JP3553372B2 - Analysis of trace amounts of oxygen in metals - Google Patents

Analysis of trace amounts of oxygen in metals Download PDF

Info

Publication number
JP3553372B2
JP3553372B2 JP15303098A JP15303098A JP3553372B2 JP 3553372 B2 JP3553372 B2 JP 3553372B2 JP 15303098 A JP15303098 A JP 15303098A JP 15303098 A JP15303098 A JP 15303098A JP 3553372 B2 JP3553372 B2 JP 3553372B2
Authority
JP
Japan
Prior art keywords
oxygen
sample
amount
metal
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15303098A
Other languages
Japanese (ja)
Other versions
JPH11344487A (en
Inventor
嘉夫 塗
知子 伊勢
恵之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP15303098A priority Critical patent/JP3553372B2/en
Publication of JPH11344487A publication Critical patent/JPH11344487A/en
Application granted granted Critical
Publication of JP3553372B2 publication Critical patent/JP3553372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は金属中の微量酸素量をいわゆる不活性ガス搬送融解−赤外線吸収法によって分析する分野に属する技術であって、とりわけ、金属中の微量酸素を表面汚染酸素と金属中の酸化物系介在物から構成される酸素に分離して分析する方法に関する。
【0002】
【従来の技術】
近年、酸化物の形態を制御した極低酸素鋼や高純度鉄の開発が進められており、金属中のppm(百万分率)レベルの微量の酸素濃度を精度よく定量することが要求されている。そこで、金属中の微量酸素の分析時には金属試料表面に生成した酸化膜などの汚染を除去する必要がある。しかして、この酸化膜などの汚染を除去する酸素分析時の前処理方法としては、電解研磨法あるいは化学研磨法が用いられている。
【0003】
電解研磨法は、10%アセチルサルチル酸−1%テトラメチルアンモニウムクロライド−メチルアルコール溶液や4%スルフォサルチル酸−1%塩化リチウム−メチルアルコール溶液などの非水溶媒系電解液を用いて試料表面に生成した酸化膜などの汚染物を除去する方法である。化学研磨法は分析用金属試料を弗化水素−過酸化水素(HF−H)などの溶液中に浸漬し、試料表面に生成した酸化膜などの汚染を除去する方法である。(例えば、安原久雄ら:CAMP−ISIJ,10(1997),p.709)
ところが、これらの試料表面酸化物として存在する酸素量は一定ではなく、例えば研磨溶液、研磨時間等により除去される表面酸化物の量は変化するため、得られた分析値のばらつきも大きい。また、試料表面を電解研磨または化学研磨する方法は、試料の前処理が煩雑となり時間もかかる。
【0004】
以上のような問題点を解決する方法として、鉄鋼試料表面をグラインダー、ヤスリ等で研磨後、該試料中の微量酸素を加熱抽出して測定する方法において、該研磨処理後の試料を炭素坩堝に入れ900℃以上1400℃以下の温度で予備加熱を行ない、試料表面の付着酸素や酸化膜などの汚染酸素と酸化物系介在物から構成される金属中の酸素を分離して分析することを特徴とする鉄鋼中の微量酸素分析方法(特開平6−148170号)が提案されている。
【0005】
また本発明の関連の技術としては、酸化物試薬や製鋼用転炉スラグの還元反応を促進する手段として黒鉛粉末を添加し、Fe,Cr,Mnの酸化物(易還元性酸化物)とTi,Al,Caの酸化物(難還元性酸化物)の抽出ピークの分離性を改善する方法が提案されている(特開平6−148167号)。
【0006】
【発明が解決しようとする課題】
ところが、前記提案の方法(特開平6−148170号)で酸素量の分析を行うと、金属中の炭素量が少ない場合には、表面付着酸素や鉄酸化物などの汚染酸素の還元に時間がかかり、汚染酸素の酸素量を示す第1の波形が酸化物系介在物の酸素量を示す第2の波形に重なり、酸化物系介在物から発生した酸素量のみを正確に分析することが出来ないと言う問題点が明らかになった。
【0007】
また、前記特開平6−148167号の方法は製鋼スラグ中の10%以上の高酸素量を対象としたものであり、かつ易還元酸化物からの酸素と難還元酸化物からの酸素とを分離する方法であって、低炭素かつ数ppmオーダーの微量酸素量の金属試料の、金属表面の汚染酸素と金属内の酸化物系介在物から構成される酸素量の分析に適用したところ、ピークが現出せず分析波形の分離は困難であり、低炭素かつ数ppmオーダーの微量酸素量の金属試料へは適用できないことが明らかになった。
【0008】
本発明は、前記の問題点を解決するためになされたもので、金属中の酸素量を分析する方法において、酸化膜などの汚染酸素と酸化物系介在物などから構成される金属中の酸素を精度良く分離して分析する方法を提供することを目的とする。とりわけ分析金属試料中の炭素量および酸素量又は酸化物量が微量であっても、汚染酸素と金属中の酸素を精度よく分離して分析する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は金属中の酸素量を分析する方法において、汚染酸素と金属中の酸化物系介在物から構成される酸素とに分離して分析する方法について研究を重ねた。とりわけ、低炭素鋼の、金属表面に生成した酸化膜で汚染された酸素と金属中の酸化物系介在物から構成される微量酸素とに分離して分析する場合には、金属試料表面の酸化物の還元に金属中の炭素と坩堝の炭素が複雑に影響するという新しい知見を得、本発明を完成するに至ったものである。
【0010】
すなわち、本発明は上記課題を解決するものであり、その要旨は特許請求の範囲記載の通りである。すなわち、
1)金属試料を不活性雰囲気中で加熱して炭素源と反応させ、前記金属試料中の酸素が前記炭素源と反応して発生するCOガスを測定・分析して反応酸素量を求め、金属中の酸素量を分析する方法において、前記金属試料として表面に還元剤を真空蒸着した金属試料を用いて分析することを特徴とする金属中の微量酸素分析方法。
【0011】
2)金属試料表面に還元剤の付着量が1mm 当たり1×10 −8 g以上であることを特徴とする上記1項記載の金属中の微量酸素分析方法。
【0013】
を要旨とする。
【0014】
まず、本発明は、金属試料を不活性ガス雰囲気中で加熱して炭素源と反応させ、前記金属試料中の酸素が前記炭素源と反応して発生するCOガスを測定・分析して反応酸素量を求める技術を基礎としている。炭素源は特に限定されるものではないが、黒鉛るつぼ、黒鉛粉末、黒鉛カプセルや金属試料中に含まれる炭素などが炭素源として利用可能である。中でも炭素源として黒鉛坩堝を用い、分析試料を黒鉛坩堝中に投入して加熱溶融してCOガスを発生させる手段が実用的である。炭素源として黒鉛粉末を用い、分析試料と混合して加熱する方法でも良い。また、不活性ガス中に抽出したCOガスの測定・分析方法は特に限定されるものではないが、典型的な方法としては赤外線吸収法が挙げられる。いわゆる不活性ガス搬送融解一赤外線吸収法である。
【0015】
さて、金属試料表面の汚染酸素の混入源は、1)空気中から吸着した酸素、2)金属試料を所定の重量に調整するときに鋸などで切断またはグラインダーなどで研削するとき、金属の表面の温度が上昇しこれが原因で表面が酸化して生成した鉄酸化物としての酸素、などである。この中、後者の鉄酸化物は、切断や研削の温度、時間などにより酸化物の種類とその量は異なるが、その種類をX線光電子分光分析装置によって調査したところ、FeOOH,FeおよびFeOなどで構成されていることが判明した。
【0016】
ところで、例えば、不活性ガス搬送融解−赤外線吸収法によって金属中の酸素量を分析する際の黒鉛坩堝内では、MO+C=M+CO(M:金属、O:酸素、C:炭素)の反応が起こっていると考えられている。鉄酸化物の分解する温度は酸化物の種類と坩堝内のCO分圧によって異なり、熱力学的平衡計算や実測結果によると、概ね400〜1100℃の範囲である。一方、酸化物系介在物の熱力学的平衡温度は、これも酸化物の種類、坩堝内のCO分圧によって異なるため一概に論じられないが、一般的には鉄酸化物の分解温度よりも高温側であるが、金属の加熱条件や炭素量によっては酸化物系介在物の炭素による還元が鉄酸化物の還元が起こる低温度でも起こり、COガスが発生すると言う新しい知見を得た。本発明はこの知見を巧みに活用したものである。
【0017】
この酸化物の種類別に抽出された酸素の抽出曲線を図示すると図1のようになる。第1のピークの見られる波形は空気中から吸着した酸素や鉄酸化物から発生した酸素量に相当する抽出曲線であり、また第2のピークの見られる波形は酸化物系介在物から発生した酸素量に相当する抽出曲線である。
【0018】
この二つの酸素抽出曲線が、重なり合うことなく、互いに離れれば離れるほど、空気中から吸着した酸素や鉄酸化物から発生した酸素などの汚染酸素量と金属中の酸化物系介在物から発生した酸素量が精度良く分離出来ることになる。このための方法が本発明の内容である。
【0019】
炭素坩堝内の試料表面の酸化膜の還元サイトは1)金属試料と酸化膜の界面、2)炭素坩堝と酸化膜の界面、である。この1)と2)の還元サイトの酸化膜還元におよぼす寄与率を研究したところ、分析用金属試料中の炭素含有量が高いほど、上記1)の寄与率が高いことが明らかになった。すなわち分析用金属試料の炭素含有量が高ければ、図1に示したような第1の波形と第2の波形が明瞭に分離するが、分析用金属試料の炭素含有量が低過ぎると、第1の波形の出現終了点Bが第2の波形内に出現するようになり、第1の波形と第2の波形の分離性が悪くなる。一例を示せば、図2のようになる。
【0020】
この問題点を解決するには分析用試料の加熱条件も重要であるが、本発明は前記還元サイト1)および2)以外に分析用試料表面に還元剤を付与する対策を考え出したものである。用いる還元剤の種類は、還元する温度・雰囲気で酸化膜の組成より酸素との結合力の強い元素が考えられる。熱力学的知見からは、Cr,Al,Ti,Mn,Si,Ceなどの各種の金属元素や炭素が還元剤として活用できる。金属試料表面の酸化膜を上記の金属物質で還元する場合、金属試料中に含まれる酸化物系介在物を構成する金属元素と同じ金属を用いると、金属試料中に含まれる酸化物系介在物と同じ組成の酸化物系介在物が生成し、生成した金属酸化物が図1の酸素抽出時に第2の波形の一部になって出現し、金属試料中に含まれていた真の酸化物系介在物酸素と分離出来なくなる場合がある。従って、金属試料中に含まれている酸化物系介在物を構成する同種の金属還元剤の使用は好ましくない。金属以外の酸化膜の還元剤としては炭素がある。炭素としては、粒状又は粉末状のカーボンブラックやSiC,Cr,Crなどの各種炭化物等がある。この中、金属試料中に酸化物系介在物として含まれる同種の金属元素を包含する還元剤は上述の理由などによりその利用が限定される。したがって、汎用的にはカーボンブラックなどの炭素単体の物質を用いることが望ましい。
【0021】
次に、分析試料用表面を還元剤で被覆する方法は特に限定されるものではないが、簡便な方法の一つは分析用試料と還元剤の粉末を混合する方法である。但し、分析用金属試料の形状や大きさにもよるが、試料の表面を完全に還元剤で覆うためにはその量が多量に必要になる。また、この方法による多数の試料の分析を行っていくと、分析装置内に一部飛散した粉末が装置内を汚染するためか、バックグラウンド値を上昇させたり、用いる還元剤の量によっては試料表面各部の還元剤量の差がある為か酸化物系介在物としての酸素量抽出結果をばらつかせたりすることがある。この現象は、数ppmの微量酸素量の試料を分析する場合には、特に問題となる。
【0022】
本願請求項に記載の発明は、金属試料として表面に還元剤を真空蒸着した金属試料を用いて分析することを特徴とする金属中の微量酸素分析方法、を要旨とするものである。
【0023】
本発明者は、金属試料表面に還元剤を被覆する方法について種々研究した結果、表面に還元剤を真空蒸着した試料を用いて分析すると、上記のような問題が生じないことを見い出した。これは、真空蒸着法によれば、例えば還元剤の粉末を混合して分析する方法に比べて、試料表面を完全に還元剤で被覆する事が出来るためと考えられる。
【0024】
次に、本願請求項に記載の発明は、金属試料表面の還元剤の付着量が1mm当たり1×10−8g以上であることを特徴とする本願請求項1に記載の金属中の微量酸素分析方法、を要旨とする。
【0025】
金属試料表面の還元剤の付着量を表面積1mm当たり1×10−8g以上としたのは次の理由による。分析用試料の表面に付着させる還元剤の量は、厳密には、試料の表面積と酸化膜の組成と厚み、分析試料の炭素含有量および付着物質の種類によって異なる。しかし、酸化膜厚みは概ね100Å程度であり、試料の表面積1mm当たり1×10−8g以下の蒸着量であると表面酸化膜の還元が十分でなかったり、又還元に必要な時間が長くなり、図1に示した波形1の酸素量が波形2の酸素量に包含されたりする。本願請求項に記載した発明によれば、このような危険を防止することができる。なお、還元剤を真空蒸着する場合の蒸着量と厚みは蒸着装置の電力と蒸着時間で制御出来る。
【0026】
ところで、本発明者等は、別途、黒鉛坩堝中に金属試料を投下、加熱溶融し、その溶融浴からガスを抽出して分析する不活性ガス搬送融解−赤外線吸収法によって金属中の全酸素量を複数の波形に分離して分析する方法において、第1の波形出現開始点まで、および第1の波形出現開始点からピーク出現点までを20℃/s以下の昇温速度、ピーク出現点から第1の波形出現終了点までを一定温度にして加熱溶融して分析することを特徴とする金属中の酸素を分析する方法(特願平9−186273号)を開発している。本発明において、このような温度制御を採用することによって、試料金属中の酸素を表面汚染酸素と金属中の酸化物系介在物の酸素に精度良く明瞭に分離して分析することができる。
【0027】
また、本発明者等は、上記反応の反応温度が酸化物の種類毎に異なることから、分析試料の昇温速度を精密に制御しながら加熱して炭素源と反応させることによって、試料中の酸化物の種類毎にタイミングを分離して反応させCOガスを抽出できることを見い出したが、この方法により、タイミングを分離して抽出したCOガスを不活性ガス中に抽出し、逐次計測・分析することによって、あるタイミングに反応した種類の酸化物に由来の酸素量または該種類の酸化物量を算出することもできる。この方法で得られた抽出酸素量(抽出COガス量と対応している)を時系列的に表示したグラフの一例を図示すると図3のようになる。例えば、n種類の酸化物が分析試料中に含有されているとすれば、還元されやすい酸化物の順に第一のピークを有する第一の波形、第二のピークを有する第二の波形、という形でn個のピークを有する波形が得られる。
【0028】
分析試料の昇温速度の制御は、具体的には、徐々に昇温しながら、抽出酸素量または抽出COガス量の第一のピークの出現から第一の波形の終了までを一定温度とし、第一の波形の終了から第二のピーク出現まで徐々に昇温し、さらに、第二のピークの出現から第二の波形の終了までを一定温度とし、第二の波形の終了から第三のピーク出現まで徐々に昇温し、さらに、第三のピークの出現から第三の波形の終了までを一定温度とし、第三の波形の終了から第四のピーク出現まで徐々に昇温する、というように、昇温と一定温度保持の繰り返しパターンが好ましい。
【0029】
【実施例】
つぎに本発明の実施例を比較例と共に表1に示して説明する。各例は不活性ガス雰囲気下で黒鉛坩堝中に金属試料を投下、加熱溶融し、その溶融浴から不活性ガス流中にCOガスを抽出して測定・分析する不活性ガス搬送融解−赤外線吸収法によって金属中の酸素量を分析したものである。
【0030】
比較例1の分析試料は炭素含有量が1.0mass%からなる軸受鋼で試料表面の炭素の蒸着は行わなかった。試料1gを図1に示した試料の加熱開始点0から第1の波形出現終了点Bまでの昇温速度を30℃/s、第1の波形出現終了点Bより後は急速に加熱し、2700℃の一定温度に保持して分析した。表面付着酸素や鉄酸化物から発生した酸素量に相当する第1波形と酸化物系介在物から発生した酸素量に相当する第2波形の分離は困難であり、全酸素量は4.5ppmであった。
【0031】
本発明の実施例1の分析試料は比較例1と同一の炭素量と酸素量を含有する軸受鋼である。分析装置に試料を投入する前に真空蒸着装置で、蒸着室の真空度を3×10−4Pa、炭素蒸着源の電圧、電流、蒸着時間を制御して、試料の表面に炭素を試料表面積1mm当たり2×10−8g蒸着させた。他の昇温条件は比較例1と同じである。その結果、波形1と波形2が明瞭に分離し、波形1に相当する酸素量は1.8ppm、波形2に相当する酸素量は2.7ppm、合計4.5ppmの酸素値を示した。なお、比較例1では実施例1に相当する波形1が出現しなかったが、比較例1の波形1の出現終了点Bの温度または時間は実施例1の結果から推定して試験した。
【0032】
比較例2の分析試料は炭素含有量が0.30mass%からなる機械構造用炭素鋼で試料表面の炭素の蒸着は行わなかった。試料の昇温方法は比較例1と同じである。比較例1と同様、表面付着酸素や鉄酸化物から発生した酸素量に相当する波形1と酸化物系介在物から発生した酸素量に相当する波形2の分離は困難であり、全酸素量は9.3ppmを示した。
【0033】
本発明の実施例2の分析試料は比較例2と同一の炭素量と酸素量を含有する機械構造用炭素鋼である。分析装置に試料を投入する前に真空蒸着装置で、蒸着室の真空度を3×10−4Pa、炭素蒸着源の電圧、電流、蒸着時間を制御して、試料の表面に炭素を試料表面積1mm当たり2×10−7g蒸着させた。他の昇温条件は比較例2と同じである。波形1と波形2が明瞭に分離し、波形1に相当する酸素量は2.2ppm、波形2に相当する酸素量は7.1ppm、合計9.3ppmの酸素値を示した。
【0034】
比較例3の分析試料は炭素含有量が0.007mass%からなるステンレス鋼で試料表面の炭素の蒸着は行わなかった。試料の昇温方法は比較例1と同じである。比較例1と同様、表面付着酸素や鉄酸化物から発生した酸素量に相当する波形1と酸化物系介在物から発生した酸素量に相当する波形2の分離は困難であり、全酸素量は8.9ppmを示した。
【0035】
本発明実施例3の分析試料は比較例3と同一の炭素量と酸素量を含有するステンレス鋼である。分析装置に試料を投入する前に真空蒸着装置で、蒸着室の真空度を3×10−4Pa、炭素蒸着源の電圧、電流、蒸着時間を制御して、試料の表面に炭素を試料表面積1mm当たり1×10−6g蒸着させた。他の昇温条件は比較例1と同じである。波形1と波形2が明瞭に分離し、波形1に相当する酸素量は1.6ppm、波形2に相当する酸素量は7.3ppm、合計8.9ppmの酸素値を示した。
【0036】
なお、波形1と波形2の分離性は波形1の出現終了点Bまでの昇温速度を小さくするほど向上する。
【0037】
以上に示したように、本発明の方法による金属中の微量酸素の分析方法は、分析試料中の炭素の含有量に関係なく、高清浄鋼の金属の表面付着酸素や鉄酸化物から発生した汚染酸素量と金属中の酸化物系介在物から発生した酸素量を精度よく分離して定量化出来る。
【0038】
【表1】

Figure 0003553372
【0039】
【発明の効果】
以上説明したように、本発明の金属中の微量酸素の分析方法によれば、金属中の酸素を表面汚染酸素と金属中の酸化物系介在物から構成される酸素に精度よく分離して分析することが可能となった。
【図面の簡単な説明】
【図1】表面付着酸素、鉄酸化物から発生した酸素などの汚染酸素量を示す第1の波形と試料金属中の酸化物系介在物から発生した酸素量を示す第2の波形を示す酸素の抽出曲線を示す図である。
【図2】表面付着酸素、鉄酸化物から発生した酸素などの汚染酸素量を示す第1の波形と試料金属中の酸化物系介在物から発生した酸素量を示す第2の波形が分離できなかった場合の酸素の抽出曲線を示す図である。
【図3】酸化物の種類毎にタイミングを分離して抽出した酸素量を時系列的に表示したグラフの一例を示す図である。
【符号の説明】
A…表面付着酸素や鉄酸化物から酸素が発生し始める温度または時間
B…表面付着酸素や鉄酸化物からの酸素の発生が完了する温度または時間
C…酸化物系介在物からの酸素が発生し始める温度または時間
D…酸化物系介在物からの酸素の発生が完了する温度または時間[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a technology belonging to the field of analyzing the amount of trace oxygen in a metal by a so-called inert gas carrier melting / infrared absorption method. The present invention relates to a method for separating and analyzing oxygen composed of substances.
[0002]
[Prior art]
In recent years, the development of ultra-low-oxygen steel and high-purity iron with controlled oxide morphology has been promoted, and it is required to accurately quantify the concentration of trace amounts of ppm (parts per million) in metals in metals. ing. Therefore, it is necessary to remove contamination such as an oxide film generated on the surface of the metal sample when analyzing a trace amount of oxygen in the metal. An electrolytic polishing method or a chemical polishing method is used as a pretreatment method at the time of oxygen analysis for removing contamination such as an oxide film.
[0003]
The electropolishing method uses a non-aqueous solvent-based electrolyte such as a 10% acetylsalicylic acid-1% tetramethylammonium chloride-methyl alcohol solution or a 4% sulfosalicylic acid-1% lithium chloride-methyl alcohol solution. This is a method of removing contaminants such as an oxide film generated in the process. Chemical polishing is a metal sample for analysis hydrogen fluoride - a method for removing contamination of the hydrogen peroxide (HF-H 2 O 2) was immersed in a solution, such as, such as oxide film formed on the sample surface. (For example, Yasuhara Hisao et al .: CAMP-ISIJ, 10 (1997), p. 709)
However, the amount of oxygen present as oxide on the surface of these samples is not constant, and the amount of surface oxide to be removed changes depending on, for example, a polishing solution, polishing time, and the like, and thus the obtained analysis values vary widely. In addition, in the method of electrolytic polishing or chemical polishing of the sample surface, the pretreatment of the sample is complicated and it takes time.
[0004]
As a method for solving the above problems, in a method of polishing a steel sample surface with a grinder, a file, or the like, and then heating and extracting a small amount of oxygen in the sample, the sample after the polishing treatment is placed in a carbon crucible. The preheating is performed at a temperature of 900 ° C or more and 1400 ° C or less to separate and analyze oxygen adhering to the sample surface, contaminant oxygen such as an oxide film, and oxygen in a metal composed of oxide-based inclusions. (Japanese Patent Application Laid-Open No. 6-148170) has been proposed.
[0005]
Further, as a technique related to the present invention, graphite powder is added as an oxide reagent or a means for accelerating the reduction reaction of converter slag for steelmaking, and oxides of Fe, Cr, and Mn (easy-reducible oxides) and Ti are added. A method has been proposed for improving the separation of the extraction peaks of oxides of Al, Ca and Al (reducible oxides) (JP-A-6-148167).
[0006]
[Problems to be solved by the invention]
However, when the amount of oxygen is analyzed by the above-mentioned method (Japanese Patent Application Laid-Open No. 6-148170), when the amount of carbon in the metal is small, it takes time to reduce contaminated oxygen such as surface-attached oxygen and iron oxide. As a result, the first waveform indicating the oxygen content of the contaminated oxygen overlaps with the second waveform indicating the oxygen content of the oxide-based inclusions, and only the amount of oxygen generated from the oxide-based inclusions can be accurately analyzed. The problem of not being clarified.
[0007]
The method disclosed in JP-A-6-148167 is intended for a high oxygen content of 10% or more in steelmaking slag, and separates oxygen from easily reduced oxides and oxygen from hardly reduced oxides. The method was applied to the analysis of the amount of oxygen composed of contaminated oxygen on the metal surface and oxide-based inclusions in the metal of a metal sample having a low carbon content and a trace amount of oxygen on the order of several ppm. It was difficult to separate the analysis waveform because it did not appear, and it became clear that it could not be applied to a metal sample with low carbon and trace amount of oxygen on the order of several ppm.
[0008]
The present invention has been made in order to solve the above-mentioned problems, and in a method for analyzing the amount of oxygen in a metal, the method comprises the steps of: It is an object of the present invention to provide a method of accurately separating and analyzing s. In particular, it is an object of the present invention to provide a method for accurately separating and analyzing contaminated oxygen and oxygen in a metal even when the amount of carbon and the amount of oxygen or the amount of oxide in the analysis metal sample are very small.
[0009]
[Means for Solving the Problems]
The present inventor has repeatedly studied a method for analyzing the amount of oxygen in a metal by separating polluted oxygen and oxygen composed of oxide-based inclusions in the metal. In particular, when low carbon steel is analyzed by separating it into oxygen contaminated by an oxide film formed on the metal surface and trace oxygen composed of oxide inclusions in the metal, the oxidation of the metal sample surface The present inventors have obtained a new finding that the carbon in the metal and the carbon in the crucible affect the reduction of the product in a complicated manner, and have completed the present invention.
[0010]
That is, the present invention solves the above problems, and the gist is as described in the claims. That is,
1) heating the metal sample in an inert atmosphere to react with the carbon source, measuring and analyzing the CO gas generated by the reaction of the oxygen in the metal sample with the carbon source to determine the amount of reactive oxygen; A method for analyzing the amount of oxygen in a metal, wherein the analysis is performed using a metal sample having a reducing agent vacuum-deposited on its surface as the metal sample.
[0011]
2) The method for analyzing a trace amount of oxygen in a metal according to the above item 1, wherein the amount of the reducing agent attached to the surface of the metal sample is 1 × 10 −8 g or more per 1 mm 2 .
[0013]
Is the gist.
[0014]
First, according to the present invention, a metal sample is heated in an inert gas atmosphere to react with a carbon source, and the CO gas generated by the reaction of oxygen in the metal sample with the carbon source is measured and analyzed to obtain a reaction oxygen. It is based on technology to determine quantity. The carbon source is not particularly limited, but a graphite crucible, graphite powder, carbon contained in a graphite capsule, a metal sample, or the like can be used as the carbon source. Above all, it is practical to use a graphite crucible as a carbon source, put an analysis sample into the graphite crucible, and heat and melt to generate a CO gas. A method may be used in which graphite powder is used as a carbon source, mixed with an analysis sample, and heated. The method for measuring and analyzing the CO gas extracted into the inert gas is not particularly limited, but a typical method is an infrared absorption method. It is a so-called inert gas transport melting-infrared absorption method.
[0015]
The sources of contaminating oxygen on the surface of the metal sample are as follows: 1) oxygen adsorbed from the air; 2) cutting of the metal sample to a predetermined weight with a saw or grinding with a grinder or the like; Temperature rises, and as a result, oxygen as iron oxide generated by oxidizing the surface, and the like. Among these, the type and amount of the latter iron oxide vary depending on the temperature and time of cutting and grinding, etc., and when the type was investigated by an X-ray photoelectron spectrometer, it was found that FeOOH and Fe 3 O 4 were used. And FeO and the like.
[0016]
By the way, for example, in a graphite crucible when analyzing the amount of oxygen in a metal by an inert gas carrier melting-infrared absorption method, a reaction of MO + C = M + CO (M: metal, O: oxygen, C: carbon) occurs. Is believed to be The temperature at which iron oxide decomposes depends on the type of oxide and the partial pressure of CO in the crucible, and is generally in the range of 400 to 1100 ° C. according to thermodynamic equilibrium calculations and actual measurement results. On the other hand, the thermodynamic equilibrium temperature of oxide-based inclusions cannot be discussed unconditionally because this also depends on the type of oxide and the CO partial pressure in the crucible, but is generally higher than the decomposition temperature of iron oxide. Although it is on the high temperature side, depending on the heating conditions of the metal and the amount of carbon, reduction of oxide-based inclusions by carbon occurs even at a low temperature at which reduction of iron oxide occurs, and a new finding that CO gas is generated has been obtained. The present invention skillfully utilizes this finding.
[0017]
FIG. 1 shows an extraction curve of oxygen extracted for each type of oxide. The waveform with the first peak is an extraction curve corresponding to the amount of oxygen adsorbed from the air or the amount of oxygen generated from iron oxide, and the waveform with the second peak is generated from oxide-based inclusions. It is an extraction curve corresponding to an oxygen amount.
[0018]
The farther apart these two oxygen extraction curves are from each other without overlapping, the more contaminated oxygen such as oxygen adsorbed from the air and oxygen generated from iron oxides and the amount of oxygen generated from oxide inclusions in the metal The amount can be separated with high accuracy. The method for this is the subject of the present invention.
[0019]
The reduction sites of the oxide film on the sample surface in the carbon crucible are 1) the interface between the metal sample and the oxide film, and 2) the interface between the carbon crucible and the oxide film. A study of the contribution of the reduction sites 1) and 2) to the reduction of the oxide film revealed that the higher the carbon content in the metal sample for analysis, the higher the contribution of the above 1). That is, if the carbon content of the metal sample for analysis is high, the first waveform and the second waveform as shown in FIG. 1 are clearly separated, but if the carbon content of the metal sample for analysis is too low, The appearance end point B of the first waveform appears in the second waveform, and the separability between the first waveform and the second waveform deteriorates. An example is shown in FIG.
[0020]
In order to solve this problem, the heating condition of the sample for analysis is also important, but the present invention has devised a countermeasure for applying a reducing agent to the surface of the sample for analysis in addition to the above-mentioned reduction sites 1) and 2). . The type of the reducing agent used may be an element having a stronger bonding force with oxygen than the composition of the oxide film at the reducing temperature and atmosphere. From thermodynamic knowledge, various metal elements such as Cr, Al, Ti, Mn, Si, and Ce and carbon can be used as a reducing agent. When the oxide film on the surface of the metal sample is reduced with the above-described metal substance, if the same metal as the metal element constituting the oxide-based inclusion included in the metal sample is used, the oxide-based inclusion included in the metal sample is used. Oxide-based inclusions having the same composition as that of the above, the generated metal oxide appears as a part of the second waveform at the time of oxygen extraction in FIG. 1, and the true oxide contained in the metal sample It may not be possible to separate from system inclusion oxygen. Therefore, it is not preferable to use the same type of metal reducing agent constituting the oxide inclusions contained in the metal sample. Carbon is a reducing agent for oxide films other than metals. Examples of carbon include granular or powdery carbon black and various carbides such as SiC, Cr 3 C 2 , and Cr 7 C 3 . Among them, the use of a reducing agent containing the same kind of metal element contained as an oxide-based inclusion in a metal sample is limited for the above-mentioned reasons and the like. Therefore, in general, it is desirable to use a substance of simple carbon such as carbon black.
[0021]
Next, the method of coating the surface for the analysis sample with the reducing agent is not particularly limited, but one of the simple methods is a method of mixing the analysis sample and the powder of the reducing agent. However, depending on the shape and size of the metal sample for analysis, a large amount is required to completely cover the surface of the sample with the reducing agent. In addition, when a large number of samples are analyzed by this method, it may be because the powder scattered in the analyzer contaminates the inside of the device, the background value may be increased, or the sample may be increased depending on the amount of reducing agent used. Due to the difference in the amount of reducing agent in each part of the surface, the result of extracting the amount of oxygen as oxide-based inclusions may be varied. This phenomenon is particularly problematic when analyzing a sample with a trace amount of oxygen of several ppm.
[0022]
The gist of the invention described in claim 1 of the present application is a method for analyzing a trace amount of oxygen in a metal, characterized in that the analysis is performed using a metal sample having a surface on which a reducing agent is vacuum deposited as a metal sample.
[0023]
As a result of various studies on a method of coating the surface of a metal sample with a reducing agent, the present inventors have found that the above-described problems do not occur when the analysis is performed using a sample in which the reducing agent is vacuum-deposited on the surface. This is considered to be because the sample surface can be completely covered with the reducing agent according to the vacuum evaporation method, for example, as compared with the method of mixing and analyzing the powder of the reducing agent.
[0024]
Next, the invention according to claim 2 of the present application is characterized in that the amount of the reducing agent deposited on the surface of the metal sample is 1 × 10 −8 g or more per 1 mm 2 . The method is based on a trace oxygen analysis method.
[0025]
The reason why the amount of the reducing agent deposited on the surface of the metal sample is set to 1 × 10 −8 g or more per 1 mm 2 of the surface area is as follows. Strictly speaking, the amount of the reducing agent to be attached to the surface of the analysis sample depends on the surface area of the sample, the composition and thickness of the oxide film, the carbon content of the analysis sample, and the type of the attached substance. However, the thickness of the oxide film is about 100 °, and if the deposition amount is 1 × 10 −8 g or less per 1 mm 2 of the surface area of the sample, the reduction of the surface oxide film is not sufficient or the time required for the reduction is long. That is, the oxygen amount of waveform 1 shown in FIG. According to the invention described in claim 2 of the present application, such a danger can be prevented. The amount and thickness of the reducing agent when vacuum-deposited can be controlled by the power of the evaporation apparatus and the evaporation time.
[0026]
By the way, the present inventors separately dropped a metal sample into a graphite crucible, heated and melted it, and extracted and analyzed gas from the molten bath. Is divided into a plurality of waveforms and analyzed from the first waveform appearance start point, and from the first waveform appearance start point to the peak appearance point, at a heating rate of 20 ° C./s or less, from the peak appearance point. A method has been developed for analyzing oxygen in a metal, characterized in that it is heated and melted at a constant temperature until the first waveform appearance end point and analyzed (Japanese Patent Application No. 9-186273). In the present invention, by adopting such temperature control, oxygen in the sample metal can be accurately and clearly separated into surface contaminating oxygen and oxygen of oxide-based inclusions in the metal and analyzed.
[0027]
In addition, the present inventors, since the reaction temperature of the above-mentioned reaction is different for each type of oxide, by heating and reacting with the carbon source while precisely controlling the rate of temperature rise of the analysis sample, in the sample, It has been found that the CO gas can be extracted by reacting at different timings for each type of oxide, but by using this method, the CO gas extracted with the timing separated can be extracted into an inert gas and measured and analyzed sequentially. This makes it possible to calculate the amount of oxygen derived from the type of oxide that has reacted at a certain timing or the amount of the type of oxide. FIG. 3 shows an example of a graph displaying the amount of extracted oxygen (corresponding to the amount of extracted CO gas) obtained in this manner in time series. For example, if n types of oxides are contained in the analysis sample, a first waveform having a first peak and a second waveform having a second peak in the order of oxides that are easily reduced are referred to as a second waveform having a second peak. A waveform having n peaks in the form is obtained.
[0028]
The control of the temperature rising rate of the analysis sample is, specifically, while gradually increasing the temperature, a constant temperature from the appearance of the first peak of the amount of extracted oxygen or the amount of extracted CO gas to the end of the first waveform, The temperature gradually rises from the end of the first waveform to the appearance of the second peak, and further, the temperature from the appearance of the second peak to the end of the second waveform is kept at a constant temperature, and the temperature from the end of the second waveform to the third The temperature gradually rises until the appearance of the peak, and further, the temperature is kept constant from the appearance of the third peak to the end of the third waveform, and the temperature gradually rises from the end of the third waveform to the appearance of the fourth peak. As described above, a repeated pattern of raising the temperature and maintaining the temperature at a constant temperature is preferable.
[0029]
【Example】
Next, examples of the present invention will be described with reference to Table 1 together with comparative examples. In each case, a metal sample is dropped into a graphite crucible under an inert gas atmosphere, heated and melted, and CO gas is extracted from the molten bath into an inert gas flow to measure and analyze. This is an analysis of the amount of oxygen in the metal by the method.
[0030]
The analysis sample of Comparative Example 1 was a bearing steel having a carbon content of 1.0 mass%, and carbon was not deposited on the surface of the sample. The sample 1g was heated at a rate of 30 ° C./s from the heating start point 0 of the sample shown in FIG. 1 to the first waveform appearance end point B, and rapidly heated after the first waveform appearance end point B, The analysis was performed while maintaining the temperature at 2700 ° C. It is difficult to separate the first waveform corresponding to the amount of oxygen generated from the surface attached oxygen or the iron oxide from the second waveform corresponding to the amount of oxygen generated from the oxide-based inclusions, and the total amount of oxygen is 4.5 ppm. there were.
[0031]
The analysis sample of Example 1 of the present invention is a bearing steel containing the same amount of carbon and oxygen as Comparative Example 1. Before putting the sample into the analyzer, the vacuum degree of the deposition chamber is set to 3 × 10 −4 Pa, the voltage, current, and deposition time of the carbon deposition source are controlled by a vacuum deposition apparatus, and carbon is applied to the surface of the sample to obtain a sample surface area. 2 × 10 −8 g was deposited per 1 mm 2 . Other temperature raising conditions are the same as those in Comparative Example 1. As a result, the waveform 1 and the waveform 2 were clearly separated, and the amount of oxygen corresponding to the waveform 1 was 1.8 ppm, and the amount of oxygen corresponding to the waveform 2 was 2.7 ppm, indicating a total of 4.5 ppm. In Comparative Example 1, the waveform 1 corresponding to Example 1 did not appear, but the temperature or time at the appearance end point B of the waveform 1 in Comparative Example 1 was estimated and tested from the results of Example 1.
[0032]
The analytical sample of Comparative Example 2 was a carbon steel for mechanical structure having a carbon content of 0.30 mass%, and carbon was not deposited on the surface of the sample. The method of raising the temperature of the sample is the same as in Comparative Example 1. As in Comparative Example 1, it is difficult to separate waveform 1 corresponding to the amount of oxygen generated from the surface attached oxygen or iron oxide from waveform 2 corresponding to the amount of oxygen generated from the oxide-based inclusions. 9.3 ppm was shown.
[0033]
The analysis sample of Example 2 of the present invention is a carbon steel for machine structure containing the same amount of carbon and oxygen as Comparative Example 2. Before putting the sample into the analyzer, the vacuum degree of the deposition chamber is set to 3 × 10 −4 Pa, the voltage, current, and deposition time of the carbon deposition source are controlled by a vacuum deposition apparatus, and carbon is applied to the surface of the sample to obtain a sample surface area. 2 × 10 −7 g was deposited per 1 mm 2 . Other temperature raising conditions are the same as in Comparative Example 2. Waveforms 1 and 2 were clearly separated, and the amount of oxygen corresponding to waveform 1 was 2.2 ppm, the amount of oxygen corresponding to waveform 2 was 7.1 ppm, and the total oxygen value was 9.3 ppm.
[0034]
The analysis sample of Comparative Example 3 was a stainless steel having a carbon content of 0.007 mass%, and carbon was not deposited on the sample surface. The method of raising the temperature of the sample is the same as in Comparative Example 1. As in Comparative Example 1, it is difficult to separate the waveform 1 corresponding to the amount of oxygen generated from the surface attached oxygen or iron oxide from the waveform 2 corresponding to the amount of oxygen generated from the oxide-based inclusions. It showed 8.9 ppm.
[0035]
The analysis sample of Example 3 of the present invention is a stainless steel containing the same amount of carbon and oxygen as Comparative Example 3. Before putting the sample into the analyzer, the vacuum degree of the deposition chamber is set to 3 × 10 −4 Pa, the voltage, current, and deposition time of the carbon deposition source are controlled by a vacuum deposition apparatus, and carbon is applied to the surface of the sample to obtain a sample surface area. 1 × 10 −6 g was deposited per 1 mm 2 . Other temperature raising conditions are the same as those in Comparative Example 1. Waveforms 1 and 2 were clearly separated, and the amount of oxygen corresponding to waveform 1 was 1.6 ppm, the amount of oxygen corresponding to waveform 2 was 7.3 ppm, and the total oxygen value was 8.9 ppm.
[0036]
The separability between the waveform 1 and the waveform 2 is improved as the heating rate up to the appearance end point B of the waveform 1 is reduced.
[0037]
As described above, the method for analyzing a trace amount of oxygen in a metal according to the method of the present invention, regardless of the content of carbon in the analysis sample, was generated from oxygen or iron oxide attached to the surface of the metal of the high clean steel. The amount of contaminated oxygen and the amount of oxygen generated from oxide inclusions in the metal can be accurately separated and quantified.
[0038]
[Table 1]
Figure 0003553372
[0039]
【The invention's effect】
As described above, according to the method for analyzing a trace amount of oxygen in a metal of the present invention, oxygen in a metal is accurately separated and analyzed into surface contaminating oxygen and oxygen composed of oxide inclusions in the metal. It became possible to do.
[Brief description of the drawings]
FIG. 1 shows a first waveform indicating the amount of contaminating oxygen such as oxygen attached to the surface and oxygen generated from iron oxide, and a second waveform indicating the amount of oxygen generated from oxide-based inclusions in the sample metal. FIG. 6 is a diagram showing an extraction curve of FIG.
FIG. 2 can be separated into a first waveform indicating the amount of contaminating oxygen such as oxygen attached to the surface and oxygen generated from iron oxide and a second waveform indicating the amount of oxygen generated from oxide inclusions in the sample metal. It is a figure which shows the extraction curve of oxygen when there is no.
FIG. 3 is a diagram showing an example of a graph in which the amount of oxygen extracted by separating the timing for each type of oxide is displayed in chronological order.
[Explanation of symbols]
A: temperature or time at which oxygen starts to be generated from surface-attached oxygen or iron oxide B: temperature or time at which generation of oxygen from surface-attached oxygen or iron oxide is completed C: oxygen is generated from oxide-based inclusions Temperature or time D ... temperature or time when generation of oxygen from oxide-based inclusions is completed

Claims (2)

金属試料を不活性雰囲気中で加熱して炭素源と反応させ、前記金属試料中の酸素が前記炭素源と反応して発生するCOガスを測定・分析して反応酸素量を求め、金属中の酸素量を分析する方法において、前記金属試料として表面に還元剤を真空蒸着した金属試料を用いて分析することを特徴とする金属中の微量酸素分析方法。The metal sample is heated in an inert atmosphere to react with the carbon source, the oxygen in the metal sample reacts with the carbon source, and the generated CO gas is measured and analyzed to determine the amount of reactive oxygen. A method for analyzing the amount of oxygen in a metal, wherein the analysis is performed using a metal sample on which a reducing agent is vacuum-deposited on a surface as the metal sample. 金属試料表面の還元剤の付着量が1mm 当たり1×10 −8 g以上であることを特徴とする請求項1記載の金属中の微量分析方法。2. The method according to claim 1, wherein the amount of the reducing agent attached to the surface of the metal sample is 1 × 10 −8 g or more per 1 mm 2 .
JP15303098A 1998-06-02 1998-06-02 Analysis of trace amounts of oxygen in metals Expired - Fee Related JP3553372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15303098A JP3553372B2 (en) 1998-06-02 1998-06-02 Analysis of trace amounts of oxygen in metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15303098A JP3553372B2 (en) 1998-06-02 1998-06-02 Analysis of trace amounts of oxygen in metals

Publications (2)

Publication Number Publication Date
JPH11344487A JPH11344487A (en) 1999-12-14
JP3553372B2 true JP3553372B2 (en) 2004-08-11

Family

ID=15553443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15303098A Expired - Fee Related JP3553372B2 (en) 1998-06-02 1998-06-02 Analysis of trace amounts of oxygen in metals

Country Status (1)

Country Link
JP (1) JP3553372B2 (en)

Also Published As

Publication number Publication date
JPH11344487A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
Sharan et al. Interfacial tensions of liquid Fe-Ni alloys and stainless steels in contact with CaO-SiO2 ″AI2O3-based slags at 1550 C
Ishii et al. Deoxidation equilibrium of silicon in liquid nickel and nickel-iron alloys
JP3553372B2 (en) Analysis of trace amounts of oxygen in metals
Morohoshi et al. Effects of carbon and oxygen on Fe–C–O melt surface tension
EP0890839B1 (en) Method for analytically determining oxygen for each form of oxide
JP3492155B2 (en) Method for analyzing oxygen in metals
US4098576A (en) Method for analyzing the latent gas content of metal samples
CN113188862B (en) Method for measuring content of dissolved elements in molten steel
Jacob Solubility and activity of oxygen in liquid manganese
Ise et al. The effect of heating conditions on the removal of oxide film on steel surface by the inert gas fusion method
JP2004198144A (en) Method for analyzing composition and/or particle size of nonmetallic inclusion in metal sample
Radwitz et al. Investigation of slag compositions and pressure ranges suitable for electroslag remelting under vacuum conditions
JP2856006B2 (en) Trace oxygen analysis method for steel
JP3370572B2 (en) Analysis method for oxide inclusion oxygen in metals by type
JP3288800B2 (en) Oxygen determination method for reduced oxides contained in steelmaking slag
Milaré et al. Contribution to the study of the solid-state reaction of mercury with pure rhodium
JP3492162B2 (en) Analysis of trace oxygen in steel
JP3235884B2 (en) Method for quantitative analysis of oxygen in readily reducible metal oxides contained in steelmaking slag
JP3439974B2 (en) Method and apparatus for analyzing oxygen or oxide by type of oxide in analysis sample
JP4022347B2 (en) Analytical oxygen analysis method
JP3634046B2 (en) Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components
Shibaev et al. Deoxidation with silicon and the control of oxide inclusions in electrical steels
Ueda et al. Phase diagram study on the Al2O3-CaO-TiO2 system
JPH0954078A (en) Measuring method for cao content in steel
Yasuhara et al. Development of a Pre‐Treatment Procedure for the Determination of Trace Amount of Bulk Oxygen in Iron and Steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees