KR20180037483A - Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface - Google Patents

Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface Download PDF

Info

Publication number
KR20180037483A
KR20180037483A KR1020160127701A KR20160127701A KR20180037483A KR 20180037483 A KR20180037483 A KR 20180037483A KR 1020160127701 A KR1020160127701 A KR 1020160127701A KR 20160127701 A KR20160127701 A KR 20160127701A KR 20180037483 A KR20180037483 A KR 20180037483A
Authority
KR
South Korea
Prior art keywords
coating layer
carbon coating
sio
silica composite
analyzing
Prior art date
Application number
KR1020160127701A
Other languages
Korean (ko)
Other versions
KR102107217B1 (en
Inventor
나수민
김상우
임미라
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160127701A priority Critical patent/KR102107217B1/en
Publication of KR20180037483A publication Critical patent/KR20180037483A/en
Application granted granted Critical
Publication of KR102107217B1 publication Critical patent/KR102107217B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a component analysis method of a carbon coating layer located at a SiO/nano-silica composite material cathode surface, which can analyze a component and a content of a carbon coating layer located at a SiO/nano-silica composite material cathode surface with an inert gas fusion-infrared absorption method. The component analysis method of a carbon coating layer located at a SiO/nano-silica composite material cathode surface comprises a step of analyzing a component contained in a carbon coating layer located at a SiO/nano-silica composite material surface and used for a lithium-ion secondary battery cathode and a content thereof with the inert gas fusion-infrared absorption method.

Description

SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법{Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface}[TECHNICAL FIELD] The present invention relates to a method of analyzing a carbon coating layer on a cathode surface of a SiO 2 /

본 발명은 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법에 관한 것으로서, 더욱 상세하게는, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여 SiO/나노 실리카 복합재 음극의 표면에 위치한 탄소 코팅층의 성분 및 함량을 분석할 수 있는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법에 관한 것이다.The present invention relates to a method of analyzing the composition of a carbon coating layer on a surface of a SiO 2 / nano-silica composite anode, and more particularly, to a method of analyzing the composition of a cathode / The present invention relates to a method for analyzing the composition of a carbon coating layer on a surface of a negative electrode surface of a SiO 2 / nano silica composite, which is capable of analyzing the content and content of the carbon coating layer located on the surface.

배터리(Battery)는 크게 양극, 음극, 분리막 및 전해액으로 구성되는 것으로서, 양극은 외부 도선으로부터 전자를 수용하여 양극 활물질이 환원되는 전극이고, 음극은 음극 활물질이 산화되면서 도선으로 전자를 방출하는 전극이며, 분리막은 양극과 음극이 섞이는 것을 방지하여 양극과 음극을 물리적으로 분리시키기 위한 구성 요소로서, 전자가 직접 흐르지 않고 분리막의 미세 구멍으로 이온이 통과할 수 있도록 하여, 전하의 흐름을 가능하게 하는 역할을 한다. 또한, 전해액은 양극과 음극 사이에서 이온이 이동할 수 있도록 매개체 역할을 하는 것으로서, 염, 용매 및 첨가제로 구성되어 있다.The battery is composed of an anode, a cathode, a separator, and an electrolytic solution. The anode is an electrode that receives electrons from an external conductor and reduces the cathode active material. The anode is an electrode that discharges electrons to the conductor while oxidizing the anode active material , The separation membrane is a component for physically separating the anode and the cathode by preventing the anode and the cathode from being mixed with each other. It allows the ions to pass through the fine holes of the separation membrane without flowing electrons directly, . The electrolyte also serves as a mediator between the positive electrode and the negative electrode, and is composed of a salt, a solvent and an additive.

이와 같은 배터리, 특히 충전이 가능하여 재사용이 가능한 리튬-이온 이차 전지(Lithium-Ion Secondary Battery)의 음극재로서 SiO/nano silica 복합재가 사용될 경우, 그 표면에는 탄소 코팅이 되는데, 상기 복합재의 표면에 위치한 피치(또는, 탄소) 코팅층의 방식을 구분하기 위하여 피치 코팅층의 성분을 분석할 필요가 있으며, 이와 같은 음극 복합재 표면 피치(pitch) 코팅층의 분석은, 주사전자현미경(Scanning Electron Microscope; SEM), 적외선(Infrared Ray; IR) 분석법, 라만(Raman) 분석법 및 X-선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS) 등에 의해 수행되고 있다.When a SiO 2 / nano silica composite material is used as a negative electrode material of such a rechargeable lithium-ion secondary battery capable of being recharged, carbon coating is formed on the surface of the composite material. It is necessary to analyze the components of the pitch coating layer in order to classify the manner of the pitch (or carbon) coating layer positioned. The analysis of the pitch coating layer of the negative electrode composite material is performed using a scanning electron microscope (SEM) An infrared ray (IR) analysis, a Raman analysis, and an X-ray photoelectron spectroscopy (XPS).

대한민국 특허등록 제10-1258155호Korean Patent Registration No. 10-1258155

앞서 살펴본 바와 같이, 리튬-이온 이차 전지의 SiO/nano silica 음극 복합재 표면의 피치(pitch) 코팅층을 분석하기 위하여, 주사전자현미경(SEM), 적외선(IR) 분석법, 라만(Raman) 분석법 및 X-선 광전자 분광법(XPS) 등을 사용하고 있으나, 이들 분석법에 의할 경우, 코팅층에 포함된 100 내지 1000 mg/kg 범위의 미량 성분을 정량분석 하기에 어려움이 있기 때문에, 미량의 성분까지도 분석이 가능한 방법이 모색되어야 하는 실정이다.As described above, the pitch coating layer on the surface of the SiO 2 / nano silica negative electrode composite material of the lithium-ion secondary battery was analyzed by a scanning electron microscope (SEM), an infrared (IR) analysis, a Raman analysis, Ray photoelectron spectroscopy (XPS). However, these methods have difficulty in quantitatively analyzing trace elements in the range of 100 to 1000 mg / kg contained in the coating layer. Therefore, even a trace amount of components can be analyzed The method should be sought.

따라서, 본 발명의 목적은, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여 SiO/나노 실리카 복합재 음극의 표면에 위치한 탄소 코팅층의 성분 및 함량을 분석함으로써, 탄소 코팅층의 코팅 방식 구별이 가능한, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a carbon coating layer coated with a carbon coating layer by analyzing the content and content of the carbon coating layer disposed on the surface of the SiO 2 / nano silica composite negative electrode using an inert gas fusion-infrared absorption method, The present invention also provides a method for analyzing the composition of a carbon coating layer on a surface of a SiO 2 / nano silica composite anode.

상기 목적을 달성하기 위하여, 본 발명은, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여, 리튬-이온 2차 전지의 음극에 사용되는 SiO/나노 실리카 복합재 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석하는 단계;를 포함하는 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법을 제공한다.In order to accomplish the above object, the present invention provides a method for manufacturing a lithium-ion secondary battery, comprising the steps of: forming a carbon coating layer on a surface of a SiO 2 / nano-silica composite used for a cathode of a lithium-ion secondary battery using an inert gas fusion- And analyzing the content of the component and the content of the SiO 2 / nano silica composite negative electrode surface carbon coating layer.

본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법에 의하면, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여 SiO/나노 실리카 복합재 음극의 표면에 위치한 탄소 코팅층의 성분 및 함량을 분석함으로써, 탄소 코팅층의 코팅 방식 구별이 가능하다.According to the method for analyzing the composition of the surface carbon coating layer of the anode / SiO2 / nano silica composite according to the present invention, the carbon coating layer located on the surface of the SiO / nano silica composite negative electrode by using the inert gas fusion- The content and the content of the carbon coating layer can be analyzed to distinguish the coating method of the carbon coating layer.

도 1은 SiO/나노 실리카 복합재 음극 표면에, 피치(pitch) 코팅된 탄소 코팅층 내 질소 함량을 나타내는 스펙트럼(초록색)과, 화학 증착(CVD) 코팅된 탄소 코팅층 내 질소 함량을 나타내는 스펙트럼(노란색)을 비교한 도면이다.
도 2는 SiO/나노 실리카 복합재 음극 표면에, 화학 증착(CVD) 코팅된 탄소 코팅층 내 질소 함량을 반복 측정한 스펙트럼(A)과, 피치 코팅을 하지 않은 시료 내 질소 함량을 반복 측정한 스펙트럼(B)을 보여주는 도면이다.
FIG. 1 shows a spectrum (green) showing a nitrogen content in a pitch-coated carbon coating layer and a spectrum (yellow) showing a nitrogen content in a chemical vapor deposition (CVD) -coated carbon coating layer on a surface of a SiO 2 / FIG.
FIG. 2 is a graph showing a spectrum (A) obtained by repeatedly measuring the nitrogen content in the carbon coating layer chemically vapor-deposited (CVD) on the surface of a SiO / nano-silica composite negative electrode and a spectrum Fig.

이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여, 리튬-이온 2차 전지의 음극에 사용되는 SiO/나노 실리카 복합재 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석하는 단계를 포함하며, 상기 탄소 코팅층에 포함된 성분 및 함량을 통해, 상기 탄소 코팅층이 상기 복합재 표면에 코팅되는 방식을 식별하는 것을 특징으로 한다.The method for analyzing the composition of the surface carbon coating layer of the anode / SiO2 / nano silica composite according to the present invention is characterized in that the SiO2 / / Analyzing the components contained in the carbon coating layer on the surface of the nanosilica composite material and the content thereof, and identifying the manner in which the carbon coating layer is coated on the surface of the composite material, through the components and the contents contained in the carbon coating layer .

즉, 본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하는 것으로서, 상술한 바와 같이, 주사전자현미경(SEM), 적외선(IR) 분석법, 라만(Raman) 분석법 및 X-선 광전자 분광법(XPS)과 같은 분석법으로는 코팅층에 포함된 100 내지 1,000 mg/kg 범위의 질소(nitrogen) 등의 미량 성분을 정량분석 하기에 한계가 있기 때문에, 본 발명에서는 이를 개선하기 위한 방안으로서, 불활성 가스 융해-적외선 흡수법에 의해 코팅층 내에 포함된 미량 성분 및 그 함량을 분석하는 방법을 제안하는 것이다.That is, the method for analyzing the components of the surface carbon coating layer of the anode / SiO2 / nano silica composite according to the present invention uses an inert gas fusion-infrared absorption method. As described above, a scanning electron microscope (SEM ), Infrared (IR) analysis, Raman analysis and X-ray photoelectron spectroscopy (XPS), quantitative analysis of trace components such as nitrogen in the range of 100 to 1,000 mg / kg contained in the coating layer The present invention proposes a method for analyzing a trace component contained in a coating layer by an inert gas fusion-infrared absorption method and its content as a method for improving the above.

여기서 잠시, 상기 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법에 대해서 설명하면, 먼저, 불활성 가스를 이용하여 탄소 코팅층 시료를 분해시킨 후, 이어서 분해로부터 생성된 가스(gas)에 적외선을 조사하는, 즉, 두 가지 방법을 접목시킨 것으로서, 이에 대한 보다 상세한 설명은 후술하도록 한다.Hereinafter, the inert gas fusion-infrared absorption method will be briefly described. First, a carbon coating layer sample is decomposed using an inert gas, and then a gas generated by decomposition is irradiated with infrared rays That is, two methods are combined, and a more detailed description thereof will be described later.

본 발명에 사용되는 SiO/나노 실리카 복합재란, 리튬-이온 이차 전지의 음극에 열적 안정성과 유연성이 뛰어난 무정형 실리콘을 사용할 때 사이클 특성이 크게 증가하는 효과를 나타내기 위하여 사용되는 것으로서, 다양한 크기의 실리카가 혼합된 것을 의미하며, 예를 들어, SiO는 크기가 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛이고, 나노 실리카는 그 크기가 50 내지 300 nm, 바람직하게는 70 내지 100 nm일 수 있다.The SiO 2 / nano-silica composite material used in the present invention is used to exhibit an effect of greatly increasing cycle characteristics when amorphous silicon excellent in thermal stability and flexibility is used for a negative electrode of a lithium-ion secondary battery. For example, SiO 2 has a size of 1 to 100 μm, preferably 5 to 50 μm, and the size of the nanosilica may be 50 to 300 nm, preferably 70 to 100 nm .

한편, (리튬-이온 이차 전지의 음극에 사용되는) SiO/나노 실리카 복합재의 표면에 위치하는 탄소 코팅층은, 실리콘 산화물의 부피 팽창에 의해 야기될 수 있는 섬유형 탄소의 탈리에 대한 문제를 해결하기 위한 방법 중 하나로서, 화학 증착(Chemical Vapor Deposition; CVD) 방식 또는 피치 코팅(pitch coating) 방식 등에 의해 코팅되는데, 상기 화학 증착 방식은 주로 메탄, 에탄, 에틸렌 및 부탄으로 이루어진 군으로부터 선택된 하나 또는 둘 이상의 기상 또는 액상의 탄소 공급원을 이용하는 열분해 탄소에 의한 코팅 방식이고, 상기 피치 코팅 방식은 피치를 혼합한 후 열처리하여 코팅하는 방식으로서, 상기 화학 증착 방식을 이용하여 코팅할 경우, 코팅층에 질소 등의 미량 성분 함량이 100 mg/kg 미만으로 적게 함유되어 있는 반면, 상기 피치 코팅 방식을 이용하여 코팅할 경우에는, 피치 코팅 시 사용되는 아로마틱 화합물에 질소가 포함되어 있어, 코팅층에 미량의 질소가 분포하게 된다.On the other hand, the carbon coating layer positioned on the surface of the SiO 2 / nano-silica composite (used for the cathode of the lithium-ion secondary battery) solves the problem of the desorption of the fibrous carbon which can be caused by the volume expansion of the silicon oxide A chemical vapor deposition (CVD) method or a pitch coating method. The chemical vapor deposition method is mainly used for one or two selected from the group consisting of methane, ethane, ethylene and butane The above-mentioned pitch coating method is a method in which the pitch is mixed and then heat-treated to coat the coating. When the coating is performed using the chemical vapor deposition method, While the minor component content is less than 100 mg / kg, while using the above-mentioned pitch coating method When booting is, it contains a nitrogen in the aromatic compound used in the coating pitch, is a trace amount of nitrogen distributed in the coating layer.

따라서, 본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 탄소 코팅층에 얼마만큼의 질소를 포함한 미량 성분이 함유되어 있는지를 파악함으로써, 탄소 코팅층이 어떠한 방식에 의해 코팅되었는지를 식별할 수 있는 간단하고도 효율적인 분석법인 것이다. 예를 들어, 상기 탄소 코팅층의 성분 분석방법을 통하여 100 내지 1,000 mg/kg의 미량 성분이 정량 분석(또는, 검출)되면, 상기 탄소 코팅층이 상기 복합재 표면에 코팅된 방식은 피치 코팅 방식인 것이다.Accordingly, the method of analyzing the composition of the surface carbon coating layer of the anode / SiO2 / nano silica composite according to the present invention can determine how much the carbon coating layer is coated by determining how much nitrogen is contained in the carbon coating layer It is a simple and efficient method to identify. For example, when a trace component of 100 to 1,000 mg / kg is quantitatively analyzed (or detected) through the method of analyzing the composition of the carbon coating layer, the carbon coating layer is coated on the surface of the composite material by a pitch coating method.

본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법은, 상기한 바와 같이, 불활성 가스 융해-적외선 흡수 방법을 이용함으로써, SiO/나노 실리카 복합재 음극 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석할 수 있는 것으로서, 이를 보다 구체적으로 설명하면, 먼저 탄소 코팅층 시료를 조연제(combustion improver)로 작용하는 주석(Sn) 캡슐 또는 니켈(Ni) 바스켓 등의 용기에 공급하고, 이중 그래파이트 캡슐(double graphite capsule)을 설치한 후, 고온 및 불활성 가스 분위기 하에서 상기 탄소 코팅층 시료를 분해(decomposition)시키고, 분해로부터 생성된 CH4, H2, CO, CO2 및 N2 등의 가스(gas)를 산화구리(CuO) 관에 통과시켜 CO2, H2O 및 N2의 일정한 형태로 산화시킨 후, 이들 기체(CO2, H2O 및 N2)를 검출할 수 있는 적외선 검출기(NDIR cell)를 통과시키고, 이어서, 상기 기체가 상기 적외선 검출기를 통과할 때 얻어진 적외선 스펙트럼을 분석함으로써, SiO /나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석이 가능해진다.The method of analyzing the components of the surface carbon coating layer of the anode / SiO2 / nano silica composite according to the present invention is characterized in that the components contained in the carbon coating layer on the surface of the anode / SiO2 / First, a carbon coating layer sample is supplied to a container such as a tin (Sn) capsule or a nickel (Ni) basket serving as a combustion improver, and a double graphite After a double graphite capsule is installed, the carbon coating layer sample is decomposed at a high temperature and an inert gas atmosphere, and a gas such as CH 4 , H 2 , CO, CO 2 and N 2 ) Were passed through a copper oxide (CuO) tube and oxidized to a uniform form of CO 2 , H 2 O and N 2 and then passed through an infrared detector (NDIR) capable of detecting these gases (CO 2 , H 2 O and N 2 ) cell, and subsequently analyzing the infrared spectrum obtained when the gas passes through the infrared detector, thereby making it possible to analyze the composition of the carbon coating layer on the surface of the SiO 2 / nano silica composite.

상기 탄소 코팅층 시료가 공급되는 용기로는, 상술한 바와 같은 주석(Sn) 캡슐 또는 니켈(Ni) 바스켓을 사용하는 것이 탄소 코팅층 시료의 분해를 위해 바람직하다. 또한, 상기 이중 그래파이트 캡슐(double graphite capsule)은, 직경 10 mm의 원기둥 형태 도가니로서, 저항체로 작용하여 전류 공급 시 온도를 상승시키는 역할을 하며, 주석 캡슐 또는 니켈 바스켓 외부에 설치된다. 또한, 상기 탄소 코팅층 시료가 분해될 때의 온도는 절대온도로서 2,200 내지 2,900 K, 바람직하게는 2,500 내지 2,600 K, 더욱 바람직하게는 약 2,500 K이며, 불활성 가스(또는, 비활성 기체)로는 헬륨, 아르곤 및 네온 등 통상의 불활성 가스를 특별한 제한 없이 사용할 수 있다.As the container to which the carbon coating layer sample is supplied, it is preferable to use a tin (Sn) capsule or a nickel (Ni) basket as described above for decomposing the carbon coating layer sample. The double graphite capsule is a cylindrical crucible having a diameter of 10 mm. The crucible serves as a resistor, raises the temperature of the current supply, and is installed outside the tin capsule or the nickel basket. The temperature at which the carbon coating layer sample is decomposed is in the range of 2,200 to 2,900 K, preferably 2,500 to 2,600 K, and more preferably about 2,500 K as an absolute temperature. As the inert gas (or inert gas), helium, argon And neon, can be used without particular limitation.

이상 상술한 바와 같은, 본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법에 의하면, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용함으로써, 탄소 코팅층에 포함된 100 내지 1,000 mg/kg 범위에 해당하는 질소(nitrogen) 등의 미량 성분을 정량분석 하는 것이 가능하며, 이로 인해, 탄소 코팅층이 어떠한 방식에 의해 코팅되었는지를, 간단하고도 효율적으로 식별 확인할 수 있다.As described above, according to the method for analyzing the composition of the surface carbon coating layer of the anode / SiO2 / nano silica composite anode according to the present invention, by using the inert gas fusion-infrared absorption method, It is possible to quantitatively analyze trace components such as nitrogen corresponding to the range of 100 to 1,000 mg / kg. Thus, it can be easily and efficiently identified whether or not the carbon coating layer is coated.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as set forth in the appended claims. Such changes and modifications are intended to be within the scope of the appended claims.

[실시예 1] SiO/나노 실리카 복합재 음극 표면에 피치 코팅된 탄소 코팅층 내 성분 분석 [Example 1] Analysis of components in the carbon-coated layer pitch-coated on the surface of the anode / SiO2 / nano silica composite

먼저, SiO/나노 실리카 복합재 음극 표면에 피치(pitch) 코팅된 탄소 코팅층 시료를 주석(Sn) 캡슐에 공급하고, 이어서, 이중 그래파이트 캡슐(double graphite capsule)을 설치한 후, 2,500 K의 온도 및 헬륨(불활성 가스) 분위기 하에서 상기 탄소 코팅층 시료를 분해(decomposition)시키고, 분해로부터 생성된 가스(gas)를 산화구리(CuO) 관에 통과시켜 일정한 형태로 산화시킨 후, 적외선 검출기(NDIR cell)를 통과시켜 얻어진 적외선 스펙트럼을 분석하여, SiO /나노 실리카 복합재 음극 표면 탄소 코팅층의 성분을 분석하였다.First, a carbon coating layer sample coated with pitch on the surface of a SiO 2 / nano silica composite negative electrode was supplied to a Sn capsule, followed by installing a double graphite capsule. Then, a temperature of 2,500 K and a helium The carbon coating layer sample is decomposed in an inert gas atmosphere and the gas generated from the decomposition is passed through a copper oxide tube and oxidized to a uniform form and then passed through an NDIR cell The infrared spectrum was analyzed to analyze the composition of the carbon coating layer on the surface of the SiO 2 / nano silica composite anode.

[비교예 1] SiO/나노 실리카 복합재 음극 표면에 화학 증착 코팅된 탄소 코팅층 내 성분 분석 [Comparative Example 1] Analysis of components in the carbon coating layer chemically vapor-deposited on the surface of the anode / SiO2 / nano silica composite anode

SiO/나노 실리카 복합재 음극 표면에 피치(pitch) 코팅된 탄소 코팅층 시료 대신, SiO/나노 실리카 복합재 음극 표면에 화학 증착 코팅된 탄소 코팅층 시료를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여, SiO /나노 실리카 복합재 음극 표면 탄소 코팅층의 성분을 분석하였다.The procedure of Example 1 was repeated, except that a carbon coating layer sample coated with a chemical vapor deposition on the surface of the anode / SiO 2 / nano silica composite negative electrode was used instead of the carbon coating layer sample coated on the surface of the SiO 2 / , And SiO / nano silica composite anode surface carbon coating layer.

[비교예 2] SiO/나노 실리카 복합재 음극 표면에 피치 코팅을 하지 않은 시료의 성분 분석 [Comparative Example 2] Analysis of components of the sample without pitch coating on the surface of the anode / SiO2 / nano silica composite anode

SiO/나노 실리카 복합재 음극 표면에 피치(pitch) 코팅된 탄소 코팅층 시료 대신, SiO/나노 실리카 복합재 음극 표면에 피치 코팅이나 화학 증착 코팅을 하지 않은 시료를 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 수행하여 성분을 분석하였다.Same as Example 1, except that a pitch coating or a chemical vapor deposition coating was not applied on the surface of the SiO 2 / nano silica composite negative electrode instead of the carbon coating layer sample coated on the surface of the SiO 2 / nano silica composite negative electrode. To analyze the components.

[실시예 1, 비교예 1 및 2] SiO/나노 실리카 복합재 음극 표면의 탄소 코팅층 내 성분 분석 평가 [Example 1, Comparative Examples 1 and 2] Analysis and evaluation of components in the carbon coating layer on the surface of the anode / SiO2 / nano silica composite

도 1은 SiO/나노 실리카 복합재 음극 표면에, 피치(pitch) 코팅된 탄소 코팅층 내 질소 함량을 나타내는 스펙트럼(초록색)과, 화학 증착(CVD) 코팅된 탄소 코팅층 내 질소 함량을 나타내는 스펙트럼(노란색)을 비교한 도면으로서, 두 스펙트럼 간에 질소 함량의 차이가 큰 것을 확인할 수 있었다. 또한, 도 2는 SiO/나노 실리카 복합재 음극 표면에, 화학 증착(CVD) 코팅된 탄소 코팅층 내 질소 함량을 반복 측정한 스펙트럼(A)과, 피치 코팅을 하지 않은 시료 내 질소 함량을 반복 측정한 스펙트럼(B)을 보여주는 도면으로서, 도 2-A 및 도 2-B 모두 재현성 있는 결과를 나타내었으며, 도 2-A로부터 화학 증착(CVD) 코팅된 탄소 코팅층은 질소 함량이 적음을 확인할 수 있고, 도 2-B로부터 피치 코팅을 하지 않은 경우 또한, 화학 증착 코팅의 경우와 유사하게 질소 함량이 매우 적음을 알 수 있다.FIG. 1 shows a spectrum (green) showing a nitrogen content in a pitch-coated carbon coating layer and a spectrum (yellow) showing a nitrogen content in a chemical vapor deposition (CVD) -coated carbon coating layer on a surface of a SiO 2 / As a comparison, it was confirmed that there is a large difference in nitrogen content between the two spectra. FIG. 2 is a graph showing the relationship between the spectrum (A) obtained by repeatedly measuring the nitrogen content in the carbon coating layer chemically vapor-deposited (CVD) on the surface of the SiO / nano-silica composite anode and the spectrum obtained by repeatedly measuring the nitrogen content in the sample 2-A and 2-B show reproducible results. It can be confirmed from FIG. 2-A that the carbon coating layer chemically vapor-deposited (CVD) has a low nitrogen content, 2-B, the nitrogen content is also very low, similar to the case of the chemical vapor deposition coating.

한편, 도 1의 초록색 스펙트럼은 상기 실시예 1의 피치 코팅된 탄소 코팅층 시료 내 질소의 함량을 나타낸 것이고, 도 2-A의 스펙트럼은 상기 비교예 1의 화학 증착 코팅된 탄소 코팅층 시료 내 질소의 함량을 나타낸 것이며, 도 2-B의 스펙트럼은 상기 비교예 2의 피치 코팅이나 화학 증착 코팅을 하지 않은 시료 내 질소의 함량을 나타낸 것이다.The green spectrum of FIG. 1 shows the content of nitrogen in the pitch-coated carbon coating layer sample of Example 1, and the spectrum of FIG. 2-A shows the nitrogen content in the carbon coating layer of the chemical vapor deposition coated sample of Comparative Example 1 And the spectrum of FIG. 2-B shows the content of nitrogen in the sample without the pitch coating or the chemical vapor deposition coating of Comparative Example 2. FIG.

이와 같이, 탄소 코팅층이 어떠한 코팅 방식에 의해 코팅되었는가는 질소 피크의 강도를 통해 식별이 가능한 것으로서, 도 1에 도시된 초록색 질소 피크의 강도는 최고 0.03을 초과하는데 반하여, 도 2-A에 도시된 질소 피크의 강도는 최고 0.0004 미만에 불과한 것이어서, 도 2-A의 질소 피크는 질소가 극미량으로 포함되어 있는 화학 증착(CVD) 코팅된 탄소 코팅층 시료 B에 의한 것임을 알 수 있으며, 또한, 도 2-A에 비해 상대적으로 높은 강도를 나타내는 도 1의 초록색 질소 피크는, 피치(pitch) 코팅된 탄소 코팅층 시료 A에 의한 것임을 확인할 수 있다.As described above, the coating method in which the carbon coating layer is coated can be identified through the intensity of the nitrogen peak, and the intensity of the green nitrogen peak shown in Fig. 1 exceeds the maximum of 0.03. On the contrary, The nitrogen peak of the nitrogen peak is less than the maximum of 0.0004, so that the nitrogen peak of FIG. 2-A is attributable to the chemical vapor deposition (CVD) -coated carbon coating layer sample B containing a trace amount of nitrogen, It can be confirmed that the green nitrogen peak of FIG. 1, which shows a relatively high intensity compared with A, is due to the carbon coating layer sample A coated with the pitch coating.

따라서, 본 발명에 따른 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법, 다시 말해, 불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하게 되면, 탄소 코팅층에 얼마만큼의 질소를 포함한 미량 성분이 함유되어 있는지의 파악이 가능하며, 이를 통해, 탄소 코팅층이 어떠한 방식에 의해 코팅되었는지를, 간단하고도 효율적으로 확인할 수 있다.Therefore, when the method of analyzing the composition of the surface carbon coating layer of the anode / surface of the composite material of SiO 2 / nano silica according to the present invention, that is, the inert gas fusion-infrared absorption method is used, It is possible to easily and efficiently confirm how the carbon coating layer is coated by the method.

Claims (9)

불활성 가스 융해-적외선 흡수(Inert gas fusion-infrared absorption)법을 이용하여, 리튬-이온 2차 전지의 음극에 사용되는 SiO/나노 실리카 복합재 표면의 탄소 코팅층에 포함된 성분 및 이의 함량을 분석하는 단계;를 포함하는 SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.Analysis of the components and their contents in the carbon coating layer on the surface of the SiO 2 / nano silica composite used for the negative electrode of the lithium-ion secondary battery using the inert gas fusion-infrared absorption method A method for analyzing the composition of a carbon coating layer on a surface of a SiO 2 / nano silica composite negative electrode. 청구항 1에 있어서, 상기 탄소 코팅층에 포함된 성분 및 함량을 통해, 상기 탄소 코팅층이 상기 복합재 표면에 코팅되는 방식을 식별하는 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, wherein the method includes identifying the manner in which the carbon coating layer is coated on the surface of the composite material through the components and the content of the carbon coating layer. 청구항 1에 있어서, 상기 불활성 가스 융해-적외선 흡수법은,
탄소 코팅층 시료를 주석(Sn) 캡슐 또는 니켈(Ni) 바스켓에 공급하는 단계;
이중 그래파이트 캡슐(double graphite capsule)을 설치하는 단계;
고온 및 불활성 가스 분위기 하에서 상기 탄소 코팅층 시료를 분해시키는 단계;
분해로부터 생성된 가스를 산화시키는 단계; 및
산화된 기체를 적외선 검출기에 통과시킨 후, 상기 기체가 적외선 검출기를 통과할 때 얻어진 적외선 스펙트럼을 분석하는 단계;를 통하여 수행되는 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.
The inert gas fusion-infrared absorption method according to claim 1,
Supplying a carbon coating layer sample to a tin (Sn) capsule or a nickel (Ni) basket;
Installing a double graphite capsule;
Decomposing the carbon coating layer sample in an atmosphere of a high temperature and an inert gas;
Oxidizing the gas resulting from the decomposition; And
Analyzing the infrared spectrum obtained when the gas passes through the infrared detector after passing the oxidized gas through the infrared detector and analyzing the composition of the surface carbon coating layer of the SiO 2 / .
청구항 3에 있어서, 상기 탄소 코팅층 시료가 분해될 때의 온도는, 절대온도로서 2,200 내지 2,900 K인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 3, wherein the temperature at which the carbon coating layer sample is decomposed is in the range of 2,200 to 2,900 K as an absolute temperature. 청구항 1에 있어서, 상기 탄소 코팅층의 성분 분석방법을 통하여, 100 내지 1,000 mg/kg의 미량 성분이 정량 분석되는 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, wherein a trace component of 100 to 1,000 mg / kg is quantitatively analyzed through a method of analyzing the composition of the carbon coating layer. 청구항 1에 있어서, 상기 탄소 코팅층에 포함된 성분은 질소인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, wherein the component contained in the carbon coating layer is nitrogen. 청구항 2에 있어서, 상기 식별되는 코팅 방식은 화학 증착(CVD) 방식 또는 피치 코팅(pitch coating) 방식인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 2, wherein the identified coating method is a chemical vapor deposition (CVD) method or a pitch coating method. 청구항 1에 있어서, 상기 탄소 코팅층의 성분 분석방법을 통하여 100 내지 1,000 mg/kg의 미량 성분이 정량 분석되면, 상기 탄소 코팅층이 상기 복합재 표면에 코팅된 방식은 피치 코팅 방식인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.[3] The method of claim 1, wherein the carbon coating layer is coated on the surface of the composite material by a pitch coating method when a trace component of 100 to 1,000 mg / kg is quantitatively analyzed through a method of analyzing the composition of the carbon coating layer. A method for analyzing the composition of carbon coating layer on the anode surface of nano silica composite. 청구항 1에 있어서, 상기 SiO/나노 실리카 복합재 중 SiO는 크기가 1 내지 100 ㎛이고, 나노 실리카는 50 내지 300 nm인 것을 특징으로 하는, SiO/나노 실리카 복합재 음극 표면 탄소 코팅층의 성분 분석방법.The method according to claim 1, wherein the SiO 2 / nano-silica composite material has a size of 1 to 100 μm and a nanosilica size of 50 to 300 nm.
KR1020160127701A 2016-10-04 2016-10-04 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface KR102107217B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160127701A KR102107217B1 (en) 2016-10-04 2016-10-04 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160127701A KR102107217B1 (en) 2016-10-04 2016-10-04 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface

Publications (2)

Publication Number Publication Date
KR20180037483A true KR20180037483A (en) 2018-04-12
KR102107217B1 KR102107217B1 (en) 2020-05-06

Family

ID=61969297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160127701A KR102107217B1 (en) 2016-10-04 2016-10-04 Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface

Country Status (1)

Country Link
KR (1) KR102107217B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130613A (en) * 1997-07-11 1999-02-02 Sanyo Special Steel Co Ltd Analytic method for oxygen in metal
JP2008003050A (en) * 2006-06-26 2008-01-10 Horiba Ltd Analysis method and analysis device of element in sample melted and treated in inert gas atmosphere
KR101258155B1 (en) 2008-02-25 2013-04-25 주식회사 엘지화학 LITHIUM SECONDARY BATTERY'S ANODE INCLUDING LiF COMPOUNDS COATING LAYER AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME
JP2015111597A (en) * 2015-03-02 2015-06-18 株式会社キャタラー Method for manufacturing supported catalyst for fuel cell
KR20160023157A (en) * 2014-08-21 2016-03-03 삼성전자주식회사 Apparatus for analyzing active material of secondary battery and method for analyzing active material using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130613A (en) * 1997-07-11 1999-02-02 Sanyo Special Steel Co Ltd Analytic method for oxygen in metal
JP2008003050A (en) * 2006-06-26 2008-01-10 Horiba Ltd Analysis method and analysis device of element in sample melted and treated in inert gas atmosphere
KR101258155B1 (en) 2008-02-25 2013-04-25 주식회사 엘지화학 LITHIUM SECONDARY BATTERY'S ANODE INCLUDING LiF COMPOUNDS COATING LAYER AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME
KR20160023157A (en) * 2014-08-21 2016-03-03 삼성전자주식회사 Apparatus for analyzing active material of secondary battery and method for analyzing active material using the same
JP2015111597A (en) * 2015-03-02 2015-06-18 株式会社キャタラー Method for manufacturing supported catalyst for fuel cell

Also Published As

Publication number Publication date
KR102107217B1 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
Zheng et al. The progress of Li–S batteries—understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes
Yoshida Principle and application of low energy inverse photoemission spectroscopy: A new method for measuring unoccupied states of organic semiconductors
Chen et al. The origin of improved electrical double‐layer capacitance by inclusion of topological defects and dopants in graphene for supercapacitors
Xu et al. Textile inspired lithium–oxygen battery cathode with decoupled oxygen and electrolyte pathways
Ling et al. Potassium‐assisted fabrication of intrinsic defects in porous carbons for electrocatalytic CO2 reduction
Lu et al. Zinc single‐atom‐regulated hard carbons for high‐rate and low‐temperature sodium‐ion batteries
US20090166523A1 (en) Use of carbon nanotubes (cnts) for analysis of samples
Wang et al. Enhanced charge transport in tantalum nitride nanotube photoanodes for solar water splitting
CN106353299B (en) A kind of quantitative analysis method of graphene composite conductive slurry
Wang et al. A Desolvated Solid–Solid Interface for a High‐Capacitance Electric Double Layer
Chen et al. One‐Step Rapid and Scalable Flame Synthesis of Efficient WO3 Photoanodes for Water Splitting
Khavrus et al. Application of carbon nanotubes directly grown on aluminum foils as electric double layer capacitor electrodes
Jankovský et al. Simple synthesis of fluorinated graphene: thermal exfoliation of fluorographite
Hwang et al. Single‐Walled TiO2 Nanotubes: Enhanced Carrier‐Transport Properties by TiCl4 Treatment
Weng et al. Layer-dependent SERS enhancement of TiS 2 prepared by simple electrochemical intercalation
Mohai et al. Reduction and covalent modification of graphene‐oxide by nitrogen in glow discharge plasma
Nunes et al. Study of the aging process of nanostructured porous carbon-based electrodes in electrochemical capacitors filled with aqueous or organic electrolytes
Bae et al. Dual‐Functioning Molecular Carrier of Superoxide Radicals for Stable and Efficient Lithium–Oxygen Batteries
Krempl et al. Quantitative operando detection of electro synthesized ammonia using mass spectrometry
Vélez et al. The rise of electrochemical NAPXPS operated in the soft X-ray regime exemplified by the oxygen evolution reaction on IrO x electrocatalysts
JP2013231708A (en) Device for analyzing film on surface of electrode for lithium secondary battery and method of analyzing film on surface of electrode for lithium secondary battery
Buchner et al. Interaction of Ultrathin Films of Ethylene Carbonate with Oxidized and Reduced Lithium Cobalt Oxide—A Model Study of the Cathode| Electrolyte Interface in Li‐Ion Batteries
Das et al. Band Bending at Hole Transporting Layer‐Perovskite Interfaces in n‐i‐p and in p‐i‐n Architecture
Juang et al. Low-pressure ethane/nitrogen gas mixture plasma surface modification effect on the wetting and electrochemical performance of polymeric separator for lithium-ion batteries
KR20180037483A (en) Component analysis method of carbon coating layer located at SiO/nano-silica composite materials cathode surface

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant