JPH09166590A - Rapid determining method for trace carbon in steel - Google Patents

Rapid determining method for trace carbon in steel

Info

Publication number
JPH09166590A
JPH09166590A JP7329132A JP32913295A JPH09166590A JP H09166590 A JPH09166590 A JP H09166590A JP 7329132 A JP7329132 A JP 7329132A JP 32913295 A JP32913295 A JP 32913295A JP H09166590 A JPH09166590 A JP H09166590A
Authority
JP
Japan
Prior art keywords
carbon
sample
steel
heating
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7329132A
Other languages
Japanese (ja)
Inventor
Atsushi Chino
淳 千野
Yoichi Ishibashi
耀一 石橋
Yoshito Iwata
嘉人 岩田
Takanori Akiyoshi
孝則 秋吉
Tadashi Mochizuki
正 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7329132A priority Critical patent/JPH09166590A/en
Publication of JPH09166590A publication Critical patent/JPH09166590A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To analyze a trace quantity of carbon in steel with high accuracy without requiring complicated preparation and operation by using copper as a combustion improver, using a high frequency heating device as a heating means, setting the surface area of a sample to a specific value or less to the weight of the sample, and heating for a fixed time. SOLUTION: A sample 1, the surface area of which is 4cm<2> or less per 1g in sample weight, is put in a magnetic boat 3 along with 0.7g of a copper combustion improver 2, and the magnetic boat 3 is inserted in a combustion pipe 4 installed at the central part of a high frequency coil 5. Oxygen gas is led into the combustion pipe 4. The lead-out port of oxygen gas is connected to a detector 6 to detect the carbon quantity of gas in the combustion pipe 4. While leading in oxygen gas at the rate of 2.5 lit./min., heating is applied for 20-60 seconds at high frequency of 18MHz with output of 2.3Kw to extract carbon. A contaminated carbon signal and a steel carbon signal are separated by the detector for measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、鋼試料中の微量
炭素を迅速且つ正確に定量する分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analytical method for rapidly and accurately quantifying a trace amount of carbon in a steel sample.

【0002】[0002]

【従来の技術】近年、鉄鋼製造業において、製品の高級
化に伴い鋼中に含まれる炭素濃度を極力低くし深絞り性
を向上させた極低炭素鋼が製造されている。これらの製
造過程では、工程管理や品質管理のために、短時間で炭
素濃度を把握する必要があり、微量炭素の迅速な分析が
切に要求されている。この要望に応えるためには、微量
な炭素を精度よく測定すると同時に、複雑な操作を避け
且つ現場で迅速に結果が得られる分析法が不可欠であ
る。
2. Description of the Related Art In recent years, in the steel manufacturing industry, ultra-low carbon steels have been manufactured in which the carbon concentration in the steels has been made as low as possible and the deep drawability has been improved, as the quality of the products has increased. In these manufacturing processes, it is necessary to grasp the carbon concentration in a short time for process control and quality control, and rapid analysis of trace carbon is urgently required. In order to meet this demand, an analytical method that can accurately measure a minute amount of carbon, at the same time avoids complicated operations and can quickly obtain a result on site is indispensable.

【0003】鋼中の炭素を分析する方法に、酸素気流中
で助燃剤とともに試料を加熱溶融し炭素を燃焼して一酸
化炭素、二酸化炭素の酸化炭素ガスに変えて抽出し、こ
れを赤外線吸収法や電量滴定法により検出して炭素量を
求める燃焼分析法がある。助燃剤には、銅や錫或いは錫
とタングステンの混合物が使われる。
In a method for analyzing carbon in steel, a sample is heated and melted together with a combustion improver in an oxygen stream to burn carbon and convert it into carbon monoxide and carbon dioxide carbon dioxide gas for extraction, which is then infrared-absorbed. Method and the coulometric titration method to detect the amount of carbon and there is a combustion analysis method. Copper, tin, or a mixture of tin and tungsten is used as the combustion improver.

【0004】微量炭素の分析で問題になるのは、試料表
面に付着している炭素であり、鋼中の炭素に混入すると
測定値を狂わせる。試料表面には、大気中に浮遊する炭
化水素類等の有機炭素が付着したり炭酸ガスが吸着され
ていたりする。有機炭素は有機溶媒による洗浄である程
度除去することはできるが、吸着された炭酸ガスは殆ど
除くことができない。
A problem in the analysis of a trace amount of carbon is carbon adhering to the surface of the sample, and if it is mixed with carbon in steel, the measured value will be disturbed. On the sample surface, organic carbon such as hydrocarbons floating in the atmosphere may be attached or carbon dioxide gas may be adsorbed. Organic carbon can be removed to some extent by washing with an organic solvent, but the adsorbed carbon dioxide gas can hardly be removed.

【0005】このように試料表面に付着している炭素は
汚染炭素と言われるが、この汚染炭素は微量であり、鋼
中の炭素量が多い場合には無視することもできる。しか
し、鋼中の炭素量が微量な場合は無視することができ
ず、汚染炭素量を分離し真の鋼中炭素量を求めなくては
ならない。
The carbon adhering to the surface of the sample in this way is said to be contaminated carbon, but this contaminated carbon is in a very small amount and can be ignored if the carbon content in the steel is large. However, if the amount of carbon in the steel is very small, it cannot be ignored, and the amount of contaminated carbon must be separated to obtain the true amount of carbon in steel.

【0006】従来、この問題に対処する対策が三つあ
る。第一は試料採取時から試料の汚染を避ける対策であ
る。例えば、特開平3−71057号公報には、溶鋼を
真空サンプラーで採取した後、不活性ガスでパージされ
た気密室内で、サンプラーの破砕や試料の切断などの前
処理操作の全てを行い、更に気密室と定量分析装置とを
気密状態で連絡する分析装置が記載されている。しか
し、これは大がかりな設備となり実用的ではない。
Conventionally, there are three measures to deal with this problem. The first is a measure to avoid sample contamination from the time of sampling. For example, in Japanese Patent Laid-Open No. 3-71057, after collecting molten steel with a vacuum sampler, all pretreatment operations such as crushing the sampler and cutting the sample are performed in an airtight chamber purged with an inert gas. An analyzer is described which connects the airtight chamber and the quantitative analyzer in an airtight state. However, this is a large-scale facility and is not practical.

【0007】第二は、汚染炭素を除去してから、鋼中の
炭素を測定する対策である。鋼中の炭素は助燃剤の存在
下で酸素気流中で加熱溶融することによって、一酸化炭
素或いは二酸化炭素の酸化炭素ガスとして抽出される。
助燃剤がなく、加熱の程度が試料の溶融にまで至らなけ
れは鋼中の炭素は酸素気流中でも抽出されない。一方、
汚染炭素は酸素存在下で加熱すれば酸化炭素ガスとして
除去することができる。
The second is a measure for measuring carbon in steel after removing contaminating carbon. Carbon in steel is extracted as carbon monoxide or carbon dioxide as carbon dioxide by heating and melting in an oxygen stream in the presence of a combustion improver.
Carbon in steel is not extracted even in an oxygen stream unless there is a combustion improver and the degree of heating reaches the melting of the sample. on the other hand,
Contaminant carbon can be removed as carbon oxide gas by heating in the presence of oxygen.

【0008】上記の考えに基づいて、JIS G 12
11では、事前加熱法を定めている。この方法では、加
熱手段に電気抵抗加熱炉を用い、試料を事前に大気中で
420℃±10℃で5分から10分加熱して汚染炭素を
除去する。この後助燃剤を加えて酸素気流中で燃焼加熱
を行い鋼中炭素を酸化炭素ガスとして抽出し検出器に送
り込む。この方法で含有率3ppm から100ppm の鋼中
の炭素が精度よく分析される。
Based on the above idea, JIS G 12
In No. 11, the preheating method is specified. In this method, an electric resistance heating furnace is used as a heating means, and the sample is heated in advance at 420 ° C. ± 10 ° C. for 5 to 10 minutes in the atmosphere to remove the contaminated carbon. After this, a combustion improver is added and combustion heating is performed in an oxygen stream to extract carbon in steel as carbon oxide gas and send it to the detector. By this method, carbon in steel having a content of 3 ppm to 100 ppm can be accurately analyzed.

【0009】しかし、この方法では、事前加熱に時間を
要し更に事前加熱とその後の燃焼加熱との間で試料を一
度炉から取り出して助燃剤を添加する等の操作を要し、
分析に要する時間が長くなり工程管理分析には適しな
い。又、事前加熱では加熱温度を狭い範囲に維持する必
要があり、炉内温度コントロールのできる電気抵抗加熱
炉を使用しなければならないが、この炉は炉心管や発熱
体の交換頻度が高くこの点でも現場での実用には不適で
ある。
However, this method requires a time for preheating, and further requires an operation of taking out the sample from the furnace once and adding a combustion improver between the preheating and the subsequent combustion heating.
This is not suitable for process control analysis because the time required for analysis becomes long. Also, in preheating, it is necessary to maintain the heating temperature within a narrow range, and it is necessary to use an electric resistance heating furnace that can control the temperature inside the furnace, but this furnace has a high frequency of replacement of the core tube and heating element. However, it is not suitable for practical use in the field.

【0010】分析所要時間を短縮するために、最初から
助燃剤を用い且つ酸素を流しながら分析する方法も提案
されている。例えば、特開平6−123690号公報に
は、試料の加熱部に導入するガスを切替えられるように
し、最初は不活性ガスを導入して汚染炭素を除去し、そ
の後酸素ガスに切り換えて鋼中炭素を酸化炭素ガスとし
て抽出し検出することが記載されている。この場合、事
前加熱を低温に保つ必要はなく、加熱手段として高周波
加熱装置を用いることもでき短時間で加熱及び燃焼を完
結させることができる。しかし、不活性ガスに混入する
微量の酸素が鋼中炭素の脱炭に作用し分析精度を低下さ
せる。このため、一旦酸素気流中で分析後は系内を完全
に不活性ガス雰囲気に置き換える必要がある。つまり、
測定前の準備に時間がかかり、多数の試料を迅速に繰り
返し分析しなければならない工程管理分析等には適しな
い。
In order to shorten the time required for the analysis, a method of using a combustion improver from the beginning and performing analysis while flowing oxygen has also been proposed. For example, in Japanese Patent Laid-Open No. 6-123690, it is possible to switch the gas introduced into the heating part of the sample, first introduce an inert gas to remove contaminating carbon, and then switch to oxygen gas to change carbon in steel. It is described that is extracted as carbon oxide gas and detected. In this case, it is not necessary to maintain the preheating at a low temperature, a high-frequency heating device can be used as the heating means, and heating and combustion can be completed in a short time. However, a small amount of oxygen mixed in the inert gas acts on the decarburization of carbon in the steel and reduces the accuracy of analysis. Therefore, it is necessary to completely replace the inside of the system with an inert gas atmosphere after analysis in an oxygen stream. That is,
It takes time to prepare before measurement, and is not suitable for process control analysis or the like in which many samples must be rapidly and repeatedly analyzed.

【0011】第三は、酸化炭素ガスを検出する際に分離
測定する対策である。試料を加熱する途中で未だ鋼試料
が溶融する前に汚染炭素が抽出される。したがって、汚
染炭素は鋼中炭素に先立って検出される。例えば、特開
平3−37566号公報には、試料と助燃剤を試料容器
に入れて蓋を掛け開放率を30%以内として、酸素雰囲
気中に挿入し1100℃から1400℃に加熱し、酸化
炭素ガスを検出する方法が記載されている。蓋があるた
め試料の昇温が緩やかになり、試料が1100℃に達す
る前の時点で検出される酸化炭素ガスは汚染炭素に起因
するもので、その後に検出される酸化炭素ガスは鋼中炭
素に起因するものである。しかし、この方法では、汚染
炭素と鋼中炭素が明確に分離できるかどうかは試料の昇
温速度に大きく影響され、試料容器や蓋によって分析精
度が変動する。加えて、加熱温度を1400℃より高く
することができないので、電気抵抗加熱炉を用いねばな
らず、事前加熱法と同様炉心管や発熱体の交換頻度が高
く現場での実用には不適である。
Thirdly, there is a measure for separating and measuring when detecting carbon oxide gas. Contaminating carbon is extracted before the steel sample is melted while the sample is being heated. Therefore, contaminant carbon is detected prior to carbon in steel. For example, in Japanese Patent Laid-Open No. 3-37566, a sample and a combustion improver are put into a sample container, a lid is put on the sample container, the opening ratio is set to 30% or less, and the sample container is inserted into an oxygen atmosphere and heated from 1100 ° C. to 1400 ° C. A method for detecting gas is described. Because of the lid, the temperature rise of the sample becomes gentle, and the carbon oxide gas detected before the sample reaches 1100 ° C is due to contaminated carbon, and the carbon oxide gas detected thereafter is carbon in steel. It is due to. However, in this method, whether or not the contaminated carbon and the carbon in the steel can be clearly separated is greatly influenced by the heating rate of the sample, and the analysis accuracy varies depending on the sample container and the lid. In addition, since the heating temperature cannot be higher than 1400 ° C., an electric resistance heating furnace must be used, and like the preheating method, the core tube and heating element are frequently replaced, which is not suitable for practical use in the field. .

【0012】[0012]

【発明が解決しようとする課題】上記のように、鋼中の
微量炭素を精度よく分析しようとすると、分析所要時間
が長くなり或いは複雑な操作が必要になり、工程分析や
品質管理分析に用いることのできる適当な分析法がなか
った。
As described above, when trying to analyze a trace amount of carbon in steel with high accuracy, the analysis time becomes long or complicated operation is required, and it is used for process analysis and quality control analysis. There was no suitable analytical method available.

【0013】この発明はこの問題を解決するためになさ
れたもので、複雑な準備や操作を要することなく迅速に
しかも高い精度で鋼中の微量炭素分析することを目的と
するものである。
The present invention has been made to solve this problem, and an object thereof is to analyze a trace amount of carbon in steel rapidly and with high accuracy without requiring complicated preparations and operations.

【0014】[0014]

【課題を解決するための手段】この目的を達成するため
の手段は、鋼試料を酸素気流中で助燃剤を用いて加熱燃
焼し試料中の炭素成分を酸化炭素ガスとして、この酸化
炭素ガス濃度から炭素含有率を求める鋼中炭素の燃焼分
析法において、助燃剤として銅を用い、加熱手段として
高周波加熱装置を用い、且つ試料の表面積を試料重量1
g当たり4cm2以下とし加熱時間20秒以上1分以内で
鋼中の炭素を汚染炭素と分離して測定する鋼中微量炭素
の迅速定量方法。
[Means for Solving the Problem] The means for achieving this object is to heat and burn a steel sample in an oxygen stream by using a combustion improver, and use the carbon component in the sample as carbon oxide gas to obtain the carbon oxide gas concentration. In the combustion analysis method of carbon in steel for obtaining the carbon content from the sample, copper is used as a combustion improver, a high frequency heating device is used as a heating means, and the surface area of the sample is 1% by weight of the sample.
A rapid determination method for a trace amount of carbon in steel, in which the carbon content in the steel is 4 cm 2 or less and the heating time is 20 seconds or more and within 1 minute to separate carbon in the steel from contaminating carbon.

【0015】助燃剤として一般には銅、錫、タングステ
ン・錫混合剤等が使用されるが、この発明の方法では銅
を用いた場合、汚染炭素と鋼中炭素との分離が最も短時
間で行われる。
Copper, tin, a mixture of tungsten and tin, etc. are generally used as the combustion improver. In the method of the present invention, when copper is used, the contamination carbon and the carbon in the steel can be separated in the shortest time. Be seen.

【0016】加熱手段として高周波加熱装置を用いるの
は、高周波電流が主として試料の表面に誘導され、した
がって試料表層で加熱が行われることを利用するためで
ある。又、高周波加熱装置では、電気抵抗加熱炉のよう
に炉心管や発熱体の交換が不要で保守管理が容易であ
る。更に、急速な加熱が容易で短時間で試料を完全に燃
焼させることができる。
The high frequency heating device is used as the heating means in order to utilize the fact that the high frequency current is mainly induced on the surface of the sample and therefore the heating is performed on the surface layer of the sample. Further, in the high-frequency heating apparatus, unlike the electric resistance heating furnace, it is not necessary to replace the core tube or the heating element, and maintenance is easy. Furthermore, rapid heating is easy and the sample can be completely burned in a short time.

【0017】高周波加熱では上記のように試料表層で加
熱が行われ、表層から昇温し続いて伝熱により試料内部
が昇温するが、内部が昇温し試料の溶融が始まる以前に
表面の汚染炭素を除去する必要がある。表面積を試料重
量に対して小さくすることによって試料の溶融を遅らせ
ることになり、汚染炭素と鋼中炭素との分離が容易にな
る。又、試料表面積が小さければ汚染炭素量もそれだけ
少ないので、更に分離が容易になる。
In the high frequency heating, heating is performed on the surface layer of the sample as described above, the temperature is raised from the surface layer and then the temperature inside the sample is increased by heat transfer. It is necessary to remove polluting carbon. By making the surface area smaller than the weight of the sample, the melting of the sample is delayed, and the contamination carbon and the carbon in steel are easily separated. Further, if the sample surface area is small, the amount of contaminated carbon is so small that the separation becomes easier.

【0018】試料の表面積が試料重量1g当たり4cm2
以下であれば、炭素含有率100ppm 以下の微量炭素鋼
では、1分以内の加熱時間で汚染炭素と鋼中炭素とは充
分に分離して測定することができる。
The surface area of the sample is 4 cm 2 per 1 g of the sample weight.
In the case of a trace amount of carbon steel having a carbon content of 100 ppm or less, contamination carbon and carbon in steel can be sufficiently separated and measured in a heating time of 1 minute or less.

【0019】高周波の出力を高めると短い加熱時間で全
炭素を抽出することはできるが、抽出時間が短過ぎる
と、汚染炭素の抽出が終わらないうちに鋼中炭素の抽出
が始まり、両者の分離が困難となる。このため、全炭素
量の抽出に20秒以上の時間をかけて加熱する必要があ
る。
If the output of high frequency is increased, the total carbon can be extracted in a short heating time, but if the extraction time is too short, the extraction of carbon in steel will start before the extraction of contaminated carbon is completed, and the separation of both Will be difficult. Therefore, it is necessary to heat for 20 seconds or more to extract the total amount of carbon.

【0020】[0020]

【発明の実施の形態】極低炭素溶鋼を内径6mmの石英管
を用いて吸い上げた棒状の鋼試料を長さ5mmに切断し、
表面の研磨等の前処理を施さずに、重量1.1gで表面
積が1.5cm 2 の試料を得た。
BEST MODE FOR CARRYING OUT THE INVENTION Quartz tube with an inner diameter of 6 mm made of ultra-low carbon molten steel
Cut the rod-shaped steel sample sucked up using
The surface is 1.1g in weight without pretreatment such as surface polishing.
Product is 1.5 cm TwoA sample of was obtained.

【0021】試料を加熱溶融し炭素を抽出する状況を図
1に示す。試料1を、0.7gの銅助燃剤2とともに磁
器ボート3に入れ、高周波コイル5の中央部に設置した
燃焼管4に挿入し、燃焼管4内に酸素ガスを導入した。
酸素ガスの導出口は検出器6に接続されており、燃焼管
内のガスの炭素量はこの検出器で測定される。
FIG. 1 shows a situation in which a sample is heated and melted to extract carbon. The sample 1 was put in a porcelain boat 3 together with 0.7 g of the copper combustion improver 2, and was inserted into a combustion tube 4 installed at the center of the high frequency coil 5, and oxygen gas was introduced into the combustion tube 4.
The outlet of oxygen gas is connected to the detector 6, and the carbon content of the gas in the combustion tube is measured by this detector.

【0022】酸素ガスを2.5リットル/分の割合で導
入しながら、周波数18MHz、出力2.3kWの高周
波で加熱し、炭素を抽出した。
While introducing oxygen gas at a rate of 2.5 liters / minute, carbon was extracted by heating at a high frequency of 18 MHz and an output of 2.3 kW.

【0023】検出された炭素の信号強度を図2に示す。
加熱開始後10秒過ぎに現れた信号は汚染炭素の信号
で、20秒近く経って現れた信号が鋼中炭素の信号であ
る。両方の信号が描く山は明瞭に別れてをおり、汚染炭
素量と鋼中炭素量とを分離して測定することができる。
後の信号が描く山の面積から検量線を用いて鋼中の炭素
濃度を算出し20.4ppm を得た。
The signal intensity of the detected carbon is shown in FIG.
The signal that appeared 10 seconds after the start of heating is the signal of contaminated carbon, and the signal that appeared nearly 20 seconds later was the signal of carbon in steel. The peaks drawn by both signals are clearly separated, and the amount of polluted carbon and the amount of carbon in steel can be measured separately.
Using the calibration curve, the carbon concentration in the steel was calculated from the area of the peaks drawn by the subsequent signals to obtain 20.4 ppm.

【0024】試料の重量は1g程度が適当であるが、
0.3gから2g程度の試料にこの発明の方法を適用す
ることができる。
A suitable sample weight is about 1 g,
The method of the present invention can be applied to a sample of about 0.3 g to 2 g.

【0025】加熱に用いる高周波の周波数は高い程好ま
しいが、MHz程度であれば充分である。
The higher the frequency of the high frequency used for heating is, the more preferable it is, but about MHz is sufficient.

【0026】助燃剤は、汚染炭素の抽出が終わるまで溶
融しない銅がよく、錫は低温で溶融し試料表面を覆って
しまうので、汚染炭素の抽出が遅れ鋼中炭素との分離が
やや難しくなる。
As the combustion improver, copper which does not melt until the extraction of the polluted carbon is finished is preferable, and tin melts at a low temperature and covers the surface of the sample, so that the extraction of the polluted carbon is delayed and the separation from the carbon in the steel becomes slightly difficult. .

【0027】上記の測定で、助燃剤を銅から錫とタング
ステンの混合剤に変えた場合の検出信号強度曲線を図3
に示す。加熱開始後10秒過ぎに現れた汚染炭素の信号
の山と20秒近く経って現れた鋼中炭素の信号の山とが
裾で重なり、各々の強度を分離して累積することができ
ない。
In the above measurement, the detection signal intensity curve when the burner is changed from copper to a mixture of tin and tungsten is shown in FIG.
Shown in The peak of the signal of polluted carbon that appeared 10 seconds after the start of heating overlaps the peak of the signal of carbon in steel that appeared nearly 20 seconds after the heating, and it is impossible to separate and accumulate the respective intensities.

【0028】抽出時間を過度に短縮しようとして、高周
波の出力を高め20秒に満たない時間で炭素の抽出を行
った場合の検出信号強度曲線を図4に示す。この場合も
分離が困難である。
FIG. 4 shows a detection signal intensity curve when the high frequency output is increased and carbon is extracted in a time of less than 20 seconds in an attempt to excessively shorten the extraction time. Also in this case, separation is difficult.

【0029】[0029]

【実施例】管の径を変えて極低炭素溶鋼を吸い上げ棒状
試料とし、これを適当な長さに切断し、表面積を変えた
ほぼ1gの試料について、鋼中炭素濃度を測定した。測
定については同一鋼種について5回の測定を行い平均値
を測定値とし、標準偏差σから相対的再現精度Cvを求
めて評価するとともに、前述のJIS G 1211に
よる事前加熱法で測定した値を標準値としてこれとの差
を求め評価した。
EXAMPLE An ultra-low carbon molten steel was sucked up into a rod-shaped sample by changing the diameter of the tube, and the rod-shaped sample was cut into an appropriate length, and the carbon concentration in the steel was measured for a sample of about 1 g in which the surface area was changed. For the measurement, the same steel type was measured 5 times, the average value was used as the measured value, and the relative reproducibility Cv was obtained from the standard deviation σ for evaluation, and the value measured by the preheating method according to JIS G 1211 described above was standardized. As a value, the difference from this was obtained and evaluated.

【0030】その他の測定条件及び測定結果並びに評価
結果を表1に示す。
Table 1 shows other measurement conditions, measurement results, and evaluation results.

【0031】[0031]

【表1】 [Table 1]

【0032】発明の実施例では、再現精度Cvは2%か
ら3%であったが、比較例では5%から8%とバラツキ
が大きかった。比較例については、N0. 6、7は比表面
積が4.0cm2/g より大きく、N0. 8は助燃剤としてタ
ングステンと錫を用い、N0.9は高周波出力を高め加熱
時間を20秒未満としたものである。
In the examples of the invention, the reproducibility Cv was 2% to 3%, but in the comparative examples, there was a large variation of 5% to 8%. As for the comparative example, N0.6 and 7 have a specific surface area larger than 4.0 cm 2 / g, N0.8 uses tungsten and tin as a combustion improver, and N0.9 increases the high frequency output and the heating time is less than 20 seconds. It is what

【0033】又、標準値との差の相対値も、実施例では
3%以内であったが、比較例では4%から11%と大き
かった。
Also, the relative value of the difference from the standard value was within 3% in the examples, but was as large as 4% to 11% in the comparative examples.

【0034】[0034]

【発明の効果】以上述べてきたように、この発明によれ
ば、鋼中炭素の燃焼分析法において、助燃剤に銅をもち
い、1g当たり4cm2 以下の表面積の微量炭素鋼試料を
高周波加熱により20秒乃至1分間加熱する。試料が溶
融する前に表面の汚染炭素が除去されるので、分析時間
が短くても鋼中成分の炭素が分離して精度よく測定され
る。しかも、装置の保守・維持が容易で工程分析や品質
管理分析に適している。このように、分析時間を短縮し
且つ精度が高く更に保守の容易な分析法を実現したこの
発明の効果は大きい。
As described above, according to the present invention, in a combustion analysis method for carbon in steel, a trace amount of carbon steel sample having a surface area of 4 cm 2 or less per 1 g is heated by high frequency by using copper as a combustion improver. Heat for 20 seconds to 1 minute. Since the surface contaminant carbon is removed before the sample melts, the carbon in the steel separates and is accurately measured even if the analysis time is short. Moreover, the equipment can be easily maintained and maintained, which is suitable for process analysis and quality control analysis. As described above, the effect of the present invention, which realizes an analysis method that shortens the analysis time and has high accuracy and is easy to maintain, is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の方法を説明するための試料加熱部の
概念図である。
FIG. 1 is a conceptual diagram of a sample heating unit for explaining the method of the present invention.

【図2】この発明の方法による汚染炭素と鋼中炭素とが
分離された炭素信号強度の曲線図である。
FIG. 2 is a curve diagram of carbon signal intensity in which polluted carbon and carbon in steel are separated by the method of the present invention.

【図3】助燃剤が不適切で、汚染炭素と鋼中炭素との分
離が不十分な炭素信号強度の曲線図である。
FIG. 3 is a curve diagram of a carbon signal intensity in which a pollutant carbon and carbon in steel are insufficiently separated due to an inappropriate use of a combustion improver.

【図4】急速過ぎる加熱で、汚染炭素と鋼中炭素との分
離が不十分な炭素信号強度の曲線図である。
FIG. 4 is a curve diagram of a carbon signal intensity in which separation of polluted carbon and carbon in steel is insufficient by heating too rapidly.

【符号の説明】[Explanation of symbols]

1 試料 2 銅助燃剤 3 磁器ボート 4 燃焼管 5 高周波コイル 6 検出器。 1 sample 2 copper burner 3 porcelain boat 4 combustion tube 5 high frequency coil 6 detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋吉 孝則 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 望月 正 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takanori Akiyoshi, 1-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Tadashi Mochizuki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼試料を酸素気流中で助燃剤を用いて加
熱燃焼し試料中の炭素成分を酸化炭素ガスとして、この
酸化炭素ガス濃度から炭素含有率を求める燃焼分析法に
おいて、助燃剤として銅を用い、加熱手段として高周波
加熱装置を用い、且つ試料の表面積を試料重量1g当た
り4cm2 以下とし加熱時間20秒以上1分以内で鋼中の
炭素を汚染炭素と分離して測定することを特徴とする鋼
中微量炭素の迅速定量方法。
A steel sample is heated and burned in an oxygen stream by using a combustion improver, and a carbon component in the sample is used as a carbon oxide gas. As a burner in a combustion analysis method for obtaining a carbon content rate from the concentration of the carbon oxide gas. Using copper, using a high-frequency heating device as the heating means, and setting the surface area of the sample to 4 cm 2 or less per 1 g of sample weight, and separating the carbon in the steel from the contaminated carbon within the heating time of 20 seconds or more and 1 minute Characteristic rapid determination method of trace carbon in steel.
JP7329132A 1995-12-18 1995-12-18 Rapid determining method for trace carbon in steel Pending JPH09166590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7329132A JPH09166590A (en) 1995-12-18 1995-12-18 Rapid determining method for trace carbon in steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7329132A JPH09166590A (en) 1995-12-18 1995-12-18 Rapid determining method for trace carbon in steel

Publications (1)

Publication Number Publication Date
JPH09166590A true JPH09166590A (en) 1997-06-24

Family

ID=18217990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7329132A Pending JPH09166590A (en) 1995-12-18 1995-12-18 Rapid determining method for trace carbon in steel

Country Status (1)

Country Link
JP (1) JPH09166590A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112679A1 (en) * 2021-12-14 2023-06-22 株式会社堀場テクノサービス Elemental analysis method, and elemental analysis device
WO2023120490A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Method for quantifying carbon in carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112679A1 (en) * 2021-12-14 2023-06-22 株式会社堀場テクノサービス Elemental analysis method, and elemental analysis device
WO2023120490A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Method for quantifying carbon in carbide

Similar Documents

Publication Publication Date Title
JPH09166590A (en) Rapid determining method for trace carbon in steel
CA1317794C (en) Method and apparatus for obtaining accurate sample
Azad et al. Determination of selenium in soil digests by non-dispersive atomic-fluorescence spectrometry using an argon-hydrogen flame and the hydride generation technique
JP2856006B2 (en) Trace oxygen analysis method for steel
DK150807B (en) PROCEDURE FOR DETERMINING THE CONTENT OF ORGANIC CARBON IN RAW MINERALS AND SIMILAR MATERIALS
KR100371621B1 (en) Making of metal products using a gas analyzer
Campbell et al. High-pressure microwave digestion for the determination of arsenic, antimony, selenium and mercury in oily wastes
JP2004198144A (en) Method for analyzing composition and/or particle size of nonmetallic inclusion in metal sample
JPH1073586A (en) Method and apparatus for analyzing minute amount of oxygen in metal
DE4309045C2 (en) Method for the simultaneous determination of organically bound halides in water and device for carrying out the method
Coedo et al. Analytical system for the analysis of ferrovanadium using spark ablation coupled with inductively coupled plasma atomic emission spectrometry
EP2743683B1 (en) Molten iron desulfurization method
Goulden Automated determination of carbon in natural waters
JP2001234230A (en) Method for deciding end point of decarburization refining
KR101758530B1 (en) Method for analyzing inclusion in molten steel and method for manufacturing high clean molten steel for steel wire rod
JPS5930062A (en) Continuous analysis
JPH0221547B2 (en)
JP2708236B2 (en) Analysis of trace carbon, sulfur and phosphorus in metal samples
JPS61283866A (en) Method and apparatus for analyzing trace of carbon contained in steel material
JP3439974B2 (en) Method and apparatus for analyzing oxygen or oxide by type of oxide in analysis sample
JPH02136743A (en) Method and apparatus for analyzing trace element in metallic material
JP3198841B2 (en) Method and apparatus for atomic absorption analysis of suspended particles in gas
JP2644400B2 (en) Method for carbon analysis of nuclear fuel oxide and platinum crucible for carbon analysis
JP2898433B2 (en) Analysis method for trace carbon in metal samples
Jenkins et al. Sampling and analysis for an oxygen steel shop