KR102107217B1 - Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface - Google Patents

Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface Download PDF

Info

Publication number
KR102107217B1
KR102107217B1 KR1020160127701A KR20160127701A KR102107217B1 KR 102107217 B1 KR102107217 B1 KR 102107217B1 KR 1020160127701 A KR1020160127701 A KR 1020160127701A KR 20160127701 A KR20160127701 A KR 20160127701A KR 102107217 B1 KR102107217 B1 KR 102107217B1
Authority
KR
South Korea
Prior art keywords
coating layer
carbon coating
sio
nano
silica composite
Prior art date
Application number
KR1020160127701A
Other languages
Korean (ko)
Other versions
KR20180037483A (en
Inventor
나수민
김상우
임미라
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160127701A priority Critical patent/KR102107217B1/en
Publication of KR20180037483A publication Critical patent/KR20180037483A/en
Application granted granted Critical
Publication of KR102107217B1 publication Critical patent/KR102107217B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여 SiO/나노 실리카 복합재 음극의 표면에 위치한 탄소 코팅층의 성분 및 함량을 분석할 수 있는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법이 개시된다. 상기 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 불활성 가스 융해-적외선 흡수법을 이용하여, 리튬-이온 2차 전지의 음극에 사용되는 SiO/나노 실리카 복합재 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석하는 단계;를 포함한다.SiO / nano silica composite cathode surface carbon coating layer, which can analyze the composition and content of the carbon coating layer located on the surface of the SiO / nano silica composite anode using an inert gas fusion-infrared absorption method Component analysis methods are disclosed. The component analysis method of the SiO / nano-silica composite negative electrode surface carbon coating layer is included in the carbon coating layer of the SiO / nano-silica composite surface used for the negative electrode of the lithium-ion secondary battery using an inert gas fusion-infrared absorption method. And analyzing the components and their contents.

Description

SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법{Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface}Component analysis method of carbon coating layer located at SiO / nano-silica composite materials cathode surface}

본 발명은 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법에 관한 것으로서, 더욱 상세하게는, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여 SiO/나노 실리카 복합재 음극의 표면에 위치한 탄소 코팅층의 성분 및 함량을 분석할 수 있는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법에 관한 것이다.The present invention relates to a method for analyzing the components of the surface of the SiO / nano-silica composite anode carbon coating layer, and more specifically, to the SiO / nano-silica composite anode using the inert gas fusion-infrared absorption method. It relates to a method of analyzing the components of the anode / carbon nanocomposite surface carbon coating layer capable of analyzing the composition and content of the carbon coating layer located on the surface.

배터리(Battery)는 크게 양극, 음극, 분리막 및 전해액으로 구성되는 것으로서, 양극은 외부 도선으로부터 전자를 수용하여 양극 활물질이 환원되는 전극이고, 음극은 음극 활물질이 산화되면서 도선으로 전자를 방출하는 전극이며, 분리막은 양극과 음극이 섞이는 것을 방지하여 양극과 음극을 물리적으로 분리시키기 위한 구성 요소로서, 전자가 직접 흐르지 않고 분리막의 미세 구멍으로 이온이 통과할 수 있도록 하여, 전하의 흐름을 가능하게 하는 역할을 한다. 또한, 전해액은 양극과 음극 사이에서 이온이 이동할 수 있도록 매개체 역할을 하는 것으로서, 염, 용매 및 첨가제로 구성되어 있다.The battery is largely composed of a positive electrode, a negative electrode, a separator, and an electrolyte. The positive electrode is an electrode that receives electrons from an external conductor and the positive electrode active material is reduced. , Separator is a component for physically separating the positive electrode and the negative electrode by preventing the positive electrode and the negative electrode from mixing, and allows electrons to pass through the micro-pores of the separator without directly flowing, thereby enabling the flow of electric charges. Do it. In addition, the electrolyte serves as a medium to allow ions to move between the positive electrode and the negative electrode, and is composed of a salt, a solvent, and an additive.

이와 같은 배터리, 특히 충전이 가능하여 재사용이 가능한 리튬-이온 이차 전지(Lithium-Ion Secondary Battery)의 음극재로서 SiO/nano silica 복합재가 사용될 경우, 그 표면에는 탄소 코팅이 되는데, 상기 복합재의 표면에 위치한 피치(또는, 탄소) 코팅층의 방식을 구분하기 위하여 피치 코팅층의 성분을 분석할 필요가 있으며, 이와 같은 음극 복합재 표면 피치(pitch) 코팅층의 분석은, 주사전자현미경(Scanning Electron Microscope; SEM), 적외선(Infrared Ray; IR) 분석법, 라만(Raman) 분석법 및 X-선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS) 등에 의해 수행되고 있다.When a SiO / nano silica composite material is used as a negative electrode material for such a battery, particularly a lithium-ion secondary battery that can be recharged and reusable, a carbon coating is applied to the surface of the composite material. In order to distinguish the type of pitch (or carbon) coating layer located, it is necessary to analyze the components of the pitch coating layer, and the analysis of the surface pitch coating layer of the negative electrode composite material may include scanning electron microscope (SEM), Infrared Ray (IR) analysis, Raman (Raman) analysis and X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy; XPS).

대한민국 특허등록 제10-1258155호Republic of Korea Patent Registration No. 10-1258155

앞서 살펴본 바와 같이, 리튬-이온 이차 전지의 SiO/nano silica 음극 복합재 표면의 피치(pitch) 코팅층을 분석하기 위하여, 주사전자현미경(SEM), 적외선(IR) 분석법, 라만(Raman) 분석법 및 X-선 광전자 분광법(XPS) 등을 사용하고 있으나, 이들 분석법에 의할 경우, 코팅층에 포함된 100 내지 1000 mg/kg 범위의 미량 성분을 정량분석 하기에 어려움이 있기 때문에, 미량의 성분까지도 분석이 가능한 방법이 모색되어야 하는 실정이다.As described above, in order to analyze the pitch coating layer of the surface of the SiO / nano silica negative electrode composite of a lithium-ion secondary battery, scanning electron microscope (SEM), infrared (IR) analysis, Raman analysis and X- X-ray photoelectron spectroscopy (XPS) is used, but according to these methods, it is difficult to quantitatively analyze trace components in the range of 100 to 1000 mg / kg contained in the coating layer, so even trace components can be analyzed. The situation must be sought.

따라서, 본 발명의 목적은, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여 SiO/나노 실리카 복합재 음극의 표면에 위치한 탄소 코팅층의 성분 및 함량을 분석함으로써, 탄소 코팅층의 코팅 방식 구별이 가능한, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법을 제공하는 것이다.Therefore, the object of the present invention, by analyzing the composition and content of the carbon coating layer located on the surface of the SiO / nano silica composite anode using an inert gas fusion-infrared absorption method, coating of the carbon coating layer It is to provide a method for analyzing the components of the carbon coating layer on the negative electrode surface of a SiO / nano-silica composite material capable of distinguishing methods.

상기 목적을 달성하기 위하여, 본 발명은, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여, 리튬-이온 2차 전지의 음극에 사용되는 SiO/나노 실리카 복합재 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석하는 단계;를 포함하는 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법을 제공한다.In order to achieve the above object, the present invention, using an inert gas fusion-infrared absorption (Inert gas fusion-infrared absorption) method, the carbon coating layer of the SiO / nano-silica composite surface used for the negative electrode of the lithium-ion secondary battery It provides a component analysis method of the SiO / nano-silica composite negative electrode surface carbon coating layer comprising a; analyzing the components contained in and the content thereof.

본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법에 의하면, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여 SiO/나노 실리카 복합재 음극의 표면에 위치한 탄소 코팅층의 성분 및 함량을 분석함으로써, 탄소 코팅층의 코팅 방식 구별이 가능하다.According to the composition analysis method of the surface of the SiO / nano-silica composite negative electrode carbon coating layer according to the present invention, the carbon coating layer located on the surface of the SiO / nano-silica composite negative electrode using an inert gas fusion-infrared absorption method By analyzing the components and contents of, it is possible to distinguish the coating method of the carbon coating layer.

도 1은 SiO/나노 실리카 복합재 음극 표면에, 피치(pitch) 코팅된 탄소 코팅층 내 질소 함량을 나타내는 스펙트럼(초록색)과, 화학 증착(CVD) 코팅된 탄소 코팅층 내 질소 함량을 나타내는 스펙트럼(노란색)을 비교한 도면이다.
도 2는 SiO/나노 실리카 복합재 음극 표면에, 화학 증착(CVD) 코팅된 탄소 코팅층 내 질소 함량을 반복 측정한 스펙트럼(A)과, 피치 코팅을 하지 않은 시료 내 질소 함량을 반복 측정한 스펙트럼(B)을 보여주는 도면이다.
1 is a spectrum showing a nitrogen content in a pitch coated carbon coating layer (green) and a spectrum showing a nitrogen content in a chemical vapor deposition (CVD) coated carbon coating layer (yellow) on the surface of a SiO / nano silica composite anode. It is a comparison drawing.
FIG. 2 is a spectrum (A) in which nitrogen content in a carbon coating layer coated with a chemical vapor deposition (CVD) is repeatedly measured on a cathode surface of a SiO / nano silica composite, and a spectrum in which nitrogen content in a sample without a pitch coating is repeatedly measured (B ).

이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여, 리튬-이온 2차 전지의 음극에 사용되는 SiO/나노 실리카 복합재 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석하는 단계를 포함하며, 상기 탄소 코팅층에 포함된 성분 및 함량을 통해, 상기 탄소 코팅층이 상기 복합재 표면에 코팅되는 방식을 식별하는 것을 특징으로 한다.The method of analyzing the components of the SiO / nano-silica composite negative electrode surface carbon coating layer according to the present invention is SiO used for the negative electrode of a lithium-ion secondary battery using an inert gas fusion-infrared absorption method. / Analyzing the components contained in the carbon coating layer and the content of the nano-silica composite material surface, and through the components and content contained in the carbon coating layer, to identify how the carbon coating layer is coated on the composite material surface It is characterized by.

즉, 본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하는 것으로서, 상술한 바와 같이, 주사전자현미경(SEM), 적외선(IR) 분석법, 라만(Raman) 분석법 및 X-선 광전자 분광법(XPS)과 같은 분석법으로는 코팅층에 포함된 100 내지 1,000 mg/kg 범위의 질소(nitrogen) 등의 미량 성분을 정량분석 하기에 한계가 있기 때문에, 본 발명에서는 이를 개선하기 위한 방안으로서, 불활성 가스 융해-적외선 흡수법에 의해 코팅층 내에 포함된 미량 성분 및 그 함량을 분석하는 방법을 제안하는 것이다.That is, the component analysis method of the SiO / nano-silica composite anode surface carbon coating layer according to the present invention uses an inert gas fusion-infrared absorption method, as described above, a scanning electron microscope (SEM) ), Infrared (IR) analysis, Raman (Raman) analysis method and X-ray photoelectron spectroscopy (XPS) analysis methods such as quantitative analysis of trace components such as nitrogen (nitrogen) in the range of 100 to 1,000 mg / kg contained in the coating layer Since there are limitations below, the present invention proposes a method for improving the trace component and its content in the coating layer by an inert gas fusion-infrared absorption method.

여기서 잠시, 상기 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법에 대해서 설명하면, 먼저, 불활성 가스를 이용하여 탄소 코팅층 시료를 분해시킨 후, 이어서 분해로부터 생성된 가스(gas)에 적외선을 조사하는, 즉, 두 가지 방법을 접목시킨 것으로서, 이에 대한 보다 상세한 설명은 후술하도록 한다.Here, for a moment, when the inert gas fusion-infrared absorption method is described, first, a carbon coating layer sample is decomposed using an inert gas, and then infrared rays are generated to the gas generated from the decomposition. , That is, a combination of two methods, and a more detailed description thereof will be described later.

본 발명에 사용되는 SiO/나노 실리카 복합재란, 리튬-이온 이차 전지의 음극에 열적 안정성과 유연성이 뛰어난 무정형 실리콘을 사용할 때 사이클 특성이 크게 증가하는 효과를 나타내기 위하여 사용되는 것으로서, 다양한 크기의 실리카가 혼합된 것을 의미하며, 예를 들어, SiO는 크기가 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛이고, 나노 실리카는 그 크기가 50 내지 300 nm, 바람직하게는 70 내지 100 nm일 수 있다.The SiO / nano-silica composite material used in the present invention is used to show an effect of greatly increasing cycle characteristics when using amorphous silicon having excellent thermal stability and flexibility for a negative electrode of a lithium-ion secondary battery, and silica of various sizes Means mixed, for example, SiO has a size of 1 to 100 μm, preferably 5 to 50 μm, and nano-silica may have a size of 50 to 300 nm, preferably 70 to 100 nm. .

한편, (리튬-이온 이차 전지의 음극에 사용되는) SiO/나노 실리카 복합재의 표면에 위치하는 탄소 코팅층은, 실리콘 산화물의 부피 팽창에 의해 야기될 수 있는 섬유형 탄소의 탈리에 대한 문제를 해결하기 위한 방법 중 하나로서, 화학 증착(Chemical Vapor Deposition; CVD) 방식 또는 피치 코팅(pitch coating) 방식 등에 의해 코팅되는데, 상기 화학 증착 방식은 주로 메탄, 에탄, 에틸렌 및 부탄으로 이루어진 군으로부터 선택된 하나 또는 둘 이상의 기상 또는 액상의 탄소 공급원을 이용하는 열분해 탄소에 의한 코팅 방식이고, 상기 피치 코팅 방식은 피치를 혼합한 후 열처리하여 코팅하는 방식으로서, 상기 화학 증착 방식을 이용하여 코팅할 경우, 코팅층에 질소 등의 미량 성분 함량이 100 mg/kg 미만으로 적게 함유되어 있는 반면, 상기 피치 코팅 방식을 이용하여 코팅할 경우에는, 피치 코팅 시 사용되는 아로마틱 화합물에 질소가 포함되어 있어, 코팅층에 미량의 질소가 분포하게 된다.On the other hand, the carbon coating layer located on the surface of the SiO / nano silica composite material (used for the negative electrode of the lithium-ion secondary battery) solves the problem of desorption of fibrous carbon that may be caused by volume expansion of silicon oxide. As one of the methods, it is coated by a chemical vapor deposition (CVD) method or a pitch coating method, etc., wherein the chemical vapor deposition method is mainly one or two selected from the group consisting of methane, ethane, ethylene and butane. The above is a coating method using pyrolysis carbon using a gaseous or liquid carbon source, and the pitch coating method is a method of coating by mixing the pitch and heat treatment. When coating using the chemical vapor deposition method, nitrogen or the like is coated on the coating layer. While the trace component content is less than 100 mg / kg, using the pitch coating method When booting is, it contains a nitrogen in the aromatic compound used in the coating pitch, is a trace amount of nitrogen distributed in the coating layer.

따라서, 본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 탄소 코팅층에 얼마만큼의 질소를 포함한 미량 성분이 함유되어 있는지를 파악함으로써, 탄소 코팅층이 어떠한 방식에 의해 코팅되었는지를 식별할 수 있는 간단하고도 효율적인 분석법인 것이다. 예를 들어, 상기 탄소 코팅층의 성분 분석방법을 통하여 100 내지 1,000 mg/kg의 미량 성분이 정량 분석(또는, 검출)되면, 상기 탄소 코팅층이 상기 복합재 표면에 코팅된 방식은 피치 코팅 방식인 것이다.Therefore, the component analysis method of the SiO / nano-silica composite anode surface carbon coating layer according to the present invention determines how much carbon-coated layer is coated by determining how much nitrogen-containing trace components are contained in the carbon coating layer. It is a simple and efficient method of identification. For example, when quantitative analysis (or detection) of trace components of 100 to 1,000 mg / kg through the component analysis method of the carbon coating layer, a method in which the carbon coating layer is coated on the surface of the composite material is a pitch coating method.

본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 상기한 바와 같이, 불활성 가스 융해-적외선 흡수 방법을 이용함으로써, SiO/나노 실리카 복합재 음극 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석할 수 있는 것으로서, 이를 보다 구체적으로 설명하면, 먼저 탄소 코팅층 시료를 조연제(combustion improver)로 작용하는 주석(Sn) 캡슐 또는 니켈(Ni) 바스켓 등의 용기에 공급하고, 이중 그래파이트 캡슐(double graphite capsule)을 설치한 후, 고온 및 불활성 가스 분위기 하에서 상기 탄소 코팅층 시료를 분해(decomposition)시키고, 분해로부터 생성된 CH4, H2, CO, CO2 및 N2 등의 가스(gas)를 산화구리(CuO) 관에 통과시켜 CO2, H2O 및 N2의 일정한 형태로 산화시킨 후, 이들 기체(CO2, H2O 및 N2)를 검출할 수 있는 적외선 검출기(NDIR cell)를 통과시키고, 이어서, 상기 기체가 상기 적외선 검출기를 통과할 때 얻어진 적외선 스펙트럼을 분석함으로써, SiO /나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석이 가능해진다.Component analysis method of the SiO / nano-silica composite negative electrode surface carbon coating layer according to the present invention, as described above, by using an inert gas fusion-infrared absorption method, the components included in the carbon coating layer of the SiO / nano-silica composite negative electrode surface and As it can analyze the content thereof, in more detail, first, the carbon coating layer sample is supplied to a container such as a tin (Sn) capsule or a nickel (Ni) basket serving as a combustion improver, and double graphite After the capsule (double graphite capsule) is installed, the carbon coating layer sample is decomposed under a high temperature and inert gas atmosphere, and gases such as CH 4 , H 2 , CO, CO 2 and N 2 generated from decomposition (gas ) was passed through the on copper oxide (CuO) tube CO 2, H 2 O and then oxidized to a certain type of N 2, these gases (CO 2, H 2 O and N 2) an infrared detector capable of detecting (NDIR cell), and then, by analyzing the infrared spectrum obtained when the gas passes through the infrared detector, it is possible to analyze the components of the SiO / nano silica composite cathode surface carbon coating layer.

상기 탄소 코팅층 시료가 공급되는 용기로는, 상술한 바와 같은 주석(Sn) 캡슐 또는 니켈(Ni) 바스켓을 사용하는 것이 탄소 코팅층 시료의 분해를 위해 바람직하다. 또한, 상기 이중 그래파이트 캡슐(double graphite capsule)은, 직경 10 mm의 원기둥 형태 도가니로서, 저항체로 작용하여 전류 공급 시 온도를 상승시키는 역할을 하며, 주석 캡슐 또는 니켈 바스켓 외부에 설치된다. 또한, 상기 탄소 코팅층 시료가 분해될 때의 온도는 절대온도로서 2,200 내지 2,900 K, 바람직하게는 2,500 내지 2,600 K, 더욱 바람직하게는 약 2,500 K이며, 불활성 가스(또는, 비활성 기체)로는 헬륨, 아르곤 및 네온 등 통상의 불활성 가스를 특별한 제한 없이 사용할 수 있다.As a container in which the carbon coating layer sample is supplied, it is preferable to use a tin (Sn) capsule or a nickel (Ni) basket as described above for decomposition of the carbon coating layer sample. In addition, the double graphite capsule (double graphite capsule), a cylindrical crucible having a diameter of 10 mm, acts as a resistor and serves to increase the temperature when the current is supplied, and is installed outside the tin capsule or nickel basket. In addition, the temperature at which the carbon coating layer sample is decomposed is 2,200 to 2,900 K as an absolute temperature, preferably 2,500 to 2,600 K, more preferably about 2,500 K, and helium, argon as an inert gas (or an inert gas). And it is possible to use a conventional inert gas, such as neon, without particular limitation.

이상 상술한 바와 같은, 본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법에 의하면, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용함으로써, 탄소 코팅층에 포함된 100 내지 1,000 mg/kg 범위에 해당하는 질소(nitrogen) 등의 미량 성분을 정량분석 하는 것이 가능하며, 이로 인해, 탄소 코팅층이 어떠한 방식에 의해 코팅되었는지를, 간단하고도 효율적으로 식별 확인할 수 있다.As described above, according to the component analysis method of the SiO / nano-silica composite anode surface carbon coating layer according to the present invention, by using an inert gas fusion-infrared absorption method, included in the carbon coating layer It is possible to quantitatively analyze trace components such as nitrogen (nitrogen) corresponding to the range of 100 to 1,000 mg / kg, and thus, it is possible to simply and efficiently identify and confirm by what method the carbon coating layer is coated.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely illustrative of the present invention, and it is apparent to those skilled in the art that various changes and modifications are possible within the scope and technical scope of the present invention. It is natural that such changes and modifications fall within the scope of the appended claims.

[실시예 1] SiO/나노 실리카 복합재 음극 표면에 피치 코팅된 탄소 코팅층 내 성분 분석 [Example 1] Component analysis in carbon coating layer pitch-coated on SiO / nano silica composite anode surface

먼저, SiO/나노 실리카 복합재 음극 표면에 피치(pitch) 코팅된 탄소 코팅층 시료를 주석(Sn) 캡슐에 공급하고, 이어서, 이중 그래파이트 캡슐(double graphite capsule)을 설치한 후, 2,500 K의 온도 및 헬륨(불활성 가스) 분위기 하에서 상기 탄소 코팅층 시료를 분해(decomposition)시키고, 분해로부터 생성된 가스(gas)를 산화구리(CuO) 관에 통과시켜 일정한 형태로 산화시킨 후, 적외선 검출기(NDIR cell)를 통과시켜 얻어진 적외선 스펙트럼을 분석하여, SiO /나노 실리카 복합재 음극 표면 탄소 코팅층의 성분을 분석하였다.First, a sample of a carbon coating layer coated with a pitch coated on a cathode surface of a SiO / nano silica composite material is supplied to a tin (Sn) capsule, and then, after installing a double graphite capsule, a temperature of 2,500 K and helium (Inert gas) Decomposition (decomposition) of the carbon coating layer sample under an atmosphere, oxidize the gas (gas) generated from decomposition through a copper oxide (CuO) tube to a certain form, and then pass through an infrared detector (NDIR cell) The infrared spectrum obtained was analyzed to analyze the components of the SiO / nano-silica composite anode surface carbon coating layer.

[비교예 1] SiO/나노 실리카 복합재 음극 표면에 화학 증착 코팅된 탄소 코팅층 내 성분 분석 [Comparative Example 1] Analysis of the components in the carbon coating layer chemically deposited on the surface of the SiO / nano-silica composite anode

SiO/나노 실리카 복합재 음극 표면에 피치(pitch) 코팅된 탄소 코팅층 시료 대신, SiO/나노 실리카 복합재 음극 표면에 화학 증착 코팅된 탄소 코팅층 시료를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, SiO /나노 실리카 복합재 음극 표면 탄소 코팅층의 성분을 분석하였다.In the same manner as in Example 1, except that a carbon coating layer sample chemically deposited on the surface of the SiO / nano silica composite cathode was used instead of a carbon coating layer sample coated on the cathode surface of the SiO / nano silica composite. , SiO / nano-silica composite material The composition of the anode surface carbon coating layer was analyzed.

[비교예 2] SiO/나노 실리카 복합재 음극 표면에 피치 코팅을 하지 않은 시료의 성분 분석 [Comparative Example 2] Component analysis of samples without pitch coating on the SiO / nano-silica composite anode surface

SiO/나노 실리카 복합재 음극 표면에 피치(pitch) 코팅된 탄소 코팅층 시료 대신, SiO/나노 실리카 복합재 음극 표면에 피치 코팅이나 화학 증착 코팅을 하지 않은 시료를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 성분을 분석하였다.Same as Example 1, except that a sample without a pitch coating or a chemical vapor deposition coating on the surface of the SiO / nano silica composite anode was used instead of a sample of the carbon coating layer with a pitch coated on the anode surface of the SiO / nano silica composite. The components were analyzed.

[실시예 1, 비교예 1 및 2] SiO/나노 실리카 복합재 음극 표면의 탄소 코팅층 내 성분 분석 평가 [Example 1, Comparative Examples 1 and 2] Component analysis evaluation in the carbon coating layer of the anode surface of SiO / nano silica composite material

도 1은 SiO/나노 실리카 복합재 음극 표면에, 피치(pitch) 코팅된 탄소 코팅층 내 질소 함량을 나타내는 스펙트럼(초록색)과, 화학 증착(CVD) 코팅된 탄소 코팅층 내 질소 함량을 나타내는 스펙트럼(노란색)을 비교한 도면으로서, 두 스펙트럼 간에 질소 함량의 차이가 큰 것을 확인할 수 있었다. 또한, 도 2는 SiO/나노 실리카 복합재 음극 표면에, 화학 증착(CVD) 코팅된 탄소 코팅층 내 질소 함량을 반복 측정한 스펙트럼(A)과, 피치 코팅을 하지 않은 시료 내 질소 함량을 반복 측정한 스펙트럼(B)을 보여주는 도면으로서, 도 2-A 및 도 2-B 모두 재현성 있는 결과를 나타내었으며, 도 2-A로부터 화학 증착(CVD) 코팅된 탄소 코팅층은 질소 함량이 적음을 확인할 수 있고, 도 2-B로부터 피치 코팅을 하지 않은 경우 또한, 화학 증착 코팅의 경우와 유사하게 질소 함량이 매우 적음을 알 수 있다.1 is a spectrum showing a nitrogen content in a pitch coated carbon coating layer (green) and a spectrum showing a nitrogen content in a chemical vapor deposition (CVD) coated carbon coating layer (yellow) on the surface of a SiO / nano silica composite anode. As a comparison, it was confirmed that the difference in nitrogen content between the two spectra was large. In addition, FIG. 2 is a spectrum (A) of repeatedly measuring nitrogen content in a carbon coating layer coated with a chemical vapor deposition (CVD) on a cathode surface of a SiO / nano-silica composite, and a spectrum of repeatedly measuring nitrogen content in a sample without pitch coating. As a diagram showing (B), both FIG. 2-A and FIG. 2-B showed reproducible results, and the chemical vapor deposition (CVD) coated carbon coating layer from FIG. 2-A confirmed that the nitrogen content was low, and It can also be seen that when the pitch coating is not performed from 2-B, the nitrogen content is very low, similarly to the case of the chemical vapor deposition coating.

한편, 도 1의 초록색 스펙트럼은 상기 실시예 1의 피치 코팅된 탄소 코팅층 시료 내 질소의 함량을 나타낸 것이고, 도 2-A의 스펙트럼은 상기 비교예 1의 화학 증착 코팅된 탄소 코팅층 시료 내 질소의 함량을 나타낸 것이며, 도 2-B의 스펙트럼은 상기 비교예 2의 피치 코팅이나 화학 증착 코팅을 하지 않은 시료 내 질소의 함량을 나타낸 것이다.Meanwhile, the green spectrum of FIG. 1 shows the nitrogen content in the pitch-coated carbon coating layer sample of Example 1, and the spectrum of FIG. 2-A shows the nitrogen content in the chemical vapor-coated carbon coating layer sample of Comparative Example 1 The spectrum of FIG. 2-B shows the nitrogen content in the sample without the pitch coating or chemical vapor deposition coating of Comparative Example 2.

이와 같이, 탄소 코팅층이 어떠한 코팅 방식에 의해 코팅되었는가는 질소 피크의 강도를 통해 식별이 가능한 것으로서, 도 1에 도시된 초록색 질소 피크의 강도는 최고 0.03을 초과하는데 반하여, 도 2-A에 도시된 질소 피크의 강도는 최고 0.0004 미만에 불과한 것이어서, 도 2-A의 질소 피크는 질소가 극미량으로 포함되어 있는 화학 증착(CVD) 코팅된 탄소 코팅층 시료 B에 의한 것임을 알 수 있으며, 또한, 도 2-A에 비해 상대적으로 높은 강도를 나타내는 도 1의 초록색 질소 피크는, 피치(pitch) 코팅된 탄소 코팅층 시료 A에 의한 것임을 확인할 수 있다.As described above, it is possible to discriminate through the intensity of the nitrogen peaks by which coating method the carbon coating layer is coated, while the intensity of the green nitrogen peaks shown in FIG. 1 exceeds 0.03 at the highest, as shown in FIG. 2-A. Since the intensity of the nitrogen peak is only less than 0.0004, it can be seen that the nitrogen peak of FIG. 2-A is due to the chemical vapor deposition (CVD) coated carbon coating layer sample B containing nitrogen in an extremely small amount. It can be confirmed that the green nitrogen peak of FIG. 1 showing a relatively high strength compared to A is due to the pitch-coated carbon coating layer Sample A.

따라서, 본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법, 다시 말해, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하게 되면, 탄소 코팅층에 얼마만큼의 질소를 포함한 미량 성분이 함유되어 있는지의 파악이 가능하며, 이를 통해, 탄소 코팅층이 어떠한 방식에 의해 코팅되었는지를, 간단하고도 효율적으로 확인할 수 있다.Therefore, when using the component analysis method of the SiO / nano-silica composite anode surface carbon coating layer according to the present invention, that is, the inert gas fusion-infrared absorption method, how much nitrogen is used in the carbon coating layer? It is possible to grasp whether or not a trace component is contained, and through this, it is possible to simply and efficiently check how the carbon coating layer is coated.

Claims (9)

불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여, 리튬-이온 2차 전지의 음극에 사용되는 SiO/나노 실리카 복합재 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석하는 단계;를 포함하는 것으로,
상기 탄소 코팅층이 상기 복합재 표면에 코팅되는 방식을 식별하는 것을 특징으로 하는,
SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.
Using the inert gas fusion-infrared absorption method, analyzing the components contained in the carbon coating layer on the surface of the SiO / nano-silica composite material used in the negative electrode of the lithium-ion secondary battery and the content thereof Containing;
Characterized in that it identifies the way the carbon coating layer is coated on the surface of the composite,
SiO / nano-silica composite anode component carbon coating method.
삭제delete 청구항 1에 있어서, 상기 불활성 가스 융해-적외선 흡수법은,
탄소 코팅층 시료를 주석(Sn) 캡슐 또는 니켈(Ni) 바스켓에 공급하는 단계;
이중 그래파이트 캡슐(double graphite capsule)을 설치하는 단계;
고온 및 불활성 가스 분위기 하에서 상기 탄소 코팅층 시료를 분해시키는 단계;
분해로부터 생성된 가스를 산화시키는 단계; 및
산화된 기체를 적외선 검출기에 통과시킨 후, 상기 기체가 적외선 검출기를 통과할 때 얻어진 적외선 스펙트럼을 분석하는 단계;를 통하여 수행되는 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.
The method according to claim 1, wherein the inert gas fusion-infrared absorption method,
Supplying a sample of the carbon coating layer to a tin (Sn) capsule or a nickel (Ni) basket;
Installing a double graphite capsule;
Decomposing the carbon coating layer sample under a high temperature and inert gas atmosphere;
Oxidizing the gas produced from decomposition; And
After passing the oxidized gas through the infrared detector, analyzing the infrared spectrum obtained when the gas passes through the infrared detector; characterized in that it is carried out through, SiO / nano silica composite anode surface component analysis method of the carbon coating layer .
청구항 3에 있어서, 상기 탄소 코팅층 시료가 분해될 때의 온도는, 절대온도로서 2,200 내지 2,900 K인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 3, wherein the temperature when the carbon coating layer sample is decomposed is 2,200 to 2,900 K as an absolute temperature, the method of analyzing the components of the SiO / nano-silica composite negative electrode surface carbon coating layer. 청구항 1에 있어서, 상기 탄소 코팅층의 성분 분석방법을 통하여, 100 내지 1,000 mg/kg의 미량 성분이 정량 분석되는 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, Characterized in that the trace component of 100 to 1,000 mg / kg is quantitatively analyzed through the method of analyzing the components of the carbon coating layer, the method of analyzing the components of the cathode / carbon nanocomposite surface of the SiO / nano silica composite. 청구항 1에 있어서, 상기 탄소 코팅층에 포함된 성분은 질소인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, The component contained in the carbon coating layer is characterized in that the nitrogen, SiO / nano silica composite anode surface component analysis method of the carbon coating layer. 청구항 1에 있어서, 상기 식별되는 코팅 방식은 화학 증착(CVD) 방식 또는 피치 코팅(pitch coating) 방식인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, wherein the identified coating method is a chemical vapor deposition (CVD) method or a pitch coating method, characterized in that the SiO / nano silica composite negative electrode surface carbon coating layer component analysis method. 청구항 1에 있어서, 상기 탄소 코팅층의 성분 분석방법을 통하여 100 내지 1,000 mg/kg의 미량 성분이 정량 분석되면, 상기 탄소 코팅층이 상기 복합재 표면에 코팅된 방식은 피치 코팅 방식인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, When the trace component of 100 to 1,000 mg / kg is quantitatively analyzed through the method of analyzing the components of the carbon coating layer, the method in which the carbon coating layer is coated on the surface of the composite material is a pitch coating method, SiO / Nano-silica composite anode surface analysis method of carbon coating layer. 청구항 1에 있어서, 상기 SiO/나노 실리카 복합재 중 SiO는 크기가 1 내지 100 ㎛이고, 나노 실리카는 50 내지 300 nm인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, wherein the SiO / nano-silica composite material, SiO has a size of 1 to 100 μm, and nano-silica is 50 to 300 nm.
KR1020160127701A 2016-10-04 2016-10-04 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface KR102107217B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160127701A KR102107217B1 (en) 2016-10-04 2016-10-04 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160127701A KR102107217B1 (en) 2016-10-04 2016-10-04 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface

Publications (2)

Publication Number Publication Date
KR20180037483A KR20180037483A (en) 2018-04-12
KR102107217B1 true KR102107217B1 (en) 2020-05-06

Family

ID=61969297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160127701A KR102107217B1 (en) 2016-10-04 2016-10-04 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface

Country Status (1)

Country Link
KR (1) KR102107217B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003050A (en) 2006-06-26 2008-01-10 Horiba Ltd Analysis method and analysis device of element in sample melted and treated in inert gas atmosphere
JP2015111597A (en) * 2015-03-02 2015-06-18 株式会社キャタラー Method for manufacturing supported catalyst for fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3492155B2 (en) * 1997-07-11 2004-02-03 山陽特殊製鋼株式会社 Method for analyzing oxygen in metals
KR101196798B1 (en) 2008-02-25 2012-11-05 주식회사 엘지화학 ANODE COATED WITH LiF COMPOUNDS AND METHOD FOR PREPARATION THEREOF AND LITHIUM SECONDARY BATTERY COMPRISING THE ANODE
KR102219701B1 (en) * 2014-08-21 2021-02-24 삼성전자주식회사 Apparatus for analyzing active material of secondary battery and method for analyzing active material using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003050A (en) 2006-06-26 2008-01-10 Horiba Ltd Analysis method and analysis device of element in sample melted and treated in inert gas atmosphere
JP2015111597A (en) * 2015-03-02 2015-06-18 株式会社キャタラー Method for manufacturing supported catalyst for fuel cell

Also Published As

Publication number Publication date
KR20180037483A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
Zheng et al. The progress of Li–S batteries—Understanding of the sulfur redox mechanism: Dissolved polysulfide ions in the electrolytes
Zhang et al. Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au‐modified graphene
Qiao et al. Distinct Solid‐Electrolyte‐Interphases on Sn (100) and (001) Electrodes Studied by Soft X‐Ray Spectroscopy
Limbach et al. Observation of the doubly charged, gas-phase fullerene anions C602-and C702
Nudnova et al. Active capillary plasma source for ambient mass spectrometry
Cao et al. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium–oxygen batteries
Jankovský et al. Simple synthesis of fluorinated graphene: thermal exfoliation of fluorographite
US9857340B2 (en) Method for ion detection
Shui et al. Microfocused X‐ray Study on Precipitate Formation in the Separator Region of Nonaqueous Li–O2 Batteries
Jin et al. Determination of absolute photoionization cross‐sections of some aromatic hydrocarbons
Mohai et al. Reduction and covalent modification of graphene‐oxide by nitrogen in glow discharge plasma
Bae et al. Dual‐Functioning Molecular Carrier of Superoxide Radicals for Stable and Efficient Lithium–Oxygen Batteries
Nilsson et al. In-situ characterization of metal nanoparticles and their organic coatings using laser-vaporization aerosol mass spectrometry
Liu et al. The Dehydrogenation of H‐S Bond into Sulfur Species on Supported Pd Single Atoms Allows Highly Selective and Sensitive Hydrogen Sulfide Detection
KR102107217B1 (en) Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface
Buchner et al. Interaction of Ultrathin Films of Ethylene Carbonate with Oxidized and Reduced Lithium Cobalt Oxide—A Model Study of the Cathode| Electrolyte Interface in Li‐Ion Batteries
Marotta et al. Ionic reactions of chlorinated volatile organic compounds in air plasma at atmospheric pressure
Lenardi et al. NEXAFS characterization of nanostructured carbon thin-films exposed to hydrogen
Zhou et al. A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry
Feng et al. Solid sampling graphite fibre felt electrothermal atomic fluorescence spectrometry with tungsten coil atomic trap for the determination of cadmium in food samples
Lin et al. In Situ Synthesis of Porous Carbons by Using Room‐Temperature, Atmospheric‐Pressure Dielectric Barrier Discharge Plasma as High‐Performance Adsorbents for Solid‐Phase Microextraction
Touja et al. Effects of the Electrolyte Concentration on the Nature of the Solid Electrolyte Interphase of a Lithium Metal Electrode
Luo et al. XPS characterization of metal-free functionalized carbons
Amato et al. Laser desorption ionisation quadrupole ion trap time‐of‐flight mass spectrometry of titanium‐carbon thin films
Alivio et al. Atomic Layer Deposition of Hafnium (IV) Oxide on Graphene Oxide: Probing Interfacial Chemistry and Nucleation by using X‐ray Absorption and Photoelectron Spectroscopies

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant