JPH02136743A - Method and apparatus for analyzing trace element in metallic material - Google Patents

Method and apparatus for analyzing trace element in metallic material

Info

Publication number
JPH02136743A
JPH02136743A JP29004788A JP29004788A JPH02136743A JP H02136743 A JPH02136743 A JP H02136743A JP 29004788 A JP29004788 A JP 29004788A JP 29004788 A JP29004788 A JP 29004788A JP H02136743 A JPH02136743 A JP H02136743A
Authority
JP
Japan
Prior art keywords
crucible
heating
temp
sample
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29004788A
Other languages
Japanese (ja)
Inventor
Keitaro Shibata
柴田 敬大郎
Soichiro Inoue
井上 總一郎
Akemasa Kitahara
北原 明正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITAHARA SHOJI KK
TOUSOKU KENKYUSHO KK
Nippon Steel Corp
Original Assignee
KITAHARA SHOJI KK
TOUSOKU KENKYUSHO KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITAHARA SHOJI KK, TOUSOKU KENKYUSHO KK, Nippon Steel Corp filed Critical KITAHARA SHOJI KK
Priority to JP29004788A priority Critical patent/JPH02136743A/en
Publication of JPH02136743A publication Critical patent/JPH02136743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To accurately quantitatively analyze a small amt. of carbon with good accuracy and to automate the analysis by putting a crucible into a reaction chamber from the beginning and heating the crucible in an oxygen atmosphere at a prescribed temp. (1st set temp.). CONSTITUTION:This apparatus consists of a gas introducing section, a heating combustion section 4, an analysis section, and a control recording section. These sections are controlled by a microcomputer 7. While the crucible is held inserted into a reaction tube, the crucible is heated to the prescribed temp. (the 1st set temp.) in the oxygen atmosphere to oxidize away the carbide sticking to the crucible. The prescribed temp. (1st set temp.) is the temp. for removing the contaminations of the crucible and since the contamination condition varies with the production process for the material of the crucible, the experiment to check the contamination condition is previously carried out and thereafter, the optimum temp. is determined by taking the treating time into consideration. Resistance heating, IR heating, and high-frequency induction heating are applicable as the heating method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼材中の炭素を分析する、金属材料中の極微
最元素の分析方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method and apparatus for analyzing carbon in steel materials, and for analyzing extremely fine elements in metal materials.

(従来の技術) 近年、自動車、電気部品、色材料として深絞り性の高い
冷延鋼板のニーズが」1常に高くなってきている。これ
にともなって鋼の高純度化が進み、1oppm前後の極
低酸素鋼の製造が行われている。
(Prior Art) In recent years, the need for cold-rolled steel sheets with high deep drawability for use in automobiles, electrical parts, and color materials has been constantly increasing. Along with this, the purity of steel has progressed, and ultra-low oxygen steel of around 1 oppm is being manufactured.

この極低炭素鋼の製造を行う際の工程管理、品質管理を
行う分析では主として、鋼試料を加熱、燃焼させて発生
した二酸化炭素(一部、一酸化炭素は完全に酸化されて
二酸化炭素となる)の測定に赤外線吸収法、又は電信滴
定法などが用いられている。ところが、前記した極低炭
素鋼の炭素の分析精度は、鋼試料表面の吸着あるいは付
着している炭化物及び助燃剤、ルツボ表面あるいは内部
に付着あるいは混入している炭化物により特に大きな影
響を受けることがわかっている。従って十分な分析精度
を達成するためには、上記した炭化物の除去が必要であ
ることから手作業によって鋼試料の酸洗、加熱処理、助
燃剤、ルツボの加熱処理を行って炭化物を除去した上で
鋼中の炭素を定量している。
Analysis for process control and quality control when manufacturing this ultra-low carbon steel mainly focuses on carbon dioxide (some carbon monoxide is completely oxidized to carbon dioxide) generated by heating and burning steel samples. Infrared absorption method or telegraph titration method is used to measure However, the accuracy of carbon analysis of the above-mentioned ultra-low carbon steel can be particularly affected by carbides and combustion improvers that are adsorbed or attached to the steel sample surface, and carbides that are attached or mixed on the crucible surface or inside. know. Therefore, in order to achieve sufficient analysis accuracy, it is necessary to remove the carbides mentioned above, so we manually pickled the steel sample, heat-treated it, added a combustion improver, and heat-treated the crucible to remove the carbide. The amount of carbon in steel is quantified.

(発明が解決しようとする課題) ルツボに付着している炭化物を除去するために従来は別
炉中で加熱除去するので終了後−旦か外にルツボを取り
出すことになり、この時、ルツボと閥み具との接触汚染
及びルツボが大気に触れることによる再汚染がある。
(Problem to be solved by the invention) Conventionally, in order to remove carbides attached to the crucible, the crucible is removed by heating in a separate furnace. There is contamination due to contact with the curing tool and re-contamination due to the crucible coming into contact with the atmosphere.

(3題を解決するための手段) (1)本発明ではルツボを始めから反応室内に入れ、酸
素雰囲気中で所定温度(第1設定)で加熱する。
(Means for Solving the Three Problems) (1) In the present invention, the crucible is placed in a reaction chamber from the beginning and heated at a predetermined temperature (first setting) in an oxygen atmosphere.

所定温度(第1設定)はルツボの汚染を取除くための温
度でありルツボの材質製造方法によって汚染状況が異な
るため予め汚染状況を確認する実験を行って、処理時間
も8慮して、最適温度を決定する。
The predetermined temperature (first setting) is the temperature to remove contamination from the crucible.Contamination conditions vary depending on the material and manufacturing method of the crucible, so we conducted an experiment to confirm the contamination status in advance and took the processing time into account to determine the optimum temperature. Determine the temperature.

(2)前項処理後、ルツボを反応管内で移動し、助燃剤
投入口よりルツボ内に助燃剤を投入し、酸素雰囲気中で
所定温度(第2設定)で加熱する。
(2) After the above process, the crucible is moved within the reaction tube, a combustion improver is introduced into the crucible from the combustion improver inlet, and heated at a predetermined temperature (second setting) in an oxygen atmosphere.

所定温度(第2設定)は助燃剤の汚染を取り除くための
温度であり、助燃剤の材質、形状、製造方法によって汚
染状況が異なるため所定温度(第1設定)と同様に予め
汚染状況を確認する実験を行って、処理時間も考慮して
最適温度を決定する。
The predetermined temperature (second setting) is a temperature to remove contamination from the combustion improver, and since the contamination status varies depending on the material, shape, and manufacturing method of the combustion improver, check the contamination status in advance like the predetermined temperature (first setting). Conduct experiments to determine the optimal temperature, taking into account the processing time.

(3)前項処理後、ルツボを反応管内で移動し、試料投
入口よりルツボ内に試料を投入し、所定温度(第3設定
)で加熱する。
(3) After the above treatment, move the crucible within the reaction tube, introduce the sample into the crucible from the sample input port, and heat it at a predetermined temperature (third setting).

所定温度(第3設定)は鋼の汚染を取り除くための温度
であり、鋼種、試料調整方法により決められるものであ
り、予め各鋼種、試料調整方法により汚染状況を確認す
る実験を行って、処理時間も考慮して最適温度を決定す
る。
The predetermined temperature (third setting) is the temperature for removing contamination from the steel, and is determined by the steel type and sample preparation method. Determine the optimal temperature by taking time into account.

(4)前項迄の処理後ルツボを反ll′i5管内で燃焼
位置に移動し、試料を酸素雰囲気中で所定温度(第4設
定)で加熱し燃焼させる。
(4) After the processing up to the previous section, the crucible is moved to the combustion position in the 11'i5 tube, and the sample is heated and burned at a predetermined temperature (fourth setting) in an oxygen atmosphere.

所定温度(第4設定)は鋼を完全に溶融させ、鋼中の炭
素をすべて酸化するために必要な温度である。
The predetermined temperature (fourth setting) is the temperature required to completely melt the steel and oxidize all the carbon in the steel.

(5)以上の一連の工程を自動的に実行できる1構、及
び各所定温度に設定できる度自動温度プログラム制御に
よる自動化分析装置となっている。
(5) It is an automated analysis device that can automatically execute the series of steps described above, and has automatic temperature program control that allows each predetermined temperature to be set.

本発明は上述の通りの属材料中の微量元素の分析方法及
び5A置である。
The present invention is a method and a 5A device for analyzing trace elements in metal materials as described above.

(作用) 本発明を実施するための加熱方法としては抵抗加熱、赤
外線加熱及び高周波誘導加熱などが適用できるが、本発
明の効果を最も発揮できる高周波誘導加熱法での適用例
を下記する。第1図は本発明装置の構成図、第2図は本
体部となる反応管を含む加熱燃焼部の断面図、第5図は
供試1中の炭素を定量分析するまでの温度パターンの一
例。
(Function) Resistance heating, infrared heating, high frequency induction heating, etc. can be applied as a heating method for carrying out the present invention, and an example of application of the high frequency induction heating method, which can best exhibit the effects of the present invention, will be described below. Figure 1 is a configuration diagram of the apparatus of the present invention, Figure 2 is a cross-sectional view of the heating and combustion section including the reaction tube that serves as the main body, and Figure 5 is an example of the temperature pattern until quantitative analysis of carbon in sample 1. .

本発明を実施するための装置は、ガス導入部、加熱燃焼
部、分析部、及び制御記録部から成りたっており、これ
等がンイクロコンピューターによって制御されている。
The apparatus for implementing the present invention consists of a gas introduction section, a heating combustion section, an analysis section, and a control recording section, all of which are controlled by a microcomputer.

以下で各部の説明を行う。Each part will be explained below.

(a)ガス導入部 ガス導入部は、全ての炭化分を燃焼させるための酸素ガ
ス供給系で、酸素ボンベ1から出る酸素ガス中には、例
えばメタンガスのような有機素炭化物が不純物として含
まれているため、酸素ガス清浄器2で完全燃焼させて二
酸化炭素と水に分解し、各々を吸収する吸収剤を用いる
ことによって不純物を除去する。清浄になった酸素ガス
はマイクロコンピュータ−7によって制御される酸素ガ
ス圧入調整器3を介して、加熱燃焼部4へ導かれる。
(a) Gas introduction section The gas introduction section is an oxygen gas supply system for burning all carbonized components, and the oxygen gas coming out of the oxygen cylinder 1 contains organic carbonized carbide such as methane gas as an impurity. Therefore, impurities are removed by complete combustion in the oxygen gas purifier 2, decomposing it into carbon dioxide and water, and using an absorbent that absorbs each of them. The purified oxygen gas is guided to the heating combustion section 4 via the oxygen gas injection regulator 3 controlled by the microcomputer 7.

(b)加熱燃焼部 加熱燃焼部は、第2図に示す石英ガラス管12中の空炊
位置(I)に白金管台14上の白金管13を設け、空炊
用加熱コイル17によって高周波131加熱し、その中
にあるルツボ台15上のルツボ11が加熱される(第1
設定温度)。非金属であるセラミック製ルツボを加熱で
きること、酸素雰囲気中で高温に耐えること、及び汚染
の心配のないことなどの条件を満足するものとして白金
材を採用している。
(b) Heating and Combustion Section The heating and combustion section includes a platinum tube 13 on a platinum tube stand 14 at the dry heating position (I) in the quartz glass tube 12 shown in FIG. The crucible 11 on the crucible stand 15 inside the crucible is heated (first
Preset temperature). Platinum material was selected because it satisfies the following conditions: it can heat a non-metallic ceramic crucible, it can withstand high temperatures in an oxygen atmosphere, and there is no risk of contamination.

空炊終了後ルツボ11は、駆動@16により投入位置(
n)に移動し、助燃剤室19内の助燃剤が投入され、空
炊位1W(I)に戻って助燃剤が加熱される(第2設定
温度)。
After the dry cooking is completed, the crucible 11 is moved to the loading position (
n), the combustion improver in the combustion improver chamber 19 is introduced, and the combustion improver is heated back to the empty heating level 1W (I) (second set temperature).

次にルツボ11は再び投入位置(n)に移動し、試料室
21内の試料が投入され、空炊位置(I)に戻って試料
が加熱される(第3設定温度)。
Next, the crucible 11 moves again to the input position (n), the sample in the sample chamber 21 is input, and returns to the empty cooking position (I), where the sample is heated (third set temperature).

その後ルツボ11は燃焼位置(III)に移動し、試料
及び助燃剤が燃焼用加熱コイル18により加熱され〈第
4設定温度)、燃焼する。
Thereafter, the crucible 11 moves to the combustion position (III), and the sample and combustion improver are heated by the combustion heating coil 18 (to the fourth set temperature) and combusted.

酸素ガスは入口23より入り、出口24より第1図に示
すガス清浄器5に送られる。
Oxygen gas enters through the inlet 23 and is sent through the outlet 24 to the gas purifier 5 shown in FIG.

(C)分析部 加熱燃焼部(b)から送られてきたガス中には一酸化炭
素、二酸化炭素、二酸化硫黄、水分等を含んでおり、こ
のうち−M化炭素、二酸化硫黄を酸化して二酸化炭素、
二酸化硫黄とする酸化炉と二酸化炭素の定mに影響を及
ぼす水分。
(C) Analysis section The gas sent from the heating combustion section (b) contains carbon monoxide, carbon dioxide, sulfur dioxide, moisture, etc. Of these, -M carbon and sulfur dioxide are oxidized. carbon dioxide,
Moisture affects the oxidation furnace and the constant m of carbon dioxide to sulfur dioxide.

三酸化硫黄を取除くための吸収剤を有するガス清浄器5
を介して清浄化されたガスは赤外線吸収法あるいは電量
滴定法、電気伝導法を原理とする検出器6へ導入される
Gas purifier with absorbent for removing sulfur trioxide 5
The purified gas is introduced into a detector 6 based on the infrared absorption method, coulometric titration method, or electrical conduction method.

(d)制御記録部 制御記録部は圧力調整器3とシャッター20゜22並び
に加熱燃焼部温度を制御し検出部から送られる二酸化炭
素のデーターを炭素濃度に換算し、記録剤9に記録し、
同時に記憶部8に記憶させるマイクロコンビl−ターフ
と分析操作や分析条件をマイクロコンピュータ−7に入
力するためのコントロールコンソール10とからなる。
(d) Control recording unit The control recording unit controls the pressure regulator 3, the shutter 20° 22, and the temperature of the heating and combustion unit, converts the carbon dioxide data sent from the detection unit into carbon concentration, and records it on the recording medium 9,
It consists of a microcombiner Turf to be stored in a storage section 8 at the same time, and a control console 10 for inputting analysis operations and analysis conditions to the microcomputer 7.

(実施例) 次に低炭素鋼の炭素含有1!1(101)I)IIfS
!度)の定追分析と本発明によって行った具体例を以下
に示ず。
(Example) Next, the carbon content of low carbon steel is 1!1(101)I)IIfS
! Specific examples of the follow-up analysis of the degree of oxidation and the present invention are shown below.

ルツボ、助燃剤、及び供試料の汚染を除去するための第
1、第2、第3の各設定温度を、それぞれ1200℃、
800℃、400℃と定めた。
The first, second, and third set temperatures for removing contamination from the crucible, combustion improver, and sample were set at 1200°C, respectively.
The temperatures were set at 800°C and 400°C.

また供試料中の炭素を酸化し、二酸化炭素あるいは・−
酸素化酸素として抽出する第4設定湿度を1300℃と
定めた。
It also oxidizes carbon in the sample, converting it to carbon dioxide or...
The fourth set humidity for extraction as oxygenated oxygen was set at 1300°C.

ここで上記各設定温度は検討結果を基に定めたものであ
り、例えば助燃剤の場合は第3図に丞すように600℃
までに汚染が完全に除去されることがわかる。
Here, each set temperature mentioned above was determined based on the study results. For example, in the case of combustion improver, it is set at 600℃ as shown in Figure 3.
It can be seen that the contamination is completely removed.

又、供試料の場合は低炭素鋼中に12Cの同位体である
T3 Cを添加した試料を加熱し、この時に発生するガ
スを質量分析計によって分析した結果、第4図に示すよ
うに410〜430℃以下では、供試料中の脱炭に起因
する13CO113CO2はなかったことがわかる。た
だし、前記した様にこれらの所定−度は、使用するルツ
ボ、助燃剤の材質、供試料ついては鋼種によっても異な
ることから、分析時間も考慮して決定する必要がある。
In addition, in the case of the sample, a sample in which T3C, an isotope of 12C, was added to low carbon steel was heated, and the gas generated at this time was analyzed using a mass spectrometer. As a result, as shown in Figure 4, 410 It can be seen that at temperatures below ~430°C, there was no 13CO113CO2 resulting from decarburization in the sample. However, as described above, these predetermined degrees vary depending on the crucible used, the material of the combustion improver, and the steel type of the specimen, so it is necessary to determine the analysis time by taking into account the analysis time.

この様にして決定した、温度箱1.2.3.4を設定し
て本発明装置で低炭素鋼の炭素含有量を定量分析した時
の炉内温度を第5図に、分析結果を表に丞した。
Figure 5 shows the analysis results of the furnace temperature determined in this manner when the carbon content of low carbon steel was quantitatively analyzed using the device of the present invention with temperature box 1.2.3.4 set. I was raised.

なお、検出器は赤外線吸収装置とし、低炭素の鉄鋼標準
試料により検量線を作成し供試料中の炭素含有量を測定
したもので、同一試料の単純10回繰返し測定を行った
結果である。
The detector was an infrared absorption device, and a calibration curve was created using a low-carbon steel standard sample to measure the carbon content in the sample.The results were obtained by simply repeating the measurement 10 times on the same sample.

衷 第5図より、本発明法に単一装置でルツボ、助燃剤、試
料表面の汚染除去を行った上での分析値には従来法に比
べ、分析精度の良い結束が得られることが判明した。
From Figure 5, it is clear that the method of the present invention provides a higher level of analysis accuracy in analytical values after removing contamination from the crucible, combustion improver, and sample surface using a single device, compared to the conventional method. did.

(発明の効果) 以上のように本発明により鋼中炭素分析を行なえば、単
一装置でルツボ、助燃剤、供試料の熱処理を同時に行い
各々の汚染を除去することにより微量の炭素を精度良く
定量分析、及び自動化することが可能である。
(Effects of the Invention) As described above, if carbon analysis in steel is performed according to the present invention, trace amounts of carbon can be accurately analyzed by simultaneously heat-treating the crucible, combustion improver, and sample to remove contamination from each of them using a single device. Quantitative analysis and automation are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための装置の構成図、第2図
は反応管を含む加熱燃焼部の断面図、第3図は助燃剤の
汚染除去湿度を決定するための汚染炭素と加熱時間の関
係図、第4図は供試料の汚染除去温度を決定するための
汚染炭素と加熱時間の関係図、第5図は微量炭素の定量
分析を行った時の炉内温度パターン例図である。 1は酸素ボンベ、2は酸素ガス清浄器、3は酸素ガス圧
力調整器、4は加熱燃焼部、5は酸素ガス清浄器、6は
検出器、7はマイクロコンピュータ−18は記憶部、9
は記録計、10はコントロールコンソール、11はルツ
ボ、12は石英管、13は白金管、14は白金管用台、
15はルツボ台、16は駆動軸、17は空炊用加熱コイ
ル、18は燃焼用加熱コイル、19は助燃剤至、20は
助燃剤用シャッター 21は試料室、22は試料用シャ
ッター 23は酸素ガス入口、271は酸素ガス出口、
■は空炊位置、■は投入位置、■は燃焼位置。 特許出願人  新日本製鉄株式会社
Fig. 1 is a block diagram of an apparatus for carrying out the present invention, Fig. 2 is a sectional view of a heating combustion section including a reaction tube, and Fig. 3 is a diagram showing contaminated carbon and heating for determining the decontamination humidity of a combustion improver. Figure 4 is a diagram showing the relationship between contaminant carbon and heating time to determine the decontamination temperature of the sample. Figure 5 is an example of the temperature pattern in the furnace when quantitative analysis of trace carbon is performed. be. 1 is an oxygen cylinder, 2 is an oxygen gas purifier, 3 is an oxygen gas pressure regulator, 4 is a heating combustion section, 5 is an oxygen gas purifier, 6 is a detector, 7 is a microcomputer, 18 is a storage section, 9
is a recorder, 10 is a control console, 11 is a crucible, 12 is a quartz tube, 13 is a platinum tube, 14 is a stand for platinum tubes,
15 is a crucible stand, 16 is a drive shaft, 17 is a heating coil for dry cooking, 18 is a heating coil for combustion, 19 is a combustion improver, 20 is a shutter for combustion improver, 21 is a sample chamber, 22 is a shutter for a sample, 23 is oxygen Gas inlet, 271 is oxygen gas outlet,
■ is the empty cooking position, ■ is the loading position, and ■ is the combustion position. Patent applicant Nippon Steel Corporation

Claims (5)

【特許請求の範囲】[Claims] (1)試料容器(ルツボ)を分析室(反応管)に挿入し
たまま、酸素雰囲気中で所定温度(第1設定)に加熱し
、ルツボに付着した炭化物を酸化除去する金属材料中の
極微量元素の分析方法。
(1) While the sample container (crucible) is inserted into the analysis chamber (reaction tube), it is heated to a predetermined temperature (first setting) in an oxygen atmosphere to oxidize and remove carbides attached to the crucible. Elemental analysis methods.
(2)炭化物が除去されたルツボを、反応管から取り出
さずに助燃剤を投入し、酸素雰囲気中で所定温度(第2
設定)に加熱し、助燃剤に付着した炭化物を酸化除去す
る金属材料中の極微最元素の分析方法。
(2) A combustion improver is added to the crucible from which carbides have been removed without taking it out from the reaction tube, and the crucible is heated to a predetermined temperature (second temperature) in an oxygen atmosphere.
A method for analyzing ultra-fine elements in metal materials that involves heating to a certain temperature (setting) to oxidize and remove carbides attached to combustion improvers.
(3)前記請求項(1)、(2)記載の処理後、反応管
から取り出さずに試料を投入し、酸素雰囲気中で所定温
度(第3設定)に加熱し、試料に付着した炭化物を酸化
除去する金属材料中の極微量元素の分析方法。
(3) After the treatment described in claims (1) and (2), the sample is put into the reaction tube without being taken out, and heated to a predetermined temperature (third setting) in an oxygen atmosphere to remove the carbide attached to the sample. A method for analyzing trace elements in metal materials to be removed by oxidation.
(4)前記請求項(1)〜(3)記載の処理後、反応管
から取り出さずに分析位置に移動し、酸素雰囲気中で所
定温度(第4設定)に加熱し試料を燃焼させ、試料中の
炭素を酸化させ、一酸化炭素あるいは二酸化炭素として
抽出する金属材料中の極微量元素の分析方法。
(4) After the treatment described in claims (1) to (3), the sample is moved to an analysis position without being removed from the reaction tube, heated to a predetermined temperature (fourth setting) in an oxygen atmosphere, and burned. A method for analyzing trace elements in metal materials by oxidizing the carbon inside and extracting it as carbon monoxide or carbon dioxide.
(5)上記請求項(1)〜(4)一連の工程を実施する
機構、及び各所定温度に制御することができる金属材料
中の極微量元素の分析装置。
(5) A mechanism for carrying out the series of steps of claims (1) to (4) above, and an analyzer for trace elements in a metal material, which can control each temperature to a predetermined temperature.
JP29004788A 1988-11-18 1988-11-18 Method and apparatus for analyzing trace element in metallic material Pending JPH02136743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29004788A JPH02136743A (en) 1988-11-18 1988-11-18 Method and apparatus for analyzing trace element in metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29004788A JPH02136743A (en) 1988-11-18 1988-11-18 Method and apparatus for analyzing trace element in metallic material

Publications (1)

Publication Number Publication Date
JPH02136743A true JPH02136743A (en) 1990-05-25

Family

ID=17751098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29004788A Pending JPH02136743A (en) 1988-11-18 1988-11-18 Method and apparatus for analyzing trace element in metallic material

Country Status (1)

Country Link
JP (1) JPH02136743A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313238B1 (en) * 1999-08-12 2001-11-07 김세종 Buner for analysis of radioactivity 14C and 3H
JP2010107379A (en) * 2008-10-30 2010-05-13 Horiba Ltd Introduction system used for sample analyzing apparatus
WO2023120490A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Method for quantifying carbon in carbide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313238B1 (en) * 1999-08-12 2001-11-07 김세종 Buner for analysis of radioactivity 14C and 3H
JP2010107379A (en) * 2008-10-30 2010-05-13 Horiba Ltd Introduction system used for sample analyzing apparatus
WO2023120490A1 (en) * 2021-12-21 2023-06-29 Jfeスチール株式会社 Method for quantifying carbon in carbide

Similar Documents

Publication Publication Date Title
DE68919084D1 (en) METAL OXYDING ARRANGEMENT AND METHOD.
EP1106985A3 (en) Method and apparatus for analyzing particulate matter in gas and carbon differentiating
US3694157A (en) Method of and apparatus for forming gaseous analysis products from solid samples
US6627155B1 (en) Combustion furnace system for analyzing elements in a sample
US4601882A (en) Oxygen analyzer
JP4034884B2 (en) Elemental analysis equipment for samples
JPH02136743A (en) Method and apparatus for analyzing trace element in metallic material
EP0583208B1 (en) Procedure and apparatus for programmed thermal desorption
JP3663774B2 (en) Method and apparatus for analyzing trace oxygen in metal
JPS61283866A (en) Method and apparatus for analyzing trace of carbon contained in steel material
JP3211462B2 (en) Carbon measuring device
SU1453245A1 (en) Method of analyzing content of diffusion hydrogen in metals
JPH02159559A (en) Adjusting method of sample in automatic analysis of sulfur dioxide
JP3370572B2 (en) Analysis method for oxide inclusion oxygen in metals by type
JP4022347B2 (en) Analytical oxygen analysis method
JPS63191059A (en) Continuous analysis of mercury in gas
JP3351327B2 (en) Sample analyzer
JPH10123122A (en) Sample supply device for carbon/sulfur analysing device
JPH09166590A (en) Rapid determining method for trace carbon in steel
JPH01244346A (en) Monitoring of heat generation process
JPH04270945A (en) Method for analyzing exhaust gas of diesel engine
SU564577A1 (en) Resistance furnace for determining gases in metals
JPH06123690A (en) Method and device for rapidly analyzing small amount of carbon in metal sample
SU1679312A2 (en) Method of determination of the degree of reduction of molybdenum concentrate
JPS60173442A (en) Quantitative measuring apparatus of carbon adhered on steel plate surface