JP3492155B2 - Method for analyzing oxygen in metals - Google Patents

Method for analyzing oxygen in metals

Info

Publication number
JP3492155B2
JP3492155B2 JP18627397A JP18627397A JP3492155B2 JP 3492155 B2 JP3492155 B2 JP 3492155B2 JP 18627397 A JP18627397 A JP 18627397A JP 18627397 A JP18627397 A JP 18627397A JP 3492155 B2 JP3492155 B2 JP 3492155B2
Authority
JP
Japan
Prior art keywords
oxygen
waveform
metal
appearance
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18627397A
Other languages
Japanese (ja)
Other versions
JPH1130613A (en
Inventor
嘉夫 塗
知子 伊勢
恵之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP18627397A priority Critical patent/JP3492155B2/en
Priority to EP98112866A priority patent/EP0890839B1/en
Priority to US09/113,192 priority patent/US6143571A/en
Priority to DE69835857T priority patent/DE69835857T2/en
Publication of JPH1130613A publication Critical patent/JPH1130613A/en
Application granted granted Critical
Publication of JP3492155B2 publication Critical patent/JP3492155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は金属中の酸素量を不
活性ガス搬送融解−赤外線吸収法によって分析する分野
に所属する技術であって、金属表面に生成した酸化膜の
汚染を前処理することなく、金属中の酸素を表面汚染酸
素と金属中の酸化物系介在物から構成される酸素に分離
して分析する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a technique belonging to the field of analyzing the amount of oxygen in a metal by an inert gas carrier melting-infrared absorption method, and pretreats the contamination of an oxide film formed on a metal surface. Without being concerned, the present invention relates to a method of separating oxygen in a metal into surface contamination oxygen and oxygen composed of oxide-based inclusions in the metal and analyzing the separated oxygen.

【0002】[0002]

【従来の技術】酸化物の形態を制御した極低酸素鋼や高
純度鉄の開発が進められており、ppm(百万分率)レ
ベルの微量の酸素濃度を精度よく定量することが要求さ
れている。そこで、微量酸素の分析時には試料表面に生
成した酸化膜などの汚染を除去する必要がある。この酸
化膜などの汚染を除去する酸素分析時の前処理方法とし
て、電解研磨法あるいは化学研磨法が用いられている。
2. Description of the Related Art Development of ultra-low oxygen steel and high-purity iron whose oxide morphology is controlled is in progress, and it is required to accurately quantify a minute amount of oxygen concentration of ppm (parts per million) level. ing. Therefore, it is necessary to remove the contamination such as the oxide film generated on the sample surface when analyzing the trace oxygen. An electrolytic polishing method or a chemical polishing method is used as a pretreatment method at the time of oxygen analysis for removing the contamination such as the oxide film.

【0003】電解研磨法は、10%アセチルサルチル酸
−1%テトラメチルアンモニウムクロライド−メチルア
ルコール溶液や4%スルフォサルチル酸−1%塩化リチ
ウム−メチルアルコール溶液などの非水溶媒系電解液を
用いて試料表面に生成した酸化膜などの汚染物を除去す
る方法である。化学研磨法は分析用金属試料をフッ化水
素−過酸化水素(HF−H22 )などの溶液中に浸漬
し、試料表面に生成した酸化膜などの汚染を除去する方
法である(例えば、安原久雄ら:CAMP・ISIJ,
10(1997),p709)。
The electropolishing method uses a non-aqueous solvent type electrolytic solution such as a 10% acetylsalicylic acid-1% tetramethylammonium chloride-methyl alcohol solution or a 4% sulfosalicylic acid-1% lithium chloride-methyl alcohol solution. This is a method of removing contaminants such as an oxide film generated on the sample surface. The chemical polishing method is a method of immersing a metal sample for analysis in a solution of hydrogen fluoride-hydrogen peroxide (HF-H 2 O 2 ) or the like to remove contamination such as an oxide film formed on the sample surface (for example, , Yasuhara and others: CAMP ISIJ,
10 (1997), p709).

【0004】ところが、これらの試料表面酸化物として
存在する酸素量は一定でなく、例えば研磨溶液、研磨時
間等により除去される表面酸化物の量は変化するため分
析値のばらつきも大きい。また、試料表面を電解研磨ま
たは化学研磨する方法は試料の前処理が煩雑となり、ま
た時間もかかる。
However, the amount of oxygen present as surface oxides of these samples is not constant, and the amount of surface oxides removed varies depending on, for example, the polishing solution, polishing time, etc., so that the analysis values vary widely. Further, in the method of electrolytically polishing or chemically polishing the surface of the sample, pretreatment of the sample becomes complicated and it takes time.

【0005】以上のような問題点を解決する方法とし
て、鉄鋼試料表面をグラインダー、ヤスリ等で研磨後、
該試料中の微量酸素を加熱抽出して測定する方法におい
て、該研削処理後の試料を炭素坩堝にいれ900℃以上
1400℃以下の温度で予備加熱を行い、試料表面の付
着酸素や酸化膜で汚染された酸素と酸化物系介在物から
構成される金属中の酸素を分離して分析することを特徴
とする鉄鋼中の微量酸素分析方法が提案されている(特
開平6−148170)。
As a method for solving the above problems, after polishing the surface of a steel sample with a grinder, a file, etc.,
In a method of measuring by extracting a trace amount of oxygen in the sample by heating, the sample after the grinding treatment is put in a carbon crucible and preheated at a temperature of 900 ° C. or higher and 1400 ° C. or lower to remove oxygen or an oxide film attached to the sample surface. There has been proposed a method for analyzing a trace amount of oxygen in steel, which is characterized by separating and analyzing oxygen in a metal composed of contaminated oxygen and oxide-based inclusions (JP-A-6-148170).

【0006】[0006]

【発明が解決しようとする課題】ところが、前記提案の
方法(特開平6−148170)で酸素量の分析を行う
と、酸化物系介在物の種類、量、粒径分布により異なる
が、酸化物系介在物から酸素が発生し始める点Dが第1
の波形に重なり、表面付着酸素や鉄酸化物から発生した
酸素量に包含され、酸化物系介在物から発生した酸素量
のみを正確に分析することが出来ないと言う問題点が明
らかになった。
However, when the amount of oxygen is analyzed by the above-mentioned method (Japanese Patent Laid-Open No. 6-148170), the oxide is different depending on the type, amount and particle size distribution of oxide inclusions. The first point is point D where oxygen starts to be generated from the system inclusions.
It was found that there was a problem that it was not possible to accurately analyze only the amount of oxygen generated from oxide-based inclusions, which was included in the amount of oxygen adhering to the surface and the amount of oxygen generated from iron oxides. .

【0007】本発明は、前記の問題点を解決するために
なされたもので、金属中の酸素量を分析する際に、金属
表面に生成した酸化膜の汚染を前処理することなく、酸
化膜で汚染された酸素と酸化物系介在物から構成される
金属中の酸素を精度よく分離して分析する方法を提供す
ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and when analyzing the amount of oxygen in a metal, the oxide film formed on the metal surface is not contaminated, and the oxide film is not pretreated. It is an object of the present invention to provide a method for accurately separating and analyzing oxygen in a metal composed of oxygen contaminated with oxygen and oxide-based inclusions.

【0008】[0008]

【課題を解決するための手段】本発明者は金属中の酸素
量を分析する際に、金属表面に生成した酸化膜の汚染を
前処理することなく、汚染された酸素と金属中の酸化物
系介在物から構成される酸素とに分離して分析する方法
について研究を重ねた。その結果、金属中の酸素量を分
析する方法において、金属表面に生成した酸化膜の汚染
を前処理することなく、汚染された酸素と金属中の酸化
物系介在物から構成される酸素とに分離して分析するに
は、汚染された酸化物を分解する時の温度域と酸化物系
介在物を分解する時の温度域の金属の昇温条件が重要で
あるという新しい知見を得、本発明を完成するに至った
ものである。
The present inventor, when analyzing the amount of oxygen in a metal, does not pre-treat the contamination of the oxide film formed on the metal surface, but does not pre-treat the contaminated oxygen and the oxide in the metal. The research was repeated on the method of separating and analyzing into oxygen composed of system inclusions. As a result, in the method of analyzing the amount of oxygen in the metal, the polluted oxygen and the oxygen composed of the oxide-based inclusions in the metal are converted into the oxygen without pretreatment of the oxide film formed on the metal surface. In order to separate and analyze, we obtained new knowledge that the temperature rising conditions of the metal in the temperature range when decomposing contaminated oxides and the temperature range when decomposing oxide inclusions are important. The invention has been completed.

【0009】本発明は上記課題を解決するものであり、
その要旨は特許請求の範囲記載の通りである。すなわ
ち、 1)黒鉛坩堝中に金属試料を投下、加熱溶融し、その溶
融浴からガスを真空抽出して分析する不活性ガス搬送融
解−赤外線吸収法によって金属中の全酸素量を複数の波
形に分離して分析する方法において、前記金属試料の加
熱開始点0から第1の波形出現開始点Aおよび第1の波
形のピーク出現点Bまでを20℃/s以下の昇温速度
加熱し、第1の波形のピーク出現点Bから第1の波形出
現終了点Cまでを一定温度とし、第1の波形出現完了後
はさらに昇温して加熱溶融して分析することを特徴とす
る金属中の酸素分析方法。
The present invention is intended to solve the above problems,
The summary is as described in the claims. That is, 1) Injecting a metal sample into a graphite crucible, heating and melting it, and vacuum-extracting the gas from the melting bath to analyze and carry out an inert gas transfer melting-infrared absorption method to change the total oxygen content in the metal into a plurality of waveforms. In the method of separating and analyzing , the addition of the metal sample is performed.
From the heat start point 0 to the first waveform appearance start point A and the first waveform peak appearance point B at a temperature rising rate of 20 ° C./s or less.
The method is characterized in that heating is performed and the temperature from the peak appearance point B of the first waveform to the end point C of the first waveform appearance is set to a constant temperature, and after the completion of appearance of the first waveform, the temperature is further raised to heat melting for analysis. Method for analyzing oxygen in metals.

【0010】2)黒鉛坩堝中に金属試料を投下、加熱溶
融し、その溶融浴からガスを真空抽出して分析する不活
性ガス搬送融解−赤外線吸収法によって金属中の全酸素
量を複数の波形に分離して分析する方法において、前記
金属試料表面に生成した酸化膜の汚染を前処理して除去
することなく分析することを特徴とする請求項1に記載
の金属中の酸素分析方法。
2) Injecting a metal sample into a graphite crucible, heating and melting it, and extracting the gas from the melting bath by vacuum extraction for analysis. to a method of separating analysis, oxygen of the <br/> metal in metal according to claim 1, the contamination of the sample surface to the generated oxide film pretreated, characterized in that analyzed without removing Analysis method.

【0011】[0011]

【発明の実施の形態】以下、本発明方法について詳細に
発明の実施形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below with respect to the method of the present invention.

【0012】金属表面の汚染酸素の混入源は、1)空気
中から吸着した酸素、2)金属を所定の重量に調整する
ときに鋸などで切断またはグラインダーなどで研削する
とき、金属の表面の温度が上昇しこれが原因で表面が酸
化して生成した鉄酸化物としての酸素、である。この
中、後者の鉄酸化物は切断や研削温度、時間などによ
り、酸化物の種類とその量は異なるが、その種類をオー
ジェ電子分光装置によって調査したところFe23
Fe34 ,FeOなどで構成されていることが判明し
た。
Contamination sources of oxygen on the metal surface are 1) oxygen adsorbed from the air, 2) when cutting the metal with a saw or grinding with a grinder to adjust the metal to a predetermined weight. It is oxygen as iron oxide, which is generated by the surface oxidation due to the rise in temperature. Among these, the latter iron oxides differ in the type and amount of oxides due to cutting, grinding temperature, time, etc., but when the types were investigated by Auger electron spectroscopy, Fe 2 O 3 ,
It was found to be composed of Fe 3 O 4 , FeO and the like.

【0013】不活性ガス搬送融解−赤外線吸収法によっ
て金属中の酸素量を分析する際の黒鉛坩堝内では、MO
+C=M+CO(M:金属、O:酸素、C:炭素)の反
応が起こっていると考えられている。鉄酸化物の分解す
る温度は酸化物の種類と坩堝内のCO分圧により異な
り、熱力学的平衡計算や実測結果によると、概ね400
〜1100℃の範囲である。一方、酸化物系介在物の熱
力学的平衡温度は、これも酸化物の種類、坩堝内のCO
分圧によって異なるため一概に論じられないが、一般的
には鉄酸化物の分解温度よりも高温側であるが、金属の
加熱条件によっては酸化物系介在物の炭素による還元が
鉄酸化物の還元が起こる低温度でも起こり、COガスが
発生すると言う新しい知見を得た。本発明はこの知見を
巧みに活用したものである。この酸化物の種類別に抽出
された酸素の抽出曲線を図示すると図1のようになる。
第1のピークの見られる波形は空気中から吸着した酸素
や鉄酸化物から発生した酸素量に相当する抽出曲線であ
り、また第2のピークの見られる波形は酸化物系介在物
から発生した酸素量に相当する抽出曲線である。
In the graphite crucible used for the analysis of the amount of oxygen in the metal by the inert gas carrier melting-infrared absorption method, the MO
It is considered that a reaction of + C = M + CO (M: metal, O: oxygen, C: carbon) is occurring. The temperature at which iron oxide decomposes varies depending on the type of oxide and the CO partial pressure in the crucible, and is approximately 400 according to thermodynamic equilibrium calculation and measurement results.
Is in the range of to 1100 ° C. On the other hand, the thermodynamic equilibrium temperature of oxide-based inclusions depends on the type of oxide and CO in the crucible.
Although it cannot be generally discussed because it depends on the partial pressure, it is generally at a temperature higher than the decomposition temperature of iron oxides, but depending on the heating conditions of the metal, the reduction of oxide inclusions by carbon may cause the reduction of iron oxides. We have obtained a new finding that CO gas is generated even at a low temperature at which reduction occurs. The present invention skillfully utilizes this knowledge. FIG. 1 shows the extraction curves of oxygen extracted according to the type of oxide.
The waveform with the first peak is an extraction curve corresponding to the amount of oxygen adsorbed from the air and the amount of oxygen generated from iron oxide, and the waveform with the second peak is generated from oxide inclusions. It is an extraction curve corresponding to the amount of oxygen.

【0014】この二つの酸素抽出曲線は重なり合うこと
なく、互いに離れれば離れるほど空気中から吸着した酸
素や鉄酸化物から発生した酸素量と酸化物系介在物から
発生した酸素量が精度良く分離出来ることになる。この
ための条件が本願請求項1に記載した内容である。
The two oxygen extraction curves do not overlap with each other, and the more they are separated from each other, the more accurately the amount of oxygen adsorbed from the air and the amount of oxygen generated from iron oxide and the amount of oxygen generated from oxide inclusions can be separated. It will be. The conditions for this are the contents described in claim 1 of the present application.

【0015】第1の波形が発生し始める温度は昇温速度
が速すぎると第1の波形と第2の波形が重なり易くなり
波形の分離が困難になる。第1の波形が発生し始めるま
での昇温速度は、遅ければ遅いほど熱力学的な平衡に近
い条件が達成され、第1の波形出現開始点Aの出現温度
の確認が容易になると考えられるが、分析効率と立ち上
がり時期の判定の容易さから20℃/s以下が好まし
い。この昇温速度で連続的に加熱溶融していくとやがて
鉄酸化物などの炭素による還元によるCO発生量が最大
になる。COガス発生量が最大値になると温度を一定と
してガス抽出を完了させる。第1の波形のピーク出現点
Bから第1の波形出現終了点Cまでの温度を一定に保持
するのは、この間を連続的に昇温し続けると、金属中の
酸化物系介在物の量、大きさ、組成、存在位置などによ
って異なるが、第1の波形が出現中の温度または時間内
に酸化物系介在物の分解が起こるのを防止する為であ
る。
When the temperature at which the first waveform starts to occur is too fast, the first waveform and the second waveform are likely to overlap with each other, making it difficult to separate the waveforms. It is considered that the slower the temperature rising rate until the first waveform starts to be generated, the closer the condition to thermodynamic equilibrium is achieved, and the appearance temperature of the first waveform appearance start point A can be easily confirmed. However, 20 ° C./s or less is preferable from the viewpoint of analysis efficiency and easiness of determination of rising timing. When the material is continuously heated and melted at this heating rate, the amount of CO generated due to the reduction by carbon such as iron oxide is maximized. When the CO gas generation amount reaches the maximum value, the temperature is kept constant and the gas extraction is completed. The temperature from the peak appearance point B of the first waveform to the end point C of the first waveform appearance is kept constant because the amount of oxide inclusions in the metal is increased when the temperature is continuously raised during this period. The reason for this is to prevent the decomposition of oxide-based inclusions within the temperature or time during which the first waveform appears, although it depends on the size, composition, location, etc.

【0016】次いで、この第1の波形出現完了後は、さ
らに昇温して、酸化物系介在物を迅速に分解させ、酸化
物系介在物量に相当する酸素抽出曲線である第2の波形
を得れば良い。
After the completion of the appearance of the first waveform, the temperature is further raised to rapidly decompose the oxide inclusions, and the second waveform, which is an oxygen extraction curve corresponding to the amount of oxide inclusions, is formed. Get it.

【0017】以上に述べたように、黒鉛坩堝中に金属試
料を投下、加熱溶解し、その溶融浴からガスを抽出して
分析する不活性ガス搬送融解−赤外線吸収法によって金
属中の全酸素量を複数の波形に分離して分析する際に、
第1の波形出現開始点Aから第1の波形のピーク出現点
Bまでを20℃/s以下の昇温速度、第1の波形のピー
ク出現点Bから第1の波形出現終了点Cまでを一定温度
とし、第1の波形出現完了後はさらに昇温して加熱溶融
して分析することにより、金属試料表面に生成した酸化
膜の汚染を前処理することなく、金属中の酸素を表面汚
染酸素と金属中の酸化物系介在物から構成される酸素に
精度よく分離して分析する事が出来るようになった。な
お、第1の波形出現開始点Aから第1の波形のピーク出
現点Bまでの昇温速度は20℃/s以下が適当である
が、5℃/s以下が特に好ましい。又、第1の波形出現
完了後の昇温速度は特に限定されるものではないが、分
析効率からは昇温速度の速い方が好ましい。
As described above, a total amount of oxygen in a metal is measured by an inert gas carrier melting-infrared absorption method in which a metal sample is placed in a graphite crucible, heated and melted, and a gas is extracted from the melting bath for analysis. When separating and analyzing multiple waveforms,
From the first waveform appearance start point A to the first waveform peak appearance point B, the temperature rising rate is 20 ° C./s or less, and from the first waveform peak appearance point B to the first waveform appearance end point C. After the completion of the appearance of the first waveform, the temperature is kept constant, and the temperature is further raised to heat and melt it for analysis, so that the oxygen in the metal is not contaminated on the surface without pretreatment of the contamination of the oxide film formed on the surface of the metal sample. It has become possible to accurately separate and analyze oxygen and oxygen composed of oxide-based inclusions in metals. The heating rate from the first waveform appearance starting point A to the peak appearance point B of the first waveform is appropriately 20 ° C./s or less, but 5 ° C./s or less is particularly preferable. The heating rate after the completion of appearance of the first waveform is not particularly limited, but a higher heating rate is preferable in terms of analysis efficiency.

【0018】また、金属試料の加熱開始から第1の波形
出現開始点Aまでの昇温速度も特に限定されるものでは
ないが、分析対象金属の種類によって異なる場合のある
第1の波形出現開始点Aの出現時間または温度が経験的
に把握できるようになれば、分析効率などから昇温速度
の速い方が好ましい。通常、第1の波形出現開始点Aの
温度は400℃以上である場合が多い。したがって、4
00℃程度までは、昇温速度を例えば20℃/s以上と
しても差し支えない。
The temperature rising rate from the start of heating the metal sample to the first waveform appearance start point A is not particularly limited, but the first waveform appearance start which may vary depending on the type of the metal to be analyzed. If it becomes possible to empirically understand the appearance time or the temperature of the point A, it is preferable that the rate of temperature increase is high in view of analysis efficiency and the like. Usually, the temperature at the first waveform appearance starting point A is often 400 ° C. or higher. Therefore, 4
Up to about 00 ° C, the heating rate may be 20 ° C / s or more.

【0019】[0019]

【実施例】つぎに本発明の実施例を比較例と共に表1に
示して説明する。各例は黒鉛坩堝中に金属試料を投下、
加熱溶融し、その溶融浴からガスを抽出して分析する不
活性ガス搬送融解−赤外線吸収法によって金属中の酸素
量を分析したものである。
EXAMPLES Next, examples of the present invention will be described in Table 1 together with comparative examples. In each example, a metal sample was dropped in the graphite crucible,
The amount of oxygen in the metal is analyzed by an inert gas carrier melting-infrared absorption method in which the material is heated and melted, and a gas is extracted from the melting bath for analysis.

【0020】比較例1は軸受鋼試料1gをHF−H2
2 溶液に浸漬した後、図2に示した試料の加熱開始点0
から第1の波形のピーク出現点B間の昇温速度を30℃
/s、第1の波形のピーク出現点Bから第1の波形出現
終了点Cも30℃/s、第1の波形出現終了点Cより後
は50℃/sで分析した。表面付着酸素や鉄酸化物から
発生した酸素量に相当する第1波形と酸化物系介在物か
ら発生した酸素量に相当する第2波形の分離は困難であ
り、全酸素量は4.1ppmであった。本発明の実施例
1は比較例1と同一の軸受鋼であり、該軸受鋼試料1g
を前処理を行わず、図1に示した試料の加熱開始点0か
ら第1の波形のピーク出現点B間の昇温速度を15℃/
s、第1の波形のピーク出現点Bから第1の波形出現終
了点Cの昇温速度を0℃/s、第1の波形出現終了点C
より後は昇温速度50℃/sで分析した。第1波形に相
当する酸素量は1.8ppm、第2波形に相当する酸素
量は3.1ppm、合計4.9ppmであった。これよ
り、いま比較例1の軸受鋼中の酸化物系介在物からなる
酸素量を3.1ppmとすると(比較例1の全酸素量)
−(実施例1の第2波形の酸素量)=4.1−3.1=
1.0ppmになる。したがって、この1.0ppmの
酸素量がHF−H22 溶液で化学研磨しても充分に除
去できずに残存したと推定される。
In Comparative Example 1, 1 g of a bearing steel sample was used as HF-H 2 O.
2 After soaking in the solution, the heating start point 0 of the sample shown in FIG.
From the peak appearance point B of the first waveform to 30 ° C
/ S, the first waveform appearance end point C from the peak appearance point B of the first waveform was 30 ° C./s, and after the first waveform appearance end point C was analyzed at 50 ° C./s. It is difficult to separate the first waveform corresponding to the amount of oxygen generated from surface-attached oxygen and iron oxide and the second waveform corresponding to the amount of oxygen generated from oxide-based inclusions, and the total amount of oxygen is 4.1 ppm. there were. Example 1 of the present invention is the same bearing steel as Comparative Example 1, and the bearing steel sample 1g
Without pretreatment, the temperature rising rate between the heating start point 0 and the peak appearance point B of the first waveform shown in FIG.
s, the temperature rising rate from the peak appearance point B of the first waveform to the first waveform appearance end point C is 0 ° C./s, the first waveform appearance end point C
After that, analysis was performed at a heating rate of 50 ° C./s. The oxygen amount corresponding to the first waveform was 1.8 ppm, the oxygen amount corresponding to the second waveform was 3.1 ppm, and the total amount was 4.9 ppm. From this, assuming that the oxygen content of oxide-based inclusions in the bearing steel of Comparative Example 1 is 3.1 ppm (total oxygen content of Comparative Example 1).
-(Amount of oxygen in the second waveform of Example 1) = 4.1-3.1 =
It becomes 1.0 ppm. Therefore, it is presumed that the oxygen amount of 1.0 ppm could not be sufficiently removed even by chemical polishing with the HF-H 2 O 2 solution and remained.

【0021】比較例2は機械構造用炭素鋼1gを4%ス
ルフォサルチル酸−1%塩化リチウム−メチルアルコー
ル溶液の非水溶媒電解液、1Vの電解電位、500mA
の電流、4分の電解時間の条件で電解研磨した後、メタ
ノール溶液中で8分超音波洗浄した後、酸素分析を行っ
た。図2に示した試料の加熱開始点0から第1の波形ピ
ーク出現点B間の昇温速度を50℃/s、第1の波形ピ
ーク出現点Bから第1の波形出現終了点Cも50℃/
s、第1の波形出現終了点Cより後は60℃/sで分析
した。比較例1と同様、表面付着酸素や鉄酸化物から発
生した酸素量に相当する第1波形と酸化物系介在物から
発生した酸素量に相当する第2波形の分離は困難であ
り、全酸素量は8.4ppmを示した。
In Comparative Example 2, 1 g of carbon steel for machine structure was used as a non-aqueous solvent electrolyte of 4% sulfosalicylic acid-1% lithium chloride-methyl alcohol solution, electrolytic potential of 1 V, 500 mA.
After electropolishing under conditions of current of 4 minutes and electrolysis time of 4 minutes, ultrasonic cleaning was performed in a methanol solution for 8 minutes, and then oxygen analysis was performed. The heating rate between the heating start point 0 and the first waveform peak appearance point B of the sample shown in FIG. 2 is 50 ° C./s, and the first waveform peak appearance point B to the first waveform appearance end point C is also 50. ℃ /
s, after the first waveform appearance end point C, analysis was performed at 60 ° C./s. As in Comparative Example 1, it is difficult to separate the first waveform corresponding to the amount of oxygen generated from surface-adhered oxygen or iron oxide and the second waveform corresponding to the amount of oxygen generated from oxide-based inclusions. The amount was 8.4 ppm.

【0022】本発明の実施例2は比較例2と同一の機械
構造用炭素鋼を分析したものである。金属試料の前処理
は行わなかった。図1に示した試料の加熱開始点0から
第1の波形ピーク出現点B間の昇温速度を10℃/s、
第1の波形ピーク出現点Bから第1の波形出現終了点C
は0℃/s、第1の波形出現終了点Cより後の昇温速度
は70℃/sで分析した。第1波形に相当する酸素量は
2.5ppm、第2波形に相当する酸素量は7.3pp
m、合計9.8ppmであった。したがって、前記と同
様に、8.4−7.3=1.1ppmは電解研磨をして
も除去されずに残存したものと推定される。このように
分析前の種々の前処理によっても試料表面に生成した酸
化膜などの汚染物を完全に除去することは困難であり、
また同一前処理方法によっても全酸素量は一定せず分析
値にばらつきを生じた。
Example 2 of the present invention is an analysis of the same carbon steel for machine structure as Comparative Example 2. No pretreatment of the metal sample was performed. The heating rate from the heating start point 0 of the sample shown in FIG. 1 to the first waveform peak appearance point B is 10 ° C./s,
From the first waveform peak appearance point B to the first waveform appearance end point C
Was 0 ° C./s, and the temperature rising rate after the first waveform appearance end point C was 70 ° C./s. The amount of oxygen corresponding to the first waveform is 2.5 ppm, and the amount of oxygen corresponding to the second waveform is 7.3 pp
m, and the total was 9.8 ppm. Therefore, similarly to the above, it is estimated that 8.4-7.3 = 1.1 ppm remained without being removed even by electrolytic polishing. As described above, it is difficult to completely remove contaminants such as an oxide film generated on the sample surface by various pretreatments before analysis.
Even with the same pretreatment method, the total oxygen amount was not constant and the analysis values varied.

【0023】比較例3は軸受鋼を比較例1のような化学
研磨や比較例2のような電解研磨などの前処理は施さ
ず、図1の試料の加熱開始点0〜第1の波形ピーク出現
点B、第1の波形ピーク出現点B〜第1の波形出現終了
点Cの昇温速度を50℃/s、Cより後も50℃/sで
分析した。表面付着酸素や鉄酸化物から発生した酸素量
に相当する第1波形と酸化物系介在物から発生した酸素
量に相当する第2波形は図3に示したように分離出来ず
完全に重なった。実施例3は比較例3と同一の軸受鋼で
あり、該軸受鋼試料1gを前処理を行わず、図1に示し
た試料の加熱開始点0から第1の波形のピーク出現点B
間の昇温速度を5℃/s、第1の波形のピーク出現点B
から第1の波形出現終了点Cを0℃/s、第1の波形出
現終了点Cより後は昇温速度100℃/sで分析した。
第1波形に相当する酸素量は2.3ppm、第2波形に
相当する酸素量は2.2ppm、合計4.5ppmであ
った。これより、いま比較例3の軸受鋼中の酸化物系介
在物からなる酸素量を2.2ppmとすると(比較例3
の全酸素量)−(実施例3の第2波形の酸素量)=4.
9−2.2=2.7ppmになる。したがって、この
2.7ppmの酸素量が表面付着酸素や鉄酸化物から発
生した酸素量に相当すると考えられる。
In Comparative Example 3, the bearing steel was not subjected to pretreatment such as chemical polishing as in Comparative Example 1 and electrolytic polishing as in Comparative Example 2, but the heating starting point of the sample in FIG. The temperature rising rates of the appearance point B and the first waveform peak appearance point B to the first waveform appearance end point C were analyzed at 50 ° C./s, and 50 ° C./s after C. The first waveform corresponding to the amount of oxygen generated from surface-attached oxygen and iron oxide and the second waveform corresponding to the amount of oxygen generated from oxide inclusions could not be separated and completely overlapped as shown in FIG. . Example 3 is the same bearing steel as Comparative Example 3, and the bearing steel sample 1g was not pretreated, and the heating start point 0 of the sample shown in FIG.
The temperature rising rate is 5 ° C./s, the peak appearance point B of the first waveform
Therefore, the first waveform appearance end point C was analyzed at 0 ° C./s, and the temperature after the first waveform appearance end point C was analyzed at 100 ° C./s.
The amount of oxygen corresponding to the first waveform was 2.3 ppm, the amount of oxygen corresponding to the second waveform was 2.2 ppm, and the total amount was 4.5 ppm. From this, it is now assumed that the oxygen content of oxide-based inclusions in the bearing steel of Comparative Example 3 is 2.2 ppm (Comparative Example 3
Total oxygen amount) − (oxygen amount of the second waveform of Example 3) = 4.
It becomes 9-2.2 = 2.7 ppm. Therefore, it is considered that the oxygen amount of 2.7 ppm corresponds to the oxygen amount generated from surface-adhered oxygen and iron oxide.

【0024】実施例1から3は本発明実施例である。表
面付着酸素や鉄酸化物から発生した酸素量に相当する第
1波形と酸化物系介在物から発生した酸素量に相当する
第2波形は明瞭に分離できた。また同一鋼種を数個繰り
返し分析したが、分析値のばらつきはほとんど見られな
かった。
Examples 1 to 3 are examples of the present invention. The first waveform corresponding to the amount of oxygen generated from surface-attached oxygen and iron oxide and the second waveform corresponding to the amount of oxygen generated from oxide inclusions could be clearly separated. In addition, when several identical steel types were repeatedly analyzed, there was almost no variation in the analytical values.

【0025】以上に示したように本発明の方法による分
析方法は、試料の化学研磨や電解研磨法などの前処理を
施すことなく、金属の表面付着酸素や鉄酸化物から発生
した汚染酸素量と酸化物系介在物から発生した酸素量を
精度よく分離して定量化出来る。
As described above, according to the analysis method of the present invention, the amount of contaminated oxygen generated from the surface-attached oxygen of a metal or iron oxide can be obtained without pretreatment such as chemical polishing or electrolytic polishing of a sample. And the amount of oxygen generated from oxide inclusions can be accurately separated and quantified.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上説明したように、本発明の分析方法
により金属表面に生成した酸化膜の汚染を前処理するこ
となく、金属中の酸素を表面汚染酸素と金属中の酸化物
系介在物から構成される酸素に分離して分析することが
可能となった。
As described above, the oxygen in the metal is not contaminated by the pretreatment of the oxide film formed on the metal surface by the analysis method of the present invention, and the surface contamination oxygen and the oxide-based inclusions in the metal are included. It became possible to separate and analyze into oxygen composed of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の酸素の抽出曲線を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing an oxygen extraction curve of an example of the present invention.

【図2】比較例の酸素の抽出曲線を示す説明図である。FIG. 2 is an explanatory diagram showing an oxygen extraction curve of a comparative example.

【図3】比較例の酸素の抽出曲線を示す説明図である。FIG. 3 is an explanatory diagram showing an oxygen extraction curve of a comparative example.

【符号の説明】[Explanation of symbols]

A…表面付着酸素や鉄酸化物から酸素が発生し始める温
度または時間 B…最大ピーク出現点 C…表面付着酸素や鉄酸化物からの酸素の発生が完了す
る温度または時間 D…酸化物系介在物から酸素が発生し始める温度または
時間 E…酸化物系介在物からの酸素の発生が完了する温度ま
たは時間
A ... Temperature or time at which oxygen starts to be generated from surface-attached oxygen or iron oxide B ... Maximum peak appearance point C ... Temperature or time at which generation of oxygen from surface-attached oxygen or iron oxide is completed D ... Oxide-based intervention Temperature or time when oxygen starts to be generated from an object E ... Temperature or time when generation of oxygen from an oxide inclusion is completed

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 33/20 G01J 3/42 G01N 21/35 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 33/20 G01J 3/42 G01N 21/35

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 黒鉛坩堝中に金属試料を投下、加熱溶融
し、その溶融浴からガスを真空抽出して分析する不活性
ガス搬送融解−赤外線吸収法によって金属中の全酸素量
を複数の波形に分離して分析する方法において、前記金
属試料の加熱開始点0から第1の波形出現開始点Aおよ
び第1の波形のピーク出現点Bまでを20℃/s以下の
昇温速度で加熱し、第1の波形のピーク出現点Bから第
1の波形出現終了点Cまでを一定温度とし、第1の波形
出現完了後はさらに昇温して加熱溶融して分析すること
を特徴とする金属中の酸素分析方法。
1. An inert gas carrier melting-infrared absorption method in which a metal sample is placed in a graphite crucible, heated and melted, and a gas is extracted from the melting bath by vacuum extraction to analyze the total oxygen content in the metal in a plurality of waveforms. a method of separating analysis, the gold
From the heating start point 0 of the genus sample to the first waveform appearance start point A and the first waveform peak appearance point B are heated at a temperature rising rate of 20 ° C./s or less, and the first waveform peak appearance point B is obtained. To a first waveform appearance end point C is kept at a constant temperature, and after completion of the appearance of the first waveform, the temperature is further raised to heat, melt, and analyze the oxygen in the metal.
【請求項2】 黒鉛坩堝中に金属試料を投下、加熱溶融
し、その溶融浴からガスを真空抽出して分析する不活性
ガス搬送融解−赤外線吸収法によって金属中の全酸素量
を複数の波形に分離して分析する方法において、前記
属試料表面に生成した酸化膜の汚染を前処理して除去す
ることなく分析することを特徴とする請求項1に記載の
金属中の酸素分析方法。
2. An inert gas carrier melting-infrared absorption method in which a metal sample is placed in a graphite crucible, heated and melted, and a gas is extracted from the melting bath by vacuum extraction to analyze the total oxygen content in the metal in a plurality of waveforms. In the method for separating and analyzing the metal sample according to claim 1, wherein the contamination of the oxide film formed on the surface of the metal sample is analyzed without being pretreated and removed. Oxygen analysis method.
JP18627397A 1997-07-11 1997-07-11 Method for analyzing oxygen in metals Expired - Fee Related JP3492155B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18627397A JP3492155B2 (en) 1997-07-11 1997-07-11 Method for analyzing oxygen in metals
EP98112866A EP0890839B1 (en) 1997-07-11 1998-07-10 Method for analytically determining oxygen for each form of oxide
US09/113,192 US6143571A (en) 1997-07-11 1998-07-10 Method for analytically determining oxygen for each form of oxide
DE69835857T DE69835857T2 (en) 1997-07-11 1998-07-10 Method for analytically detecting oxygen for each oxide form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18627397A JP3492155B2 (en) 1997-07-11 1997-07-11 Method for analyzing oxygen in metals

Publications (2)

Publication Number Publication Date
JPH1130613A JPH1130613A (en) 1999-02-02
JP3492155B2 true JP3492155B2 (en) 2004-02-03

Family

ID=16185421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18627397A Expired - Fee Related JP3492155B2 (en) 1997-07-11 1997-07-11 Method for analyzing oxygen in metals

Country Status (1)

Country Link
JP (1) JP3492155B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056578A (en) * 2009-09-14 2011-03-24 Sumitomo Metal Ind Ltd Method for continuously casting molten steel
KR102107217B1 (en) * 2016-10-04 2020-05-06 주식회사 엘지화학 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface
TWI667088B (en) * 2017-02-14 2019-08-01 日商日本製鐵股份有限公司 Method of detecting slag within molten steel flow

Also Published As

Publication number Publication date
JPH1130613A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
Okabe et al. Electrochemical deoxidation of titanium
Hirota et al. Electrochemical deoxidation of RE–O (RE= Gd, Tb, Dy, Er) solid solutions
JP3492155B2 (en) Method for analyzing oxygen in metals
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
JP3492162B2 (en) Analysis of trace oxygen in steel
EP0890839B1 (en) Method for analytically determining oxygen for each form of oxide
JPH1073586A (en) Method and apparatus for analyzing minute amount of oxygen in metal
JP3553372B2 (en) Analysis of trace amounts of oxygen in metals
JP4103661B2 (en) Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same
Okabe et al. Recycling titanium and its alloys by utilizing molten salt
JP3197063B2 (en) Separation method and analysis method of occluded gas in metal
Davis et al. Phase-Selective Anodic Stripping Analysis of Gallium in Spiked Bovine Tissue
JPH1183841A (en) Classified analysis of oxide inclusion oxygen in metal
JPH0954078A (en) Measuring method for cao content in steel
RU2061059C1 (en) Method of evaluation of oxygen potential of slag while smelting alloys based on iron in a c electric arc furnaces
Yoshimura et al. Application of Packed Biopolar Cell to Electrolytic Treatment of Waste Waters,(In Japanese)
JPH07119754B2 (en) Trace oxygen analysis method for steel
JP2001140012A (en) Method for estimating vacuum decarburization in molten steel
WANIBE et al. Elimination of Tellurium out of Molten Iron
RU2522905C1 (en) Method of rare-earth elements extraction from liquid alloys with zinc
JP2000206108A (en) COMPOSITION FOR SECONDARY TREATMENT OF Ca-CONTAINING OXIDE-BASED, Na-CONTAINING OXIDE-BASED AND K-CONTAINING OXIDE-BASED INCLUSIONS IN IRON AND STEEL SAMPLE, AS WELL AS SECONDARY TREATMENT METHOD
CN117299691A (en) Method for rapidly processing upper electrode and lower electrode of ONH analyzer
JP2001343309A (en) Pretreating method for metal analytical sample, and its device
Aliakbar et al. Determination of trace quantities of heavy metals in food by anodic voltammetry. Determination of cadmium, lead and copper in beer
Li et al. A New Application of ZrO 2 Solid Electrolyte

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees