JP3370572B2 - Analysis method for oxide inclusion oxygen in metals by type - Google Patents

Analysis method for oxide inclusion oxygen in metals by type

Info

Publication number
JP3370572B2
JP3370572B2 JP24303997A JP24303997A JP3370572B2 JP 3370572 B2 JP3370572 B2 JP 3370572B2 JP 24303997 A JP24303997 A JP 24303997A JP 24303997 A JP24303997 A JP 24303997A JP 3370572 B2 JP3370572 B2 JP 3370572B2
Authority
JP
Japan
Prior art keywords
waveform
oxygen
point
oxide
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24303997A
Other languages
Japanese (ja)
Other versions
JPH1183841A (en
Inventor
知子 伊勢
嘉夫 塗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP24303997A priority Critical patent/JP3370572B2/en
Priority to DE69835857T priority patent/DE69835857T2/en
Priority to US09/113,192 priority patent/US6143571A/en
Priority to EP98112866A priority patent/EP0890839B1/en
Publication of JPH1183841A publication Critical patent/JPH1183841A/en
Application granted granted Critical
Publication of JP3370572B2 publication Critical patent/JP3370572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は鉄鋼などの金属中の
酸化物系介在物酸素の酸素量を不活性ガス搬送融解−赤
外線吸収法等によって分析する分野に属する技術であっ
て、金属中の酸化物系介在物の種類別に、酸化物系介在
物酸素を分析する方法に関する。 【0002】 【従来の技術】酸化物の形態を制御した極低酸素鋼や高
純度鉄の開発が進められており、ppm(百万分率)レ
ベルの微量の酸素濃度を精度よく定量することが要求さ
れている。なかでも過酷な条件下で用いられる軸受鋼で
は、微量の介在物の中で特にAl23 、MgO・Al
23 のような介在物は大きな粒を作りやすく、これら
が疲労破壊の原因となる。このようなことから製品中の
介在物量の低減と介在物の形態の制御は重要であり、正
確かつ迅速な低酸素鋼中の、介在物の種類別分析技術が
望まれている。 【0003】鋼中の介在物の分析方法は従来、試料から
試験片を採取し、被検面を顕微鏡観察し、A〜C系に分
別する方法(JIS G0555)や、試料表面を鏡面
研磨し、電子線マイクロアナリシス等の機器分析による
方法などが行われてきた。 【0004】しかし、これらの方法では試料のある断面
部における測定方法であるため、材料破壊の原因となる
真の介在物が検出できないこと、測定時間が膨大になる
こと、研磨等の試料調整が煩雑である等の問題がある。 【0005】これらの問題点を解決する一方策として、
最近、酸素分析装置を用いた、分析方法が提案されてい
る(特開平6−148167号)。この方法は試料を黒
鉛坩堝に投入した後、一定昇温速度で連続的に加熱する
ことにより比較的低温側で分解反応が起こる易還元酸化
物(FeO、MnOなど)からの酸素と、比較的高温側
で分解反応が起こる難還元酸化物(CaO、Al23
など)からの酸素とを分析時のガス抽出曲線を利用して
分離する方法である。 【0006】 【発明が解決しようとする問題点】ところが、前記特開
平6−148167号の方法は製鋼スラグ中の10%以
上の高酸素量を対象としたものであり、数ppmオーダ
ーの微量酸素量となる金属試料に適用したところ、ピー
クが小さく、各々の波形が重なってしまうために、波形
の分離は困難であり、数ppmオーダーの微量酸素量か
らなる金属試料へ適用できないことが明らかになった。 【0007】また、易還元酸化物からの酸素と難還元酸
化物からの酸素とを分離する方法であり、酸化物系介在
物の種類別の酸素の分析には適用できない。 【0008】本発明は、前記の問題点を解決するために
なされたもので、金属中の酸化物系介在物の種類別に酸
素を分析する方法を提供することを目的とする。 【0009】 【課題を解決するための手段】本発明者は鉄鋼などの金
属中の酸化物系介在物を種類別に分析する方法について
研究を重ねた。その結果、微量酸素値をもつ金属試料中
の酸化物の種類別分析を行う場合には、酸化物系介在物
を分解する温度域での金属の加熱条件が重要であるとい
う知見を得、本発明を完成するに至ったものである。 【0010】しかして、本発明は上記課題を解決するも
のであり、その要旨は特許請求の範囲記載の通りであ
る。すなわち、その要旨は、不活性ガス雰囲気下で黒鉛
るつぼ中に鉄鋼試料などの金属試料を投下、加熱溶融
し、その溶融浴からCOガスを抽出して鉄鋼などの金属
中の酸素量を複数の波形に分離して分析する方法であっ
て、900℃以上の温度から出現する各波形に対して、
下記の温度制御パターンを繰り返して分析するこ
とを特徴とする鉄鋼などの金属中の酸化物系介在物酸素
の種類別分析方法にある。 【0011】各波形の出現開始点An から各波形のピ
ーク出現点Bn までを2℃/sec以下の昇温速度で加熱す
る。 【0012】各波形のピーク出現点Bn から各波形の
出現終了点Cn までを一定温度とする。 【0013】各波形の出現終了点Cn から次の波形の
出現点開始点An+1 までを2℃/sec以下の昇温速度で加
熱する。 【0014】本発明においては、不活性ガス雰囲気下で
黒鉛るつぼ中に金属試料を投下、加熱溶融し、その溶融
浴からCOガスを抽出する方法であればガス又は酸素の
分析方法は特に限定されるものではない。典型的な方法
としては、いわゆる不活性ガス搬送融解−赤外線吸収法
が挙げられる。また、本発明者の研究によれば、酸化物
系介在物の酸素量の抽出温度は900℃以上の温度域で
起こり、900℃未満の温度域で発生したCOガスは金
属試料の表面の吸着酸素、表面の酸化鉄皮膜等による汚
染酸素から発生したものとみなすことができる。上記の
知見より、本発明では900℃未満で発生したガス抽出
曲線の波形については特に考えず、酸化物系介在物の種
類別の分析としては、900℃以上で発生したCOガス
のガス抽出曲線の波形を対象とする。 【0015】例えば、鉄鋼材料中の酸化物系介在物には
Al23 、SiO2 、CaO、MgO、MnOなどの
さまざまな種類のものがある。また、これらは単体で存
在するだけでなくMgO・Al23 のように複合形態
をとるものなど多種多様に存在する。 【0016】不活性ガス搬送融解−赤外線吸収法等によ
って金属中の酸素量を分析する際の黒鉛るつぼ内ではM
O+C=M+CO(M:金属、O:酸素、C:炭素)の
反応が起こっていると考えられている。酸化物の分解す
る温度は酸化物の種類とるつぼ内のCO分圧により異な
り、熱力学平衡計算や実測結果によりそれぞれの反応温
度が推定または測定できる。本発明者は不活性ガス搬送
融解−赤外線吸収法等の分析を行う場合に、試料の加熱
条件により、酸化物の種類を問わず、酸化物の分解温度
が大きく影響されるという新しい知見を得た。すなわ
ち、昇温速度が小さいほど反応温度は平衡計算値に近く
なり、酸化物の種類毎のガス抽出曲線の分離性は良くな
り、逆に昇温速度が大きくなれば酸化物の種類毎のガス
抽出曲線の分離性は悪くなる。 【0017】本発明はこの知見を利用して、金属試料の
ガス分析による酸化物系介在物の種類別の分析に適用し
たものである。この発明法で得られたガス抽出曲線の一
例を図示すると図1のようになる。例えばn種類の酸化
物系介在物が試料中に含有されているとすれば、還元さ
れやすい酸化物の順に第一のピーク、第二のピーク、と
いう形でn個のピークが得られる。 【0018】これらのガス抽出曲線は、互いに重なり合
うことなく、互いに離れれば離れるほど、それぞれの酸
化物毎に精度よく取り出せることになる。このための条
件が、本願発明の内容である。 【0019】極低酸素量の金属試料を不活性ガス搬送融
解−赤外線吸収法等により分析を行う場合に、全酸素量
にしめる表面汚染酸素量の影響は無視できなくなり、金
属表面を電解研磨法や化学研磨法で研磨し表面汚染酸素
を除去して分析しているが、表面汚染の影響を完全に取
り除くまでには至っていない。しかし、表面汚染層を構
成する、FeO、Fe34 、FeOOHなどの鉄の酸
化物や水酸化物は、酸素分析時の試料の昇温速度におい
て比較的低温度で分解させることが可能である。酸化物
系介在物からなる酸素量を分析する前に、前記の金属表
面の汚染酸素を分離・除去する温度が900℃未満であ
り、酸化物系介在物起因の酸素のみを抽出・分析する温
度を900℃以上としたのはこのためである。 【0020】各ピークの発生し始める温度は、昇温速度
が速すぎると第一の酸化物と第二の酸化物の反応の温度
範囲が近くなり、波形の分離が困難となる。また、昇温
速度は遅ければ遅いほど熱力学的平衡条件に近づくと考
えられるが、作業効率と、波形出現開始点の出現温度の
確認の容易さを考えた、酸化物の種類別分析を行うため
の条件として、2℃/sec以下の昇温速度であることが必
要である。この昇温速度で連続的に加熱溶融していくと
やがて試料中のある酸化物系介在物の炭素還元によるC
Oガス発生量が最大となる。COガス発生量が最大とな
ったときに温度を一定として当該COガス抽出を完了さ
せる。各波形のピーク出現点Bn から各波形出現終了点
n までの温度を一定に保持するのは、この間を連続的
に昇温し続けると、試料中の他の介在物の量、大きさ、
組成、存在位置によって異なるが、あるn 番目の介在物
による波形が出現中の温度または時間内にn+1 番目の酸
化物系介在物の分解が起こってしまうのを防止するため
である。 【0021】次いで、このn 番目の波形出現完了後は、
さらに昇温して、n+1 番目の酸化物系介在物量に対応す
るガス抽出曲線である第二の波形を得る。 【0022】この加熱方法を繰り返し行い、最終的には
分析終了時に試料中に存在したn種の酸化物系介在物か
ら抽出したn個の波形を得る。あらかじめ人工的に作成
した酸化物毎の波形出現位置を確認しておくことによ
り、得られた波形から試料中の酸化物系介在物の同定を
行うことができる。また、各々の波形から、試料中の酸
化物系介在物のそれぞれの酸素量を得ることができる。 【0023】以上に述べたように、黒鉛るつぼ中に金属
試料を投下、加熱溶融し、その溶融浴からCOガスを抽
出して金属中の酸素量を複数の波形に分離して分析する
方法であって、900℃以上の温度から出現する各波形
に対して、下記の温度制御パターンを繰り返しな
がら分析することにより、試料中の酸化物系介在物を種
類別に精度よく分離して分析することができるようにな
った。 【0024】各波形の出現開始点An から各波形のピ
ーク出現点Bn までを2℃/sec以下の昇温速度で加熱す
る。 【0025】各波形のピーク出現点Bn から各波形の
出現終了点Cn までを一定温度とする。 【0026】各波形の出現終了点Cn から次の波形の
出現開始点An+1 までを2℃/sec以下の昇温速度で加熱
する。 【0027】900℃までの加熱方法は特に限定される
ものではないが、全体の分析への悪影響を避ける観点か
ら、900℃までの加熱も2℃/sec以下の昇温速度とす
ることが好ましい。 【0028】 【実施例】次に本発明の実施例を比較例とともに表1に
示して説明する。各例は、不活性ガス雰囲気下で黒鉛る
つぼ中に金属試料を投下、加熱溶融し、その溶融浴から
COガスを抽出して分析する不活性ガス搬送融解−赤外
線吸収法によって金属中の酸素量を分析したものであ
る。 【0029】 【表1】【0030】比較例1は機械構造用炭素鋼を分析したも
のである。図3に示したように、金属試料の加熱開始か
ら分析終了までの昇温速度を1℃/secで分析した。各酸
化物毎のピークの分離は困難であり、全酸素量は12.
1ppmを示した。本発明の実施例1は比較例1と同一
の機械構造用炭素鋼を分析したものであり、図2に示し
たように、金属試料の加熱開始点Oから第一の波形のピ
ーク出現点B間の昇温速度を1℃/sec, 第一の波形のピ
ーク出現点Bから第一の波形の終了点Cまでの昇温速度
を0℃/secとした。次いで、第一の波形の終了点Cから
第二のピーク出現点Eまでの昇温速度をふたたび1℃/s
ecとし、第二の波形のピーク出現点Eから第二の波形の
終了点Fまでの昇温速度を0℃/secとした。 【0031】さらに、第二の波形の終了点から再び昇温
速度を1℃/secとしたが、以後は分析終了までガス抽出
が見られなかった。第一の波形の酸素値は1.8pp
m、第二の波形の酸素値は10.3ppmであり、合計
12.1ppmであった。平衡計算からこれらの温度で
反応する酸化物を計算すると第一の波形がSiO2 を、
第二の波形がAl23 を表している。また、酸化物組
成の構成割合をX 線マイクロアナライザーで調査した結
果からも妥当であった。 【0032】比較例2は軸受鋼を分析したものである。
図3に示したように、試料の加熱開始から分析終了まで
の昇温速度を1℃/secで分析した。各酸化物毎のピーク
の分離は困難であり、全酸素量は3.8ppmを示し
た。実施例2は比較例2と同一の軸受鋼を分析したもの
であり、図4 に示したように、試料の加熱開始点Oから
第一の波形のピーク出現点B間の昇温速度を1℃/sec,
第一の波形のピーク出現点Bから第一の波形の終了点C
までの昇温速度を0℃/secとした。次いで、第一の波形
の終了点Cから第二のピーク出現点Eまでの昇温速度を
ふたたび1℃/secとし、第二の波形のピーク出現点Eか
ら第二の波形の終了点Fまでの昇温速度を0℃/secとし
た。 【0033】次いで、第二の波形の終了点Fから再び昇
温速度を1℃/secとし、第三のピーク出現点Hから昇温
速度を0℃/secとし、第三の波形終了点Iから再び昇温
速度を1℃/secとしたが、以後は分析終了までガス抽出
が見られなかった。第一の波形の酸素値は1.1pp
m、第二の波形の酸素値は1.4ppmであり、第三の
波形の酸素値は1.3ppmであり合計3.8ppmで
あった。平衡計算からこれらの温度で反応する酸化物を
計算すると第一の波形がSiO2 を、第二の波形がAl
23 を、第三の波形はCaOを示している。この結果
は、酸化物組成の構成割合をX線マイクロアナライザー
で調査した結果からも妥当であった。 【0034】比較例3は比較例2と異なる鋼種の軸受鋼
を分析したものである。分析開始から終了までの昇温速
度を1℃/secで分析したところ、図3に示すように波形
の分離はできず、全酸素量は3.9ppmを示した。比
較例3と同じ軸受鋼を本法で分析したものが実施例3で
ある。図5に示したように、試料の加熱開始点Oから第
一の波形のピーク出現点B間の昇温速度を1℃/sec、第
一の波形のピーク出現点Bから第一の波形の終了点Cま
での昇温速度を0℃/secとした。次いで、第一の波形の
終了点Cから第二のピーク出現点Eまでの昇温速度をふ
たたび1℃/secとし、第二の波形のピーク出現点Eから
第二の波形の終了点Fまでの昇温速度を0℃/secとし
た。次いで、第二の波形の終了点Fから第三の波形のピ
ーク出現点Hまでを再び昇温速度を1℃/secとし、第三
の波形のピーク出現点Hから第三の波形の終了点Iまで
の昇温速度を0℃/secとし、第三の波形終了点Iから再
び昇温速度を1℃/secとし以後、第四の波形のピーク出
現点Kから昇温速度を0℃/secとして、第四の波形の終
了点Lから再び昇温速度を1℃/secとしたが、以後は分
析終了までガス抽出が見られなかった。第一の波形の酸
素値は0.9ppm、第二の波形の酸素値は1.1pp
mであり、第三の波形の酸素値は0.7ppmであり、
第四の波形の酸素値は1.2ppmで合計3.9ppm
であった。平衡計算からこれらの温度で反応する酸化物
を計算すると第一の波形がSiO2 を、第二の波形がA
23 を、第三の波形はMgO、第四の波形はCaO
を示している。この結果も、酸化物組成の構成割合をX
線マイクロアナライザーで調査した結果からも妥当であ
った。 【0035】比較例4は、本発明法の加熱条件のうちで
昇温速度を本発明法より速い3℃/secにした場合であ
る。実施例3と同一の軸受鋼を用いたにもかかわらず、
図6 に示すように波形の分離性が悪く、2つの波形に分
離できず、各々の酸化物系介在物の酸素値を求めること
はできなかった。 【0036】実施例1から3は本発明実施例である各場
合で、包含される酸化物系介在物にそれぞれ由来する各
COガスの波形を明瞭に分離することができ、酸化物系
介在物の種類別の酸素分析を行うことができた。 【0037】上記の実施例はいずれも本発明記載の90
0℃以上で抽出される酸化物系介在物からの酸素であ
り、金属試料中の真の酸素値を、酸化物系介在物の種類
別に分析できた値である。 【0038】以上に示したように本発明の方法による分
析方法を、不活性ガス融解搬送−赤外線吸収方式の酸素
分析に適用したことで、金属試料中の酸化物系介在物酸
素を種類別に精度よく分離、分析できた。 【0039】 【発明の効果】以上説明したように、本発明の分析方法
によれば、金属試料中の酸化物系介在物酸素を手間をか
けることなく酸化物系介在物の種類毎に分離して分析す
ることが可能となった。このような本発明は、業界のニ
ーズに答えた極めて有用な発明である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of analyzing the oxygen content of oxygen-containing inclusions in metals such as iron and steel by an inert gas carrier melting / infrared absorption method or the like. The present invention relates to a method for analyzing oxide-based inclusion oxygen for each type of oxide-based inclusions in a metal. 2. Description of the Related Art Development of ultra-low oxygen steel and high-purity iron in which the form of oxides is controlled has been promoted, and it is necessary to accurately determine the concentration of a trace amount of oxygen at a ppm (parts per million) level. Is required. In particular, in bearing steels used under severe conditions, Al 2 O 3 , MgO · Al
Inclusions such as 2 O 3 tend to form large grains, which cause fatigue failure. For this reason, it is important to reduce the amount of inclusions in the product and control the form of the inclusions, and there is a demand for an accurate and rapid technique for analyzing the types of inclusions in low oxygen steel. Conventionally, methods for analyzing inclusions in steel include a method of collecting a test piece from a sample, observing the surface to be inspected under a microscope, and classifying the sample into A to C systems (JIS G0555), and mirror-polishing the sample surface. In addition, methods using instrumental analysis such as electron beam microanalysis have been performed. [0004] However, since these methods are measurement methods for a cross section of a sample, it is impossible to detect true inclusions that cause material destruction, measurement time is enormous, and sample adjustment such as polishing is required. There are problems such as complexity. [0005] As one solution to solve these problems,
Recently, an analysis method using an oxygen analyzer has been proposed (JP-A-6-148167). In this method, a sample is put into a graphite crucible, and then continuously heated at a constant heating rate, whereby oxygen from easily reduced oxides (FeO, MnO, etc.) in which a decomposition reaction occurs on a relatively low temperature side, and a relatively small amount. Non-reducible oxides (CaO, Al 2 O 3
Etc.) and oxygen from the gas using the gas extraction curve at the time of analysis. However, the method disclosed in JP-A-6-148167 is intended for a high oxygen content of 10% or more in steelmaking slag, and a trace amount of oxygen of several ppm order. When applied to a metal sample with a large amount, it is difficult to separate the waveforms because the peaks are small and the waveforms overlap each other, and it is clear that it cannot be applied to a metal sample with a trace amount of oxygen on the order of several ppm. became. This method separates oxygen from easily reduced oxides and oxygen from hardly reduced oxides, and cannot be applied to the analysis of oxygen by type of oxide-based inclusions. The present invention has been made to solve the above problems, and has as its object to provide a method for analyzing oxygen for each type of oxide-based inclusions in a metal. Means for Solving the Problems The present inventor has studied on a method for analyzing oxide-based inclusions in metals such as iron and steel by type. As a result, when conducting analysis by type of oxide in a metal sample with a trace amount of oxygen, it was found that the heating conditions of the metal in the temperature range where oxide-based inclusions are decomposed are important. The invention has been completed. [0010] The present invention has been made to solve the above problems, and the gist is as described in the claims. In other words, the gist is that a metal sample such as a steel sample is dropped into a graphite crucible under an inert gas atmosphere, heated and melted, and CO gas is extracted from the molten bath to reduce the amount of oxygen in the metal such as steel to a plurality. A method of separating and analyzing waveforms, and for each waveform emerging from a temperature of 900 ° C. or higher,
An analysis method for each type of oxide-based inclusion oxygen in metals such as steel, characterized by repeatedly analyzing the following temperature control pattern. [0011] heating from appearing starting point A n of each wave to a peak appearance point B n of each wave at 2 ° C. / sec or less of the heating rate. [0012] a constant temperature until the emergence end point C n of each wave peak appearance point B n of each wave. Heating is performed at a heating rate of 2 ° C./sec or less from the appearance end point C n of each waveform to the appearance start point A n + 1 of the next waveform. In the present invention, the method of analyzing gas or oxygen is not particularly limited as long as a metal sample is dropped into a graphite crucible in an inert gas atmosphere, heated and melted, and CO gas is extracted from the molten bath. Not something. A typical method is a so-called inert gas carrier melting / infrared absorption method. According to the study of the present inventors, the extraction temperature of the oxygen content of the oxide-based inclusions occurs in a temperature range of 900 ° C. or higher, and the CO gas generated in a temperature range of less than 900 ° C. is adsorbed on the surface of the metal sample. It can be regarded as being generated from oxygen and oxygen contaminated by the iron oxide film on the surface. From the above findings, the present invention does not particularly consider the waveform of the gas extraction curve generated at a temperature lower than 900 ° C. Target waveform. For example, there are various types of oxide inclusions in steel materials, such as Al 2 O 3 , SiO 2 , CaO, MgO, and MnO. In addition, these exist not only as a single substance but also in various forms such as those in a composite form such as MgO.Al 2 O 3 . When analyzing the amount of oxygen in a metal by an inert gas carrier melting-infrared absorption method or the like, M
It is considered that a reaction of O + C = M + CO (M: metal, O: oxygen, C: carbon) occurs. The temperature at which the oxide decomposes depends on the type of the oxide and the partial pressure of CO in the crucible, and the respective reaction temperatures can be estimated or measured based on thermodynamic equilibrium calculations and actual measurement results. The present inventor has obtained a new finding that the decomposition temperature of an oxide is greatly affected by the heating conditions of a sample, regardless of the type of oxide, when performing analysis such as inert gas transport melting-infrared absorption method. Was. In other words, the lower the heating rate, the closer the reaction temperature to the calculated equilibrium value, the better the separation of the gas extraction curve for each type of oxide, and conversely, the higher the heating rate, the higher the gas temperature for each oxide type. The separability of the extraction curve deteriorates. The present invention is based on this finding and applied to the analysis of oxide inclusions by gas analysis of metal samples. FIG. 1 shows an example of the gas extraction curve obtained by the method of the present invention. For example, assuming that n kinds of oxide-based inclusions are contained in the sample, n peaks are obtained in the form of a first peak and a second peak in the order of oxides that are easily reduced. These gas extraction curves do not overlap each other, and the more they are separated from each other, the more accurately each oxide can be extracted. The conditions for this are the contents of the present invention. When a metal sample having an extremely low oxygen content is analyzed by an inert gas carrier melting / infrared absorption method or the like, the influence of the amount of surface contaminating oxygen, which makes the total oxygen content, cannot be ignored. Analysis is performed by removing the surface contamination oxygen by polishing using a chemical polishing method, but the effect of the surface contamination has not yet been completely removed. However, iron oxides and hydroxides such as FeO, Fe 3 O 4 , and FeOOH that constitute the surface contaminating layer can be decomposed at a relatively low temperature at the rate of temperature rise of the sample during oxygen analysis. is there. Before analyzing the amount of oxygen composed of oxide-based inclusions, the temperature at which the above-mentioned contaminant oxygen on the metal surface is separated and removed is less than 900 ° C., and the temperature at which only oxygen derived from oxide-based inclusions is extracted and analyzed. Is set to 900 ° C. or higher for this reason. If the temperature at which each peak starts to be generated is too high, the temperature range of the reaction between the first oxide and the second oxide becomes too close, and it becomes difficult to separate the waveforms. In addition, it is considered that the slower the temperature rise rate, the closer to the thermodynamic equilibrium condition, but the analysis by type of oxide is performed considering the work efficiency and the ease of confirming the appearance temperature at the waveform appearance start point. For this purpose, it is necessary that the heating rate be 2 ° C./sec or less. As the sample is continuously heated and melted at this rate of heating, the oxide-based inclusions in the sample are eventually reduced to carbon by carbon reduction.
The amount of O gas generation becomes maximum. When the amount of generated CO gas becomes maximum, the temperature is kept constant and the CO gas extraction is completed. To hold the temperature to each waveform appearing end point C n constant from the peak appearance point B n of each wave, when between this keeps continuously heated, the amount of other inclusions in the sample, the size ,
This is to prevent the decomposition of the (n + 1) -th oxide-based inclusion within the temperature or time during which the waveform of the certain n-th inclusion appears, although it differs depending on the composition and the location. Next, after the appearance of the n-th waveform is completed,
The temperature is further increased to obtain a second waveform which is a gas extraction curve corresponding to the (n + 1) -th oxide-based inclusion amount. This heating method is repeated, and finally, n waveforms extracted from the n kinds of oxide-based inclusions present in the sample at the end of the analysis are obtained. By confirming the appearance position of the waveform of each oxide that has been artificially created in advance, the oxide-based inclusions in the sample can be identified from the obtained waveform. Further, the respective oxygen amounts of the oxide-based inclusions in the sample can be obtained from each waveform. As described above, a method in which a metal sample is dropped into a graphite crucible, heated and melted, CO gas is extracted from the molten bath, and the amount of oxygen in the metal is separated into a plurality of waveforms and analyzed. Then, for each waveform appearing from a temperature of 900 ° C. or higher, it is possible to accurately separate and analyze oxide-based inclusions in a sample by repeating the following temperature control pattern while analyzing the same. Now you can. The heat from the appearance starting point A n of each wave to a peak appearance point B n of each wave at 2 ° C. / sec or less of the heating rate. [0025] a constant temperature until the emergence end point C n of each wave peak appearance point B n of each wave. From the appearance end point C n of each waveform to the appearance start point A n + 1 of the next waveform, heating is performed at a heating rate of 2 ° C./sec or less. The heating method up to 900 ° C. is not particularly limited, but from the viewpoint of avoiding adverse effects on the whole analysis, the heating up to 900 ° C. is preferably performed at a heating rate of 2 ° C./sec or less. . Next, examples of the present invention will be described with reference to Table 1 together with comparative examples. In each example, the amount of oxygen in the metal was measured by dropping a metal sample into a graphite crucible under an inert gas atmosphere, heating and melting, and extracting and analyzing CO gas from the molten bath. Is analyzed. [Table 1] Comparative Example 1 is an analysis of carbon steel for machine structural use. As shown in FIG. 3, the metal sample was analyzed at a heating rate of 1 ° C./sec from the start of heating to the end of analysis. It is difficult to separate peaks for each oxide, and the total oxygen content is 12.
1 ppm was shown. In Example 1 of the present invention, the same carbon steel for mechanical structure as in Comparative Example 1 was analyzed. As shown in FIG. 2, the peak appearance point B of the first waveform from the heating start point O of the metal sample was obtained. The heating rate during this period was 1 ° C./sec, and the heating rate from the peak appearance point B of the first waveform to the end point C of the first waveform was 0 ° C./sec. Next, the heating rate from the end point C of the first waveform to the second peak appearance point E was again set to 1 ° C./s.
ec, and the rate of temperature increase from the peak appearance point E of the second waveform to the end point F of the second waveform was 0 ° C./sec. Further, the heating rate was again set to 1 ° C./sec from the end point of the second waveform, but no gas extraction was observed thereafter until the end of the analysis. The oxygen value of the first waveform is 1.8 pp
m, the oxygen value of the second waveform was 10.3 ppm, for a total of 12.1 ppm. When calculating oxides that react at these temperatures from the equilibrium calculation, the first waveform is SiO 2 ,
The second waveform represents Al 2 O 3 . In addition, the results obtained by examining the composition ratio of the oxide composition with an X-ray microanalyzer were appropriate. Comparative Example 2 is an analysis of bearing steel.
As shown in FIG. 3, the sample was analyzed at a heating rate of 1 ° C./sec from the start of heating to the end of analysis. It was difficult to separate the peak for each oxide, and the total oxygen content was 3.8 ppm. In Example 2, the same bearing steel as in Comparative Example 2 was analyzed. As shown in FIG. 4, the rate of temperature rise from the heating start point O of the sample to the peak appearance point B of the first waveform was 1 point. ° C / sec,
From the peak appearance point B of the first waveform to the end point C of the first waveform
The heating rate up to 0 ° C./sec. Next, the heating rate from the end point C of the first waveform to the second peak appearance point E is again set to 1 ° C./sec, and from the peak appearance point E of the second waveform to the end point F of the second waveform. Was set to 0 ° C./sec. Next, from the end point F of the second waveform, the heating rate is again set to 1 ° C./sec, and from the third peak appearance point H, the heating rate is set to 0 ° C./sec. After that, the temperature was raised again to 1 ° C./sec, but no gas extraction was observed until the end of the analysis. The oxygen value of the first waveform is 1.1 pp
m, the oxygen value of the second waveform was 1.4 ppm, and the oxygen value of the third waveform was 1.3 ppm, for a total of 3.8 ppm. When the oxides reacting at these temperatures are calculated from the equilibrium calculation, the first waveform is SiO 2 and the second waveform is Al
2 O 3 and the third waveform shows CaO. This result was appropriate from the result of examining the composition ratio of the oxide composition by an X-ray microanalyzer. Comparative Example 3 is an analysis of a bearing steel of a different steel type from Comparative Example 2. When the rate of temperature rise from the start to the end of the analysis was analyzed at 1 ° C./sec, the waveform could not be separated as shown in FIG. 3, and the total oxygen content was 3.9 ppm. Example 3 is the same bearing steel as Comparative Example 3 analyzed by this method. As shown in FIG. 5, the heating rate between the heating start point O of the sample and the peak appearance point B of the first waveform is 1 ° C./sec, and the temperature rise rate of the first waveform from the peak appearance point B of the first waveform. The heating rate up to the end point C was set at 0 ° C./sec. Next, the heating rate from the end point C of the first waveform to the second peak appearance point E is again set to 1 ° C./sec, and from the peak appearance point E of the second waveform to the end point F of the second waveform. Was set to 0 ° C./sec. Next, from the end point F of the second waveform to the peak appearance point H of the third waveform, the heating rate is again set to 1 ° C./sec, and the end point of the third waveform from the peak appearance point H of the third waveform. The heating rate up to I was 0 ° C./sec, and the heating rate was 1 ° C./sec again from the third waveform end point I. Thereafter, the heating rate was 0 ° C./sec from the peak appearance point K of the fourth waveform. As sec, the heating rate was set to 1 ° C./sec again from the end point L of the fourth waveform, but no gas extraction was observed thereafter until the end of the analysis. The oxygen value of the first waveform is 0.9 ppm, and the oxygen value of the second waveform is 1.1 pp.
m, the oxygen value of the third waveform is 0.7 ppm,
The oxygen value of the fourth waveform is 1.2 ppm, for a total of 3.9 ppm.
Met. When the oxides reacting at these temperatures are calculated from the equilibrium calculation, the first waveform is SiO 2 and the second waveform is A
l 2 O 3 , the third waveform is MgO, the fourth waveform is CaO
Is shown. This result also indicates that the composition ratio of the oxide composition is X
The results were also appropriate based on the results of investigation with a line microanalyzer. Comparative Example 4 is a case where the rate of temperature rise was set to 3 ° C./sec, which was faster than the method of the present invention, among the heating conditions of the method of the present invention. Despite using the same bearing steel as in Example 3,
As shown in FIG. 6, the separability of the waveforms was poor, and the waveforms could not be separated into two waveforms, and the oxygen value of each oxide-based inclusion could not be determined. Examples 1 to 3 are examples of the present invention. In each case, the waveform of each CO gas derived from the included oxide-based inclusions can be clearly separated, and the oxide-based inclusions can be separated. Oxygen analysis for each type was performed. Each of the above embodiments has a 90
This is oxygen from oxide inclusions extracted at 0 ° C. or higher, and is a value obtained by analyzing the true oxygen value in a metal sample for each type of oxide inclusion. As described above, by applying the analysis method according to the method of the present invention to oxygen analysis by an inert gas melting and transporting-infrared absorption method, the accuracy of the oxygen-based inclusion oxygen in the metal sample can be determined for each type. Well separated and analyzed. As described above, according to the analysis method of the present invention, oxygen-based inclusion oxygen in a metal sample can be separated for each type of oxide-based inclusion without any trouble. It became possible to analyze. The present invention is an extremely useful invention that meets the needs of the industry.

【図面の簡単な説明】 【図1】本発明実施例の酸素の抽出曲線を示す説明図で
ある。 【図2】本発明実施例1の酸素の抽出曲線を示す説明図
である。 【図3】比較例1、2および3の酸素の抽出曲線を示す
説明図である。 【図4】本発明実施例2の酸素の抽出曲線を示す説明図
である。 【図5】本発明実施例3の酸素の抽出曲線を示す説明図
である。 【図6】比較例4の酸素の抽出曲線を示す説明図であ
る。 【符号の説明】 An …試料中の介在物が反応することにより, 第n番目
の波形が出現する点 Bn …第n番目の波形のピーク出現点 Cn …第n番目の波形の終了点 A…試料中の介在物が反応することにより、第一の波形
が出現する点 B…第一の波形のピーク出現点 C…第一の波形の終了点 D…第二の波形出現点 E…第二の波形のピーク出現点 F…第二の波形の終了点 G…第三の波形出現点 H…第三の波形のピーク出現点 I…第三の波形の終了点 J…第四の波形出現点 K…第四の波形のピーク出現点 L…第四の波形の終了点
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an oxygen extraction curve according to an embodiment of the present invention. FIG. 2 is an explanatory diagram showing an oxygen extraction curve of Example 1 of the present invention. FIG. 3 is an explanatory diagram showing oxygen extraction curves of Comparative Examples 1, 2 and 3. FIG. 4 is an explanatory diagram showing an oxygen extraction curve of Example 2 of the present invention. FIG. 5 is an explanatory diagram showing an oxygen extraction curve of Example 3 of the present invention. FIG. 6 is an explanatory diagram showing an oxygen extraction curve of Comparative Example 4. By inclusion of A n ... sample [EXPLANATION OF SYMBOLS] are reacted, the end of the n-th point of the waveform appears B n ... th n-th peak appearance point C n ... n-th waveforms of Point A: Point where the first waveform appears due to the reaction of the inclusions in the sample B ... Peak appearance point C of the first waveform C ... End point D of the first waveform D ... Second waveform appearance point E ... peak appearance point F of the second waveform F ... end point G of the second waveform H ... third waveform appearance point H ... peak appearance point I of the third waveform ... end point J of the third waveform ... fourth Waveform appearance point K: Peak appearance point L of the fourth waveform L: End point of the fourth waveform

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 33/20 G01N 31/00 G01N 31/12 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 33/20 G01N 31/00 G01N 31/12

Claims (1)

(57)【特許請求の範囲】 【請求項1】 不活性ガス雰囲気下で黒鉛るつぼ中に金
属試料を投下、加熱溶融し、その溶融浴からCOガスを
抽出して金属中の酸素量を複数の波形に分離して分析す
る方法であって、900℃以上の温度から出現する各波
形に対して、下記の温度制御パターンを繰り返し
て分析することを特徴とする金属中の酸化物系介在物酸
素の種類別分析方法。 各波形の出現開始点An から各波形のピーク出現点B
n までを2℃/sec以下の昇温速度で加熱する。 各波形のピーク出現点Bn から各波形の出現終了点C
n までを一定温度とする。 各波形の出現終了点Cn から次の波形の出現開始点A
n+1 までを2℃/sec以下の昇温速度で加熱する。
(57) [Claims 1] A metal sample is dropped into a graphite crucible under an inert gas atmosphere, heated and melted, and CO gas is extracted from the molten bath to reduce the amount of oxygen in the metal. And analyzing the waveforms appearing from a temperature of 900 ° C. or higher by repeating the following temperature control pattern repeatedly. Analysis method by type of oxygen. Peak appearance point B of each waveform from appearance start point An of each waveform
Heat up to n at a heating rate of 2 ° C./sec or less. From the peak appearance point Bn of each waveform to the appearance end point C of each waveform
Let n be a constant temperature. From the appearance end point C n of each waveform to the appearance start point A of the next waveform
Heat up to n + 1 at a heating rate of 2 ° C./sec or less.
JP24303997A 1997-07-11 1997-09-08 Analysis method for oxide inclusion oxygen in metals by type Expired - Fee Related JP3370572B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24303997A JP3370572B2 (en) 1997-09-08 1997-09-08 Analysis method for oxide inclusion oxygen in metals by type
DE69835857T DE69835857T2 (en) 1997-07-11 1998-07-10 Method for analytically detecting oxygen for each oxide form
US09/113,192 US6143571A (en) 1997-07-11 1998-07-10 Method for analytically determining oxygen for each form of oxide
EP98112866A EP0890839B1 (en) 1997-07-11 1998-07-10 Method for analytically determining oxygen for each form of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24303997A JP3370572B2 (en) 1997-09-08 1997-09-08 Analysis method for oxide inclusion oxygen in metals by type

Publications (2)

Publication Number Publication Date
JPH1183841A JPH1183841A (en) 1999-03-26
JP3370572B2 true JP3370572B2 (en) 2003-01-27

Family

ID=17097938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24303997A Expired - Fee Related JP3370572B2 (en) 1997-07-11 1997-09-08 Analysis method for oxide inclusion oxygen in metals by type

Country Status (1)

Country Link
JP (1) JP3370572B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094835B2 (en) * 2001-09-27 2008-06-04 三井金属鉱業株式会社 Methods for producing low oxygen potassium fluorinated tantalate crystals and low oxygen potassium fluorinated niobate crystals, low oxygen potassium fluorinated niobate crystals obtained by these production methods, potassium fluorinated tantalate crystals, and fluorinated niobic acid Method for oxygen analysis of potassium crystals
JP5968083B2 (en) * 2012-05-30 2016-08-10 株式会社堀場製作所 Elemental analyzer

Also Published As

Publication number Publication date
JPH1183841A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
Bartosiaki et al. Assessment of inclusion analysis via manual and automated SEM and total oxygen content of steel
CN112763527B (en) Method for directly obtaining material interface oxygen potential and structure
Fray The use of solid electrolytes as sensors for applications in molten metals
JP3370572B2 (en) Analysis method for oxide inclusion oxygen in metals by type
EP0890839B1 (en) Method for analytically determining oxygen for each form of oxide
Murata et al. Investigating the Phase Diagram of SiO2–CaO–CrOx System to Evaluate Distribution of Platinum between Slag and Molten Copper
Smerko et al. Recent Progress in the Chemical Extraction of Nonmetallic Inclusions in Steel—Techniques and Applications
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
US4098576A (en) Method for analyzing the latent gas content of metal samples
CN113188862B (en) Method for measuring content of dissolved elements in molten steel
JP3492155B2 (en) Method for analyzing oxygen in metals
Wayman et al. The surface segregation behavior of manganese and nickel in iron
JPH11316220A (en) Method and apparatus for high-accuracy analysis of trace element in metal
JPH1073586A (en) Method and apparatus for analyzing minute amount of oxygen in metal
JPH0954078A (en) Measuring method for cao content in steel
JP3553372B2 (en) Analysis of trace amounts of oxygen in metals
JP3492162B2 (en) Analysis of trace oxygen in steel
US4329868A (en) Method for the determination of hydrogen content in inorganic materials
JP3439974B2 (en) Method and apparatus for analyzing oxygen or oxide by type of oxide in analysis sample
Bandi et al. Identification and determination of titanium sulphide and carbosulphide compounds in steel
JP2001343309A (en) Pretreating method for metal analytical sample, and its device
JPH02136743A (en) Method and apparatus for analyzing trace element in metallic material
JP2020076708A (en) Inclusion evaluation method
Benesch et al. Diffusion of manganese in liquid iron saturated with carbon in the system FeCsat—blast furnace type slag
Hatano Desulfurization behavior of molten copper alloy by a soda ash

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees