JPH07119754B2 - Trace oxygen analysis method for steel - Google Patents

Trace oxygen analysis method for steel

Info

Publication number
JPH07119754B2
JPH07119754B2 JP1290462A JP29046289A JPH07119754B2 JP H07119754 B2 JPH07119754 B2 JP H07119754B2 JP 1290462 A JP1290462 A JP 1290462A JP 29046289 A JP29046289 A JP 29046289A JP H07119754 B2 JPH07119754 B2 JP H07119754B2
Authority
JP
Japan
Prior art keywords
oxygen
steel
sample
amount
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1290462A
Other languages
Japanese (ja)
Other versions
JPH03150462A (en
Inventor
孝則 秋吉
鋼二 塚田
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP1290462A priority Critical patent/JPH07119754B2/en
Publication of JPH03150462A publication Critical patent/JPH03150462A/en
Publication of JPH07119754B2 publication Critical patent/JPH07119754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鉄鋼中微量酸素の分析方法であって、分析
試料表面に付着する酸素を徹底的に除去することによっ
て鉄鋼中の酸素を高精度で測定する技術に関する。
TECHNICAL FIELD The present invention relates to a method for analyzing a trace amount of oxygen in steel, wherein oxygen in the steel is increased by thoroughly removing oxygen adhering to the surface of an analysis sample. Related to the technology to measure with precision.

[従来技術] 鉄鋼の高品質化に伴い、鉄鋼中の極く微量の酸素量が重
要視されるようになり、極微量域の分析精度が重要な課
題となっている。例えば、Al脱酸鋼では、鋼中の酸素量
は鋼中の介在物量を示す尺度ともなり、軸受材等に用い
られる高級高炭素鋼ではその介在物量が厳しく制限さ
れ、鋼中酸素量は10ppm以下であることが要求されてい
る。
[Prior Art] With the improvement in quality of steel, an extremely small amount of oxygen in steel has come to be regarded as important, and the accuracy of analysis in an extremely small amount region has become an important issue. For example, in Al deoxidized steel, the amount of oxygen in the steel is also a measure of the amount of inclusions in the steel, and in high-grade high-carbon steels used as bearing materials, the amount of inclusions is severely limited, and the amount of oxygen in the steel is 10 ppm. The following are required:

このような微量酸素の分析法として一般によく用いられ
ているのは、1g程度の棒状の試料を無酸素環境の黒鉛る
つぼ中で2000℃前後に加熱し、試料を融解すると同時に
試料中の酸素をCOとして抽出する方法である。しかし、
この場合のCOには真に鋼中に存在していた酸素と、試料
表面に例えば表面酸化物として存在していた酸素とが混
在して含まれている可能性がある。
A commonly used analytical method for such trace oxygen is to heat a sample of about 1 g in a rod shape to around 2000 ° C in a graphite crucible in an oxygen-free environment to melt the sample and simultaneously remove oxygen in the sample. It is a method of extracting as CO. But,
In this case, CO may contain oxygen that was truly present in the steel and oxygen that was present as a surface oxide on the sample surface in a mixed manner.

このように表面に存在していて鋼中の介在物とは無関係
の酸素を測定対象から外すため、かっては、分析前の処
理として、試料表層をグラインダーで研磨することによ
って表面酸素を削除していた。然るに、酸素量の微量域
が論ぜられるようになると、グラインダー研磨時の表面
酸化が問題になるようになった。
In this way, oxygen existing on the surface and unrelated to inclusions in the steel is removed from the measurement target.Therefore, the surface oxygen was removed by grinding the sample surface layer with a grinder as a pre-analysis treatment. It was However, when the minute amount of oxygen is discussed, surface oxidation during grinder polishing becomes a problem.

表面に酸素を残さない研磨方法が種々検討され、その結
果、近年では最終的に表面汚染の少ない液を用いて電解
研磨を行なうことによって表面の酸化層を除去すること
が行われていた。例えば鉄と鋼、vol.73,No.4,1981,S41
1によれば、表面汚染のもっとも少ない研磨法としてア
セチルアセトン系或は錯酸系による電解研磨が推奨され
ている。そして、これらの電解液はアセトンなどの有機
溶媒によって洗浄除去され、有機溶媒は揮酸することに
よって試料表面は浄化される。
Various polishing methods that do not leave oxygen on the surface have been studied, and as a result, in recent years, the oxide layer on the surface has been finally removed by electrolytic polishing using a liquid with little surface contamination. For example, iron and steel, vol.73, No.4,1981, S41
According to 1), acetylacetone-based or complex acid-based electrolytic polishing is recommended as the polishing method with the least surface contamination. Then, these electrolytic solutions are removed by washing with an organic solvent such as acetone, and the organic solvent is volatilized to purify the sample surface.

[発明が解決しようとする課題] しかしながら、酸素を含んでいる電解研磨液の有機溶媒
による洗浄効果が試料表層の状況によって異なり、電解
研磨液が十分に除去されないという問題が残されてい
た。
[Problems to be Solved by the Invention] However, the cleaning effect of the organic solvent of the electropolishing liquid containing oxygen differs depending on the condition of the surface layer of the sample, and the problem that the electropolishing liquid is not sufficiently removed remains.

この問題を解決するためにこの発明はなされたもので、
電解液を試料表面から厳密に除去することによって鉄鋼
中の微量酸素量を正確に測定することを目的とする。
The present invention was made to solve this problem.
The purpose is to accurately measure the amount of trace oxygen in iron and steel by strictly removing the electrolytic solution from the sample surface.

[課題を解決するための手段] この目的を達成するための手段は、鉄鋼中の微量酸素を
加熱抽出して測定する際に前処理として試料の電解研磨
を行う方法において、酸素量測定前に1200℃以上1400℃
以下の温度で予備加熱を行い、その後通常行われている
本加熱により鉄鋼中酸素を抽出し炭素を測定する鉄鋼の
微量分析方法である。
[Means for Solving the Problem] A means for achieving this object is a method of electrolytically polishing a sample as a pretreatment when a trace amount of oxygen in steel is extracted by heating and measured. 1200 ℃ or more 1400 ℃
This is a microanalysis method for steel in which preheating is performed at the following temperature, and then oxygen is extracted from steel to measure carbon by main heating that is usually performed.

[作用] 電解研磨に用いる薬品は酸素を含んでいる。このため、
電解研磨後に研磨液を厳密に除去することは重要な事項
であるが、液体洗浄によってこれを洗い去る場合には、
その洗浄効果は被洗浄表面の形状に依存する。例えば、
鉄鋼試料の場合でも電解研磨後の表面の凹凸の状況は試
料により異なり、凹凸の激しい試料では除去が困難で研
磨液が残存することがある。特に、炭素含有率が高いも
のに残存の傾向が見られる。第1図はこのような試料を
1700℃に加熱し、抽出される酸素を経時的に測定した結
果である。図で、縦軸は酸素の信号強度、横軸は時間で
ある。抽出曲線に二つの山が見られ、最初の山は加熱し
て数十秒を経たところで現れ始めるが頂きも低くやがて
消滅し、後の山は頂きが大きい。最初の山は試料によっ
て現れ方が異なり、表面の滑らかな試料では殆ど現れ
ず、凹凸の激しい試料程顕著に現れる。この最初の山は
表面に残された研磨液から発生した酸素に基づくもので
ある。
[Operation] A chemical used for electrolytic polishing contains oxygen. For this reason,
Strictly removing the polishing liquid after electropolishing is an important matter, but when cleaning it off by liquid cleaning,
The cleaning effect depends on the shape of the surface to be cleaned. For example,
Even in the case of steel samples, the state of surface irregularities after electropolishing varies depending on the sample, and it is difficult to remove the sample with severe irregularities and the polishing liquid may remain. In particular, those having a high carbon content tend to remain. Figure 1 shows such a sample
It is the result of measuring oxygen extracted with heating at 1700 ° C. In the figure, the vertical axis represents oxygen signal intensity and the horizontal axis represents time. Two peaks can be seen in the extraction curve. The first peak begins to appear after heating for several tens of seconds, but the peak is low and disappears, and the peaks later are large. The appearance of the first peak differs depending on the sample, and it hardly appears in the sample with a smooth surface, but it appears more prominently in the sample with more unevenness. This first peak is due to oxygen generated from the polishing liquid left on the surface.

このような凹凸の激しい試料でも予備加熱してやると、
上記の最初の山は現れなくなる。この効果と予備加熱温
度の関係について検討すると、温度が低い場合は効果が
得られず、高過ぎる場合は鉄鋼中の酸素もその一部を抽
出してしまうおそれがある。即ち、予備加熱によって電
解研磨剤が分解して或は分解せずとも揮散すると考えら
れ、予備加熱温度は研磨剤の揮散温度であればよく、且
つ鉄鋼中の酸素が抽出されない温度であればよい。実際
に行ってみると1200℃以上1400℃以下が適当であり、12
00℃未満では予備加熱時間を長くしないと十分な効果が
得られないこともある。第2図に、予備加熱温度が1400
℃の場合と、1600℃の場合との酸素の信号強度曲線を示
す。図で、曲線Aは1400℃の場合で、予備加熱に引き続
いて2000℃に昇温し本加熱を行ったもので、曲線Bは同
様に1600℃の場合である。Aでは最初の山が下り切って
から次の本加熱による大きな山が現れ二つの山が分離さ
れるが、Bでは最初の山が下り切らないうちに次の大き
な山が現れ分離されない。即ち1600℃では表面酸素に鉄
鋼中酸素が混じて抽出されている。このように、予備加
熱温度が400℃を超えると、鋼中酸素の一部が抽出され
てしまうおそれがある。
If you preheat even a sample with such unevenness,
The first mountain above disappears. Examining the relationship between this effect and the preheating temperature, if the temperature is low, the effect cannot be obtained, and if it is too high, oxygen in the steel may partly be extracted. That is, it is considered that the electrolytic polishing is decomposed by preheating or volatilizes even if it is not decomposed, and the preheating temperature may be the volatilization temperature of the polishing agent, and may be a temperature at which oxygen in the steel is not extracted. . Actually, 1200 ° C or higher and 1400 ° C or lower is appropriate.
If the temperature is less than 00 ° C, sufficient effect may not be obtained unless the preheating time is extended. Fig. 2 shows that the preheating temperature is 1400
The oxygen signal intensity curve in the case of ° C and the case of 1600 ° C are shown. In the figure, curve A shows the case of 1400 ° C., which is the case where the temperature is raised to 2000 ° C. and then the main heating is performed following preheating, and curve B shows the case of 1600 ° C. In A, after the first mountain has completely descended, the next large mountain appears due to the main heating and separates the two mountains, but in B, the next large mountain appears and cannot be separated before the first mountain has completely descended. That is, at 1600 ° C, surface oxygen is mixed with oxygen in steel to be extracted. As described above, when the preheating temperature exceeds 400 ° C., there is a possibility that part of oxygen in the steel will be extracted.

[実施例] 溶鋼を吸い上げて作製した酸素量の異なる直径5mmの棒
状の試料A,Bについて、予備加熱条件等を変えて分析し
表面酸素量と鋼中酸素量とを測定した。予備加熱につい
ては、この発明の範囲外の条件についても比較例として
行い、又、予備加熱を行わない従来例についても抽出さ
れた酸素量を鋼中酸素量として比較した。
[Examples] Rod-shaped samples A and B having different diameters of 5 mm and produced by sucking up molten steel were analyzed under different preheating conditions and the surface oxygen content and the oxygen content in steel were measured. Regarding preheating, conditions outside the scope of the present invention were also performed as comparative examples, and the extracted oxygen amount was also compared as the oxygen amount in steel for the conventional example in which preheating was not performed.

試料ついては、グラインダーで研磨した後、5%塩酸・
エタノール溶液(以下、塩酸系と称す)或は10%アセチ
ルアセトン・1%トリメチルアンモニウムクロライド・
メタノール溶液(以下、アセチルアセトン系と称す)を
用いて、室温で、電流密度5mA/cm2,5分間の電解研磨を
行い、その後アセトンで洗浄したものを分析に供した。
分析は融解加熱赤外線吸収法でおこなったが、最初は予
備加熱温度に所定時間保持して表層酸素を抽出し、その
後引き続いて、2000℃に昇温して鋼中酸素量を測定し
た。即ち、試料を黒鉛坩堝に入れArガスを流しながら誘
導加熱により加熱し、酸素をCOとして捕らえその量をCO
による赤外線吸収量によって測定した。予備加熱条件及
び分析結果を第1表に示す。
For the sample, grind it with 5% hydrochloric acid
Ethanol solution (hereinafter referred to as hydrochloric acid system) or 10% acetylacetone / 1% trimethylammonium chloride /
Electrolytic polishing was performed at room temperature using a methanol solution (hereinafter referred to as acetylacetone system) at a current density of 5 mA / cm 2 for 5 minutes, and then washed with acetone, and then subjected to analysis.
The analysis was carried out by the melting heating infrared absorption method. First, the preheating temperature was maintained for a predetermined time to extract surface oxygen, and then the temperature was raised to 2000 ° C. to measure the oxygen content in the steel. That is, the sample is put in a graphite crucible and heated by induction heating while flowing Ar gas, and oxygen is captured as CO,
It was measured by the amount of infrared absorption. Table 1 shows the preheating conditions and the analysis results.

実施例では予備加熱で抽出された酸素は5ppmから9ppmと
変動が大きかったが、鋼中酸素については試料種類Aで
は酸素量平均値11.0ppmで試料間変動は0.9ppm、試料種
類Bでは平均値6.5ppmで試料間変動は0.2ppmと小さかっ
た。これに対して、比較例では予備加熱温度の低すぎる
試料No.9では鋼中酸素量が実施例よりもかなり大きく、
表面酸素量が少なかった。これは予備加熱で表面酸素が
十分に分解されていなかったためである。又、予備加熱
温度の高すぎる試料No.10及びNo.11では見掛け上表面酸
素量が多く、鋼中酸素量が少ない結果となり、試料No.1
1では酸素の信号強度曲線に山の重りも見られた。従来
例では鋼中酸素量が多く、実施例及び比較例の同じ試料
種類の表面酸素量と鋼中酸素量の合計にほぼ匹敵してい
た。
In the examples, the oxygen extracted by the preheating had a large variation from 5 ppm to 9 ppm, but regarding the oxygen in the steel, the average oxygen amount in the sample type A was 11.0 ppm, the inter-sample variation was 0.9 ppm, and the average value in the sample type B. The variation between samples was as small as 0.2 ppm at 6.5 ppm. On the other hand, in the comparative example, the preheating temperature is too low in the sample No. 9, the oxygen content in the steel is considerably larger than that in the example,
The surface oxygen content was low. This is because surface oxygen was not sufficiently decomposed by preheating. In addition, Sample No. 10 and No. 11, which have too high preheating temperature, apparently have a large amount of surface oxygen and a small amount of oxygen in the steel.
At 1, a mountain weight was also seen in the oxygen signal intensity curve. In the conventional example, the amount of oxygen in steel was large, and it was almost equal to the total of the amount of surface oxygen and the amount of oxygen in steel of the same sample type in the example and the comparative example.

[発明の効果] 以上述べてきたように、この発明では鉄鋼中の酸素を加
熱抽出し測定する前に、規定の温度で予備加熱を行うの
で、電解研磨液の残存による表面の酸素が除かれ、鉄鋼
中の酸素のみを測定することが出来る。このため精度、
正確度ともに優れた分析方法であり、鉄鋼の高品質化に
重要な役割を演ずる鉄鋼中の酸素について、正確な情報
を提供するこの発明の効果は大きい。
[Advantages of the Invention] As described above, according to the present invention, the oxygen in the steel is preliminarily heated at a specified temperature before being extracted by heating and measured, so that oxygen on the surface due to the remaining electrolytic polishing liquid is removed. It is possible to measure only oxygen in steel. For this reason,
The present invention is highly effective in providing accurate information about oxygen in steel, which is an analytical method with excellent accuracy and plays an important role in improving the quality of steel.

【図面の簡単な説明】[Brief description of drawings]

第1図は作用を説明するための抽出酸素の信号強度グラ
フ図、第2図は予備加熱温度別の抽出酸素の信号強度グ
ラフ図である。
FIG. 1 is a signal intensity graph of extracted oxygen for explaining the action, and FIG. 2 is a signal intensity graph of extracted oxygen for each preheating temperature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄鋼中の微量酸素を加熱抽出して測定する
際に前処理として試料の電解研磨を行う方法において、
酸素量測定前に1200℃以上1400℃以下の温度で予備加熱
を行うことを特徴とする鉄鋼の微量分析方法。
1. A method for electrolytically polishing a sample as a pretreatment when heating and extracting a trace amount of oxygen in steel for measurement.
A method for microanalysis of steel, which comprises preheating at a temperature of 1200 ° C or more and 1400 ° C or less before measuring an oxygen content.
JP1290462A 1989-11-08 1989-11-08 Trace oxygen analysis method for steel Expired - Lifetime JPH07119754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1290462A JPH07119754B2 (en) 1989-11-08 1989-11-08 Trace oxygen analysis method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1290462A JPH07119754B2 (en) 1989-11-08 1989-11-08 Trace oxygen analysis method for steel

Publications (2)

Publication Number Publication Date
JPH03150462A JPH03150462A (en) 1991-06-26
JPH07119754B2 true JPH07119754B2 (en) 1995-12-20

Family

ID=17756334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1290462A Expired - Lifetime JPH07119754B2 (en) 1989-11-08 1989-11-08 Trace oxygen analysis method for steel

Country Status (1)

Country Link
JP (1) JPH07119754B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2856006B2 (en) * 1992-11-13 1999-02-10 日本鋼管株式会社 Trace oxygen analysis method for steel
KR100439826B1 (en) * 2002-05-27 2004-07-12 현대자동차주식회사 Sample pre-treatment method adapted to oxygen and nitrogen content analysis

Also Published As

Publication number Publication date
JPH03150462A (en) 1991-06-26

Similar Documents

Publication Publication Date Title
JP5098843B2 (en) Method for determining the solid solution content of the element of interest in a metal sample
US5522915A (en) Method and apparatus for sequentially and continuously determining concentrations of carbon, hydrogen, and nitrogen in molten steel, and method and apparatus for rapidly determining trace amounts of carbon in molten steel
JPH07119754B2 (en) Trace oxygen analysis method for steel
McDonald et al. Vaccumm Fusion Analysis of Titanium Zirconium, and Molybdenum
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
JP3663774B2 (en) Method and apparatus for analyzing trace oxygen in metal
CA1070598A (en) Method for analyzing the latent gas content of molten samples
JP2856006B2 (en) Trace oxygen analysis method for steel
JPH11316220A (en) Method and apparatus for high-accuracy analysis of trace element in metal
CN108663497A (en) A method of measuring Dissolved H in Liquid Al-Si Alloy content
JP3492155B2 (en) Method for analyzing oxygen in metals
CN111426534A (en) Preparation method of sample for detecting austenite grain size of steel by oxidation method
Sun et al. Novel matrix modifier for direct determination of palladium in gold alloy by electrothermal vaporization inductively coupled plasma mass spectrometry
CN110530704A (en) The chemical pre-processing method of oxygen and nitrogen content in a kind of measurement steel
CN115386879B (en) Corrosive agent for ultra-low carbon silicon steel and corrosion method
JPH0894609A (en) Preparation method and device for sample for component analysis of pig iron
JP3492162B2 (en) Analysis of trace oxygen in steel
JPH01272939A (en) Measuring method for impurity
JP3197063B2 (en) Separation method and analysis method of occluded gas in metal
JPH08292187A (en) Analysis of enclosure in steel
JP3157572B2 (en) Method for measuring boron concentration in silicon and method for purifying silicon
JP2001234230A (en) Method for deciding end point of decarburization refining
JPS61283866A (en) Method and apparatus for analyzing trace of carbon contained in steel material
JP2000009719A (en) Quantitative method classified by form and quantitative device classified by form of carbon contained in steel
JP3553372B2 (en) Analysis of trace amounts of oxygen in metals