶銑中に
Po2を制御した不活性ガスを吹込み、この不活性
ガスによつて溶銑中から排出されたSiOガスにつ
き、溶銑中のSiとPsioとの相関関係を調べたとこ
ろ、両者間には強い相関があることを知見した。 この発明は、上記知見に基づいてなされたもの
で、高炉から出銑し、溶銑樋を流れる溶銑中に、
予め脱酸して酸素分が制御された不活性ガスをプ
ローブを介して吹き込み、前記不活性ガスにより
溶銑中から排出されたガス中のSiOガスを分析し
てそのガス分圧または光反射強度から、溶銑中の
Si量を連続的に検知することに特徴を有するもの
である。 次に、この発明を実施例により図面と共に説明
する。 第1図には、この発明方法を実施するための試
験装置の一例が示されている。図面において1は
溶銑樋、2は溶銑樋1中を流れる溶銑である。3
はアルゴンガスが収容された容器、4は電気炉、
5はその開口5aが溶銑樋1中を流れる溶銑2中
に浸漬された黒鉛製のガス吹込みプローブであ
る。 容器3内のアルゴンガスは、電気炉4内の導管
4A中に導かれ約600℃に加熱されると共に、導
管4A中の銅片6により脱酸してPo2が制御され
た上、ガス吹込みプローブ5によつて、その開口
5aから溶銑樋1を流れる溶銑2中に吹込まれ
る。 この結果、溶銑2中から排出されたArとSiOと
の混合ガスは、ガス吹込みプローブ5のガス排出
口5bから排出され、この排出ガスは切換弁7を
経て導管8により質量分析計9へ送られ、そのガ
ス分圧Psioが分析される。 また、前記排出ガスは切換弁7の切替えにより
導管10から分光器11に送られて分光器11内
のSiO2微粒子12と反応させ、発光受光素子1
3、検出器14、mVメータ15により、光反射
強度出力Poが検出される。16は分光器11に
O2ガスを供給するO2ガス容器、17は分光器1
1に設けられたO2ガスエジエクターである。 第2図には上述した試験装置により、下記第1
表に示す成分組成および温度(何れも平均値)の
溶銑のSi量を分析した結果が示されている。
The present invention relates to a continuous analysis method for the amount of Si in hot metal, which continuously and quickly analyzes the amount of Si in hot metal tapped from a blast furnace. The amount of Si in hot metal is approximately
It varies from 0.3% to approximately 0.6%. It is extremely important to quickly analyze the amount of Si in hot metal and understand its fluctuations, for example, in performing pre-Si removal treatment of hot metal and other refining of hot metal. Conventionally, methods for quickly analyzing the components of molten metal include, for example, a spark method, a plasma jet method, a GP laser method, and the like. However,
Since these methods all rely on emission spectroscopy, they require high-energy output for light emission; for example, in the case of the GP laser method, the output is low.
Since it requires high energy of 50 MW, it is extremely uneconomical and has not been put to practical use. From the above-mentioned viewpoint, the present inventors have conducted extensive research in order to develop a continuous analysis method for the amount of Si in hot metal that can economically and continuously analyze the amount of Si in hot metal. Hot metal contains carbon up to a saturation concentration,
The oxygen partial pressure Po 2 is as low as 10 -16 to 10 -14 atm, and SiO gas is present in hot metal with an oxygen partial pressure in this range. The gas partial pressure Psio of this SiO gas is
Although it depends on the concentration, it is thought to be between 10 -2 and 10 -8 . Based on the above, the present inventors discovered that
When we investigated the correlation between Si in the hot metal and Psio by injecting an inert gas with controlled Po 2 and examining the SiO gas discharged from the hot metal by this inert gas, we found a strong correlation between the two. I found out that there is. This invention was made based on the above knowledge, and in the hot metal that is tapped from the blast furnace and flows through the hot metal trough,
An inert gas whose oxygen content has been controlled by deoxidizing it in advance is blown in through a probe, and the SiO gas in the gas discharged from the hot metal is analyzed based on the gas partial pressure or light reflection intensity. , in hot metal
The feature is that the amount of Si is detected continuously. Next, the present invention will be explained with reference to examples and drawings. FIG. 1 shows an example of a test apparatus for carrying out the method of this invention. In the drawing, 1 is a hot metal sluice, and 2 is hot metal flowing through the molten metal sluice 1. 3
is a container containing argon gas, 4 is an electric furnace,
Reference numeral 5 designates a graphite gas blowing probe whose opening 5a is immersed in hot metal 2 flowing in hot metal trough 1. The argon gas in the container 3 is guided into the conduit 4A in the electric furnace 4 and heated to about 600°C, and is deoxidized by the copper piece 6 in the conduit 4A to control Po 2 and then gas blown. The hot metal 2 flowing through the hot metal trough 1 is blown into the hot metal 2 by the pouring probe 5 through its opening 5a. As a result, the mixed gas of Ar and SiO discharged from the hot metal 2 is discharged from the gas discharge port 5b of the gas injection probe 5, and this discharged gas passes through the switching valve 7 and enters the mass spectrometer 9 through the conduit 8. The gas partial pressure Psio is analyzed. Further, the exhaust gas is sent from the conduit 10 to the spectrometer 11 by switching the switching valve 7, and reacts with the SiO 2 fine particles 12 in the spectrometer 11, causing the light emitting and receiving element 1 to react.
3. The light reflection intensity output Po is detected by the detector 14 and the mV meter 15. 16 to spectrometer 11
O2 gas container that supplies O2 gas, 17 is spectrometer 1
This is an O 2 gas ejector installed in 1. Figure 2 shows the following test results using the test equipment described above.
The results of analyzing the amount of Si in hot metal with the composition and temperature (all average values) shown in the table are shown.

【表】 第2図は上記により質量分析計9で実測した
SiOガスのガス分圧Psioと、同じく分光器11で
実測したSiOガスの光反射強度出力Poの、Si量と
の関係を示したもので、典線AはSsio、また典線
BはPoである。 図面からわかるように、ガス分圧Psioもまた光
反射強度出力Poも、Si量とは強い相関があり、
従つて、前記PsioまたはPoから、適確に溶銑中
のSi量を検出することができる。 以上述べたように、この発明によれば、溶銑中
に不活性ガスを導入し、前記不活性ガスにより溶
銑中から排出されたガス中のSiOガスを分析し
て、そのガス分圧または光反射強度を検出するこ
とにより、溶銑中のSi量を迅速かつ連続的に、し
かも経済的に適確に分析することができる工業上
優れた効果が示される。
[Table] Figure 2 shows the actual measurement using mass spectrometer 9 as described above.
It shows the relationship between the gas partial pressure Psio of SiO gas and the amount of Si in the optical reflection intensity output Po of SiO gas, which was also measured using the spectrometer 11. Normative line A is Ssio, and normal line B is Po. be. As can be seen from the drawing, both the gas partial pressure Psio and the optical reflection intensity output Po have a strong correlation with the amount of Si.
Therefore, the amount of Si in the hot metal can be accurately detected from the Psio or Po. As described above, according to the present invention, an inert gas is introduced into hot metal, and the SiO gas in the gas discharged from the hot metal is analyzed to determine the gas partial pressure or optical reflection. By detecting the strength, the amount of Si in hot metal can be analyzed rapidly, continuously, and economically, which is an excellent industrial effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法を実施するための試験装
置の一例を示す説明図、第2図はこの発明方法で
得られたPsioとPoの溶銑中Si量との関係を示す
図である。図面において、 1…溶銑樋、2…溶銑、3…アルゴンガス容
器、4…電気炉、5…ガス吹込みプローブ、5a
…開口、5b…ガス排出口、6…銅片、7…切換
弁、8,10…導管、9…質量分析計、11…分
光器、12…SiO2微粒子、13…発光受光素子、
14…検出器、15…mVメータ、16…O2ガス
容器、17…O2ガスエジエクター。
FIG. 1 is an explanatory diagram showing an example of a test apparatus for carrying out the method of this invention, and FIG. 2 is a diagram showing the relationship between Psio obtained by the method of this invention and the amount of Si in the hot metal of Po. In the drawings, 1...Hot metal trough, 2...Hot metal, 3...Argon gas container, 4...Electric furnace, 5...Gas injection probe, 5a
...Opening, 5b...Gas exhaust port, 6...Copper piece, 7...Switching valve, 8, 10...Conduit, 9...Mass spectrometer, 11...Spectrometer, 12...SiO 2 fine particles, 13...Emitting light receiving element,
14...detector, 15...mV meter, 16... O2 gas container, 17... O2 gas ejector.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉から出銑し、溶銑樋を流れる溶銑中に、
予め脱酸して酸素分圧が制御された不活性ガスを
プローブを介して吹き込み、前記吹き込まれた不
活性ガスにより溶銑中から排出されたガスを、前
記プローブを介して捕集し、捕集したガスを質量
分析計に送つてそのガス分圧を分析し、または、
前記捕集したガスを分光器に送り、SiO2微粒子
と反応させて光反射強度を検出し、このようなガ
ス分圧または光反射強度から、溶銑樋を流れる溶
銑中のSi量を連続的に検知することを特徴とする
溶銑中Si量の連続分析法。
1. In the hot metal that is tapped from the blast furnace and flows through the hot metal gutter,
Inert gas, which has been deoxidized in advance and whose oxygen partial pressure has been controlled, is blown through the probe, and the gas discharged from the hot metal by the blown inert gas is collected and collected through the probe. send the gas to a mass spectrometer to analyze the gas partial pressure, or
The collected gas is sent to a spectrometer, where it reacts with SiO 2 fine particles to detect the light reflection intensity, and from this gas partial pressure or light reflection intensity, the amount of Si in the hot metal flowing through the hot metal culvert is continuously calculated. A continuous analysis method for detecting the amount of Si in hot metal.
JP57025998A 1982-02-22 1982-02-22 Method for continuously analyzing silicon content in molten pig iron Granted JPS58143266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025998A JPS58143266A (en) 1982-02-22 1982-02-22 Method for continuously analyzing silicon content in molten pig iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025998A JPS58143266A (en) 1982-02-22 1982-02-22 Method for continuously analyzing silicon content in molten pig iron

Publications (2)

Publication Number Publication Date
JPS58143266A JPS58143266A (en) 1983-08-25
JPH0221547B2 true JPH0221547B2 (en) 1990-05-15

Family

ID=12181383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025998A Granted JPS58143266A (en) 1982-02-22 1982-02-22 Method for continuously analyzing silicon content in molten pig iron

Country Status (1)

Country Link
JP (1) JPS58143266A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292055A (en) * 1985-06-19 1986-12-22 Nippon Kokan Kk <Nkk> Quick analysis of molten steel
JPH0613492Y2 (en) * 1985-10-11 1994-04-06 住友軽金属工業株式会社 Probe for measuring hydrogen concentration in molten metal
JP2535896Y2 (en) * 1991-01-16 1997-05-14 コスモ工機株式会社 Chip recovery device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1510957A (en) * 1975-05-07 1978-05-17 National research development corp investigation of the gas content of molten metals

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1510957A (en) * 1975-05-07 1978-05-17 National research development corp investigation of the gas content of molten metals

Also Published As

Publication number Publication date
JPS58143266A (en) 1983-08-25

Similar Documents

Publication Publication Date Title
EP0215483B1 (en) Method of spectroscopically determining the composition of molten iron
JPH0221547B2 (en)
SE444818B (en) PROCEDURE FOR CONTROL OF A MANUFACTURING PROCESS
KR101579011B1 (en) Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP5896153B2 (en) Desulfurization method and manufacturing method of molten steel
EP2743683B1 (en) Molten iron desulfurization method
JP2021025882A (en) Method for controlling furnace, and analyzer for implementing the same
JP4022347B2 (en) Analytical oxygen analysis method
JP4788089B2 (en) Molten metal component measuring device
JP3198841B2 (en) Method and apparatus for atomic absorption analysis of suspended particles in gas
JP3439974B2 (en) Method and apparatus for analyzing oxygen or oxide by type of oxide in analysis sample
JPS5951350A (en) Rapid measurement of molten iron components
JPS60219538A (en) Inert gas blow-in type fine particle recovering and molten metal analytical method and apparatus therefor
JPH0238901B2 (en)
JPS6267430A (en) Spectral analysis of components in molten iron
JPH0518962A (en) Method for analyzing carbon and sulfur contents of metallic sample
JPS63186131A (en) Direct analysis instrument for manganese in molten metal by atomic absorption photometry
KR820001717B1 (en) Method for control of steel manufacture progress of work
JPS61250556A (en) Probe for quantitative analysis of c, s, n and h in molten steel
JPH09166590A (en) Rapid determining method for trace carbon in steel
Coedo et al. Approach to the solution of carbon content influence in the X-ray fluorescence analysis of ferromanganese
JP2982602B2 (en) Method and apparatus for laser vaporization analysis of molten metal
JPH0215816B2 (en)
SU138767A1 (en) The method of analysis of gases in metal and metal ceramics
JPH0772139A (en) Quick measuring method and apparatus for trace carbon in molten steel