JPH11316220A - Method and apparatus for high-accuracy analysis of trace element in metal - Google Patents

Method and apparatus for high-accuracy analysis of trace element in metal

Info

Publication number
JPH11316220A
JPH11316220A JP11049896A JP4989699A JPH11316220A JP H11316220 A JPH11316220 A JP H11316220A JP 11049896 A JP11049896 A JP 11049896A JP 4989699 A JP4989699 A JP 4989699A JP H11316220 A JPH11316220 A JP H11316220A
Authority
JP
Japan
Prior art keywords
sample
chamber
reaction chamber
sputtering
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11049896A
Other languages
Japanese (ja)
Inventor
Hisao Yasuhara
久雄 安原
Makoto Shimura
眞 志村
Kenji Abiko
兼次 安彦
Yukitoshi Morimoto
行俊 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ANALYST KK
JFE Steel Corp
Original Assignee
NIPPON ANALYST KK
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ANALYST KK, Kawasaki Steel Corp filed Critical NIPPON ANALYST KK
Priority to JP11049896A priority Critical patent/JPH11316220A/en
Publication of JPH11316220A publication Critical patent/JPH11316220A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a method and an apparatus in which a trace element in a metal can be analyzed simply, quickly, with high accuracy and with high reliability by a method wherein an inert-gas sputtering treatment is executed to the surface of a sample inside a preliminary treatment chamber in an inert-gas atmosphere and a contamination on the surface of the sample is removed. SOLUTION: An inert-gas sputtering treatment is executed to the surface of a sample 2 inside a preliminary treatment chamber 4 in a inert-gas atmosphere, and a contamination part on the surface of the sample 2 is removed. Argon is used as an inert gas. The sample 2 is set as the side of a cathode, and the inside wall 5 on preliminary treatment chamber 4 is used as an anode. The argon which is ionized by a glow- discharge sputtering operation under a decreased pressure is made to collide with the surface of the sample 2 at high speed, and the sputtering treatment is executed. The sample 2 whose surface contamination is removed by the sputtering treatment is moved directly to a reaction chamber 15. That is to say, the sample 2 is shifted to the reaction chamber 15 without being brought into contact with the air or the like. In the reaction chamber 15, the sample 2 is heated or reacted in the flow of a carrier gas. A trace element is gasified, and it can be detected by a detecting device 32 so as to be determined quantitatively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属中微量元素の高精度
分析方法および装置に係り、特に鉄鋼中の酸素、窒素、
炭素及び硫黄を、従来の分析方法および装置に比し、簡
便迅速にしかも高精度で定量できる分析方法および装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for high-precision analysis of trace elements in metals.
The present invention relates to an analysis method and an apparatus capable of quantifying carbon and sulfur easily, quickly and with high precision as compared with conventional analysis methods and apparatuses.

【0002】[0002]

【従来の技術】金属中の微量元素、特に鉄鋼中の酸素、
窒素、炭素及び硫黄は延性や加工性などの材料特性に大
きな影響を及ぼすために、正確な定量分析が必要であ
る。特に近年、鋼の高純度化に伴い鉄鋼中のこれらの微
量元素が重要視されるようになり、その高精度でしかも
迅速簡便な分析方法および分析装置が求められている。
2. Description of the Related Art Trace elements in metals, particularly oxygen in steel,
Since nitrogen, carbon, and sulfur greatly affect material properties such as ductility and workability, accurate quantitative analysis is required. Particularly, in recent years, with the purifying of steel, these trace elements in steel have become more important, and a highly accurate, quick and simple analysis method and analyzer have been demanded.

【0003】しかし、鋼の高純度化が進むに従い、その
正確な分析には分析前に試料表面の汚染部を確実に除去
することが極めて重要となってきている。たとえば、酸
素分析の場合、表面に吸着した有機物や炭酸ガス、大気
等の周辺雰囲気による表面酸化物をあらかじめ除去しな
いと正確な分析値を得られない。そのため、近年の鉄鋼
中の微量酸素分析法として用いられる不活性ガス融解−
赤外線吸収法においては、試料表面の汚染部除去の前処
理法として、酸等を用いた電解研磨法や化学研磨法が報
告されている。
[0003] However, as the purity of steel has increased, it has become extremely important for accurate analysis to reliably remove contaminants on the sample surface before analysis. For example, in the case of oxygen analysis, an accurate analysis value cannot be obtained unless organic substances or carbon dioxide adsorbed on the surface or surface oxides due to a surrounding atmosphere such as the atmosphere are removed in advance. Therefore, in recent years, inert gas melting used as a trace oxygen analysis method in steel
In the infrared absorption method, an electrolytic polishing method using an acid or the like or a chemical polishing method has been reported as a pretreatment method for removing a contaminated portion on a sample surface.

【0004】例えば、特開昭60−18759号公報に
は、鋼中酸素を分析するための供試料を反応管内に収容
せしめると共に、該反応管内に還元性ガスを通入させ、
該還元性ガス雰囲気において500℃以上に加熱し前記
供試料表面を還元処理することを特徴とする鋼中酸素分
析供試料の前処理法が開示されている。
For example, Japanese Patent Application Laid-Open No. Sho 60-18759 discloses that a sample for analyzing oxygen in steel is accommodated in a reaction tube, and a reducing gas is introduced into the reaction tube.
A method for pretreating a specimen for oxygen analysis in steel, characterized in that the specimen surface is subjected to a reduction treatment by heating the specimen to 500 ° C. or higher in the reducing gas atmosphere.

【0005】しかし、上記方法によって表面付着汚染を
除去しても、前処理の時点から分析計で測定するまでの
間に、試料洗浄等による試料表面汚染もしくは再酸化な
どにより試料表面が再度汚染されるため、ppmレベル
もしくはそれ以下の定量分析に誤差が生ずる。特に清浄
な鉄の表面は、雰囲気の吸着や酸化が瞬時に起り易く、
汚染部の除去対策が強く望まれている。
[0005] However, even if the surface adhesion contamination is removed by the above method, the sample surface is contaminated again by the sample washing or reoxidation during the period from the pretreatment to the measurement by the analyzer. Therefore, an error occurs in the quantitative analysis at the ppm level or lower. Especially on a clean iron surface, adsorption and oxidation of the atmosphere easily occur instantaneously,
There is a strong need for measures to remove contaminated parts.

【0006】この問題を解決するため、特開平3−15
0462号公報には、鉄鋼中の微量酸素を加熱抽出して
測定する際に前処理として試料の電解研磨を行なう方法
において、酸素量測定前に1200℃以上1400℃以
下の温度で予備加熱を行なうことを特徴とする鉄鋼の微
量酸素分析方法が、特開平6−148170号公報に
は、鉄鋼試料表面をグラインダー、ヤスリ等で研削後、
該試料中の微量酸素を加熱抽出して測1400℃以下の
温度で予備加熱を行なうことを特徴とする鉄鋼中の微量
酸素分析方法が開示されている。
In order to solve this problem, Japanese Patent Laid-Open Publication No. Hei 3-15
No. 0462 discloses a method in which a sample is electrolytically polished as a pretreatment when a trace amount of oxygen in steel is extracted by heating, and preheating is performed at a temperature of 1200 ° C. or more and 1400 ° C. or less before oxygen amount measurement. Japanese Patent Application Laid-Open No. 6-148170 discloses a method for analyzing trace amounts of oxygen in steel, which is characterized in that a steel sample surface is ground using a grinder, a file, or the like.
There is disclosed a method for analyzing trace amounts of oxygen in steel, wherein a trace amount of oxygen in the sample is extracted by heating and preheating is performed at a temperature of 1400 ° C. or less.

【0007】また、日本鉄鋼協会会誌、CAMP−IS
IJ Vol.5(1992)−440には、表面付着
炭素を450℃×10分の加熱により除去する方法が開
示されており、また、特開平8−211043号公報に
は金属中の炭素分析試料を試料台に載せ、処理容器中で
低圧力の清浄なガスのもとで放電によりスパッターで試
料表面の汚染を取り除き、そのまま分析装置に移送して
微量元素の分析を行う方法が開示されている。
[0007] Also, the Journal of the Iron and Steel Institute of Japan, CAMP-IS
IJ Vol. No. 5 (1992) -440 discloses a method of removing carbon adhering to a surface by heating at 450 ° C. for 10 minutes. A method for removing contamination on the surface of a sample by sputtering in a processing vessel under a clean low-pressure gas by discharge and transferring the sample to an analyzer as it is to analyze trace elements.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記特
開平3−150450号公報記載の方法は、単に電解研
磨液の残存による表面酸素を除くのみで電解研磨後の表
面に形成された酸化層を除去することができず、また、
特開平6−148170号公報記載の方法は、グライン
ダー研削の際に形成された表面酸素化物をるつぼのCと
の反応によって還元除去するものであるが、試料溶解前
は還元反応が起りにくく、仮に起きてもるつぼに接触す
る部位のみに限定され、試料表面全体の還元反応による
汚染除去を期待することができないという問題がある。
さらに、表面付着酸素を450℃×10分の加熱により
除去する方法は低温加熱時の有機物のグラファイト化お
よび鋼中最表面層の脱炭ににより分析精度が低下すると
いう問題が残っている。
However, the method disclosed in Japanese Patent Application Laid-Open No. 3-150450 removes an oxide layer formed on the surface after electrolytic polishing only by removing surface oxygen due to the remaining electrolytic polishing liquid. Can not do,
The method described in Japanese Patent Application Laid-Open No. 6-148170 is to reduce and remove the surface oxygenates formed during the grinder grinding by the reaction with C in the crucible. However, the reduction reaction hardly occurs before dissolving the sample. Even if it occurs, there is a problem that it is limited to only the portion that comes into contact with the crucible, and it is not possible to expect the removal of contamination by a reduction reaction on the entire sample surface.
Furthermore, the method of removing oxygen from the surface by heating at 450 ° C. for 10 minutes has a problem that the analysis accuracy is reduced due to the graphitization of organic substances during low-temperature heating and the decarburization of the outermost surface layer in steel.

【0009】一方、特開平6−148170号公報記載
の方法には、上記のような問題はないが、試料台に載せ
られた試料の裏面清浄にするには試料台上で試料を回転
あるいは反転しなければならず、操作が複雑になり一様
な表面汚染の除去が困難になるとともに、迅速な処理が
できないという問題がある。
On the other hand, although the method described in Japanese Patent Application Laid-Open No. 6-148170 does not have the above-mentioned problems, the sample placed on the sample stage is cleaned or rotated or inverted on the sample stage to clean the back surface. In addition, there is a problem that the operation becomes complicated, uniform removal of surface contamination becomes difficult, and rapid processing cannot be performed.

【0010】本発明は、上記金属中微量酸素の分析方法
ならびに装置についての従来技術の欠点に鑑み、金属中
微量元素を簡便、迅速しかも高精度で信頼性高く分析で
きる手段を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks of the conventional method and apparatus for analyzing trace amounts of oxygen in metals, and has as its object to provide means for analyzing trace elements in metals simply, quickly, with high accuracy, and with high reliability. And

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するために、金属中微量元素の分析方法を、不活性ガ
ス雰囲気の予備処理室内において、試料表面に不活性ガ
ススパッタリング処理を施して該試料のほぼ全表面の汚
染部をほぼ同時に除去する段階と、前記スパッタリング
処理終了後の試料を直接反応室に移して微量元素を定量
する段階とを有することとするものである。また、その
際、不活性ガススパッタリング処理は試料を導電性試料
押さえによって点支持して行うことを好適とし、金属中
微量元素分析の一層の高精度化、迅速化を図るものであ
る。
In order to solve the above-mentioned problems, the present invention provides a method for analyzing trace elements in a metal by subjecting a sample surface to an inert gas sputtering process in a pretreatment chamber in an inert gas atmosphere. And removing a contaminated portion on substantially the entire surface of the sample at substantially the same time, and directly transferring the sample after the completion of the sputtering process to a reaction chamber to quantify a trace element. In this case, it is preferable that the inert gas sputtering treatment is performed by holding the sample at a point by means of a conductive sample holder, so that the analysis of trace elements in a metal can be performed with higher accuracy and speed.

【0012】また、本発明は、上記金属中微量元素の分
析装置を、試料の表面汚染部を不活性ガススパッタリン
グにより除去する予備処理室と、該予備処理室において
表面汚染部を除去された試料中の微量元素をガス化する
反応室と、該反応室から導かれるガスを分析定量する検
出装置とからなるものとし、かつ、前記予備処理室は、
上部に開閉自在の試料投入口、下部に前記反応室に通ず
る開閉自在のシャッターを具備してなり、かつ、スパッ
タリング用電源、不活性ガス源が接続されているものと
するものである。さらに上記装置において、予備処理室
は、試料を点支持し、陰極側に維持するる試料押さえ
と、陽極側に維持される内面壁とを有してなることを好
適とし、確実に前記分析方法が高精度で行われるように
するものである。なお、本発明は、特に、鉄鋼中の酸
素、窒素、炭素あるいは硫黄等の微量元素の定量に好適
である。
The present invention also provides a pretreatment chamber for removing a surface contaminated portion of a sample by inert gas sputtering using the above-described apparatus for analyzing a trace element in a metal, a sample from which the surface contaminated portion has been removed in the pretreatment chamber. A reaction chamber for gasifying trace elements therein, and a detection device for analyzing and quantifying gas introduced from the reaction chamber, and the pretreatment chamber,
An openable sample inlet is provided at the upper part, and an openable shutter is provided at the lower part which is openable to the reaction chamber, and a power supply for sputtering and an inert gas source are connected. Further, in the above apparatus, it is preferable that the pretreatment chamber has a sample holder that supports the sample at a point and maintains the sample on the cathode side, and an inner surface wall maintained on the anode side. Is performed with high precision. The present invention is particularly suitable for the determination of trace elements such as oxygen, nitrogen, carbon and sulfur in steel.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を、鉄
鋼中の微量元素の分析を例にとり、図面を参照して具体
的に説明する。図1は、鉄鋼中酸素あるいは窒素分析に
用いる本発明に係る分析装置を、図2は鉄鋼中炭素ある
いは硫黄の分析に用いる本発明に係る分析装置の一例を
示す。上記例に示すように、本発明における分析に当た
っては試料表面の汚染部を除去する予備処理と、予備処
理された試料を再汚染のない状態で反応室に移して分析
する2段階の処理がそれぞれ予備処理室4と反応室15
に分けて行われる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings, taking analysis of trace elements in steel as an example. FIG. 1 shows an analyzer according to the present invention used for analyzing oxygen or nitrogen in steel, and FIG. 2 shows an example of an analyzer according to the present invention used for analyzing carbon or sulfur in steel. As shown in the above example, in the analysis in the present invention, a pretreatment for removing the contaminated portion on the sample surface and a two-stage treatment for transferring the pretreated sample to the reaction chamber without recontamination and analyzing the sample are respectively performed. Pretreatment chamber 4 and reaction chamber 15
It is performed separately.

【0014】上記予備処理室4において、試料2にはそ
の表面に不活性ガススパッタリング処理が施され、試料
表面の汚染部が除去される。不活性ガスとしては、アル
ゴンを用い、試料2を陰極側とし、予備処理室4の内壁
5を陽極として減圧下でグロー放電スパッタリングによ
りイオン化されたアルゴンを試料表面に高速で衝突させ
てスパッタリング処理を行う。気体の圧力および電圧は
所定時間内に試料表面の汚染が除去できるように選定す
ればよい。
In the preliminary processing chamber 4, the surface of the sample 2 is subjected to an inert gas sputtering process to remove contaminated portions on the surface of the sample. As an inert gas, argon was used. The sample 2 was used as a cathode side, and the inner wall 5 of the pre-treatment chamber 4 was used as an anode. Do. The pressure and voltage of the gas may be selected so that contamination on the sample surface can be removed within a predetermined time.

【0015】上記スパッタリングに当たっては、試料の
ほぼ全表面に亘って同時にガススパッタリングを施し、
試料表面の汚染部をほぼ同時に除去するようにする。こ
れにより、試料を試料台上で反転させるなど煩雑な操作
をおこなうことなく迅速かつ一様に汚染部の除去を行う
ことができ、分析時間の一層の短縮と精度の向上をはか
ることができる。具体的には、試料2を円錐形の支持棒
20によって点支持することによって行うことができ
る。また、試料をその頂点あるいは稜線によって支持す
るなどの手段をとることができる。要するに、試料を支
持する際に支持手段が試料を覆う面積を極力小さくすれ
ばよい。要求される分析精度にもよるが、支持棒20等
が試料表面を覆う面積が試料全表面のほぼ10%以下で
あれば実用上問題がない。
In the above sputtering, gas sputtering is performed simultaneously over almost the entire surface of the sample,
The contaminated portion on the sample surface is removed almost simultaneously. Thus, the contaminated portion can be quickly and uniformly removed without performing a complicated operation such as reversing the sample on the sample table, and the analysis time can be further reduced and the accuracy can be improved. Specifically, it can be performed by point-supporting the sample 2 by the conical support rod 20. Further, it is possible to take a means such as supporting the sample by its apex or ridge. In short, when supporting the sample, the area of the support that covers the sample should be as small as possible. Although depending on the required analysis accuracy, there is no practical problem if the area of the support bar 20 or the like covering the sample surface is approximately 10% or less of the entire sample surface.

【0016】上記スパッタリングにより表面汚染の除去
された試料は、直接反応室15に移される。すなわち、
大気等に触れさせることなく、反応室15へ移行させ
る。そのためには、予備処理室4と反応室15との間に
スライドバルブ式のシャッター26を設け、両室間の雰
囲気を同圧とした後、シャッター26を開いて試料2を
反応室内に落下させるようにすればよい。
The sample from which surface contamination has been removed by the above sputtering is directly transferred to the reaction chamber 15. That is,
It is moved to the reaction chamber 15 without being exposed to the atmosphere or the like. For this purpose, a slide valve type shutter 26 is provided between the pretreatment chamber 4 and the reaction chamber 15, and the atmosphere between the two chambers is made equal in pressure. Then, the shutter 26 is opened to drop the sample 2 into the reaction chamber. What should I do?

【0017】反応室に移された試料は分析目的に応じて
キャリアガス(Ar、He、O2など)の気流中で加熱
し、あるいは反応させて、微量元素をガス化させ、これ
を適切な検出装置32によって検出して定量する。例え
ば、酸素はグラファイトるつぼ中で、ArまたはHeを
キャリアガスとして用いて、発生するCOガスを赤外線
吸収法によって定量する。窒素はHeをキャリアガスと
して加熱処理し、発生する N2ガスを熱伝導測定法に
よって定量する。炭素、いおうは磁性るつぼ中で酸素ガ
スをキャリアガスとして燃焼させ、発生するCOあるい
はSO2ガスを赤外線吸収法によって定量する。
The sample transferred to the reaction chamber is heated or reacted in a stream of a carrier gas (Ar, He, O 2, etc.) depending on the purpose of analysis to gasify the trace elements, and this is converted to an appropriate gas. It is detected and quantified by the detection device 32. For example, oxygen is measured in a graphite crucible using Ar or He as a carrier gas and the generated CO gas by an infrared absorption method. Nitrogen is subjected to heat treatment using He as a carrier gas, and the generated N 2 gas is quantified by a heat conduction measurement method. Carbon or sulfur is burned in a magnetic crucible using oxygen gas as a carrier gas, and the generated CO or SO 2 gas is quantified by an infrared absorption method.

【0018】上記分析方法を実施するための分析装置に
は図1、図2に示すように、予備処理室4を設ける。予
備処理室4はアルゴンスパッタリングを完了するまでは
アルゴンガス源6からバルブ8を経由してアルゴンを導
入し、排気ポンプ10によりバルブ12を経由して排気
させるように構成されている。また、予備処理室4に
は、上部に開閉自在の試料投入口24、下部に前記反応
室に通ずる開閉自在のスライドバルブ式のシャッター2
6を具備している。アルゴンは、切替バルブ28を通じ
て反応室15にも導かれるように構成されており、キャ
リアガスとして用いることもできるようになっている。
また、シャッター26の開閉を容易にするため、アルゴ
ンを用いて予備処理室と反応室の雰囲気圧力を等しくす
ることもできる。
As shown in FIGS. 1 and 2, a pretreatment chamber 4 is provided in an analyzer for performing the above-described analysis method. The pretreatment chamber 4 is configured so that argon is introduced from the argon gas source 6 via the valve 8 until the argon sputtering is completed, and exhausted through the valve 12 by the exhaust pump 10. The pre-processing chamber 4 has a sample inlet 24 which can be opened and closed at an upper portion, and a slide valve type shutter 2 which can be opened and closed and which communicates with the reaction chamber at a lower portion.
6 is provided. Argon is guided to the reaction chamber 15 through the switching valve 28, and can be used as a carrier gas.
Further, in order to facilitate opening and closing of the shutter 26, the atmosphere pressure of the pretreatment chamber and the reaction chamber can be equalized by using argon.

【0019】予備処理室4内には試料2を支持する試料
押さえ20が進退自在に設けられており、試料2を把持
しあるいは開放することが可能になっている。この試料
押さえ20は試料をマイナス(−)に帯電させるため、
導電性の物質により製作され、スパッタリング用電源2
2の陰極に接続されている。一方、予備処理室の内壁5
は導線を介してスパッタリング用電源22の陽極に接続
されている。
A sample holder 20 for supporting the sample 2 is provided in the pre-processing chamber 4 so as to be able to advance and retreat, so that the sample 2 can be gripped or opened. This sample holder 20 charges the sample negatively (-).
Power supply 2 for sputtering, made of conductive material
2 cathodes. On the other hand, the inner wall 5 of the pretreatment chamber
Is connected to the anode of the sputtering power supply 22 via a conducting wire.

【0020】したがって、予備処理室4の試料投入口2
4を開いて試料2を試料押さえ20にセットし、スライ
ドバルブ式のシャッター26を閉じ、バルブ8からアル
ゴンガスを導入し、排気ポンプ10を作動させて、所定
圧力のアルゴン雰囲気とした後、スパッタリング用電源
22から予備処理室4の内壁5および試料2の間に高電
圧を印加すれば、両者間にグロー放電が起こり、試料2
の表面は発生するアルゴンイオンによるスパッタリング
により清浄にされる。その際、試料押さえ20が図に示
すように先端が尖った円錐形に構成されていれば、試料
2は点支持され、スパッタリングによる汚染除去は試料
全面に対し同時に行われることとなる。なお、すでに述
べたように、試料2の支持手段は、支持手段が試料表面
を覆う面積が充分に小さいもの、例えば10%以下となる
ようなものであれば、その手段を問うものではない。
Therefore, the sample inlet 2 of the pretreatment chamber 4
4 is opened, the sample 2 is set on the sample holder 20, the slide valve type shutter 26 is closed, argon gas is introduced from the valve 8, the exhaust pump 10 is operated, and an argon atmosphere of a predetermined pressure is set. When a high voltage is applied between the inner wall 5 of the pretreatment chamber 4 and the sample 2 from the power supply 22 for use, a glow discharge occurs between the two, and the sample 2
Is cleaned by sputtering with the generated argon ions. At this time, if the sample holder 20 is formed in a conical shape with a sharp tip as shown in the figure, the sample 2 is supported at a point, and the contamination removal by sputtering is performed simultaneously on the entire surface of the sample. As described above, the means for supporting the sample 2 does not matter as long as the area of the supporting means covering the sample surface is sufficiently small, for example, 10% or less.

【0021】反応室15は分析対象元素に応じて構成さ
れる。酸素または窒素の分析用には、内部にグラファイ
トるつぼ16とその加熱用電源30を備える。炭素、お
よび硫黄の分析用には、磁性るつぼ17を備え、また試
料の加熱のため高周波電源31を備える。本発明におい
ては、上記反応室15は上部がシャッター26を介して
予備処理室4に接続されており、また、キャリアガスが
切替バルブ28を介して、予備処理室4および反応室1
5に導入されるようになっている。キャリアガスは、酸
素分析の場合にはArまたはHeガス、窒素分析の場合
はHeガス、炭素または硫黄分析の場合はO2ガスであ
る。なお、酸素分析に際し、キャリアガスとしてArガ
スを用いる場合には、図1におけるHe導入管は不要と
なる。
The reaction chamber 15 is configured according to the element to be analyzed. For analysis of oxygen or nitrogen, a graphite crucible 16 and a power supply 30 for heating the same are provided inside. For analysis of carbon and sulfur, a magnetic crucible 17 is provided, and a high-frequency power supply 31 is provided for heating a sample. In the present invention, the upper part of the reaction chamber 15 is connected to the pre-processing chamber 4 via a shutter 26, and the carrier gas is supplied to the pre-processing chamber 4 and the reaction chamber 1 via a switching valve 28.
5 is introduced. The carrier gas is Ar or He gas for oxygen analysis, He gas for nitrogen analysis, and O 2 gas for carbon or sulfur analysis. In addition, when Ar gas is used as a carrier gas for oxygen analysis, the He introduction pipe in FIG. 1 is not required.

【0022】本発明装置を用いて試料2を反応室15に
移すに当たっては、切替バルブ28を操作して反応室1
5と予備処理室4との雰囲気、圧力が同一となるよう
に、反応室15および予備処理室4にアルゴンガスまた
はキャリアガスを充たしてシャッター26を開き、試料
押さえ20を後退させて、試料2を反応室15内に落下
させる。次いで、シャッター26を閉じ、切替バルブ2
8を操作してキャリアガスを流通させ、加熱用電源30
または高周波電源31により試料2を加熱して抽出され
たガスを検出装置32(ここでは赤外線吸収装置または
熱伝導測定装置)に導き定量する。
In transferring the sample 2 to the reaction chamber 15 using the apparatus of the present invention, the switching valve 28 is operated to operate the reaction chamber 1.
The reaction chamber 15 and the pretreatment chamber 4 are filled with an argon gas or a carrier gas so that the atmosphere and pressure of the pretreatment chamber 5 and the pretreatment chamber 4 are the same, the shutter 26 is opened, the sample holder 20 is retracted, and the sample 2 Is dropped into the reaction chamber 15. Next, the shutter 26 is closed, and the switching valve 2
8 to allow the carrier gas to flow,
Alternatively, the gas extracted by heating the sample 2 by the high-frequency power supply 31 is guided to a detection device 32 (here, an infrared absorption device or a heat conduction measurement device) and quantified.

【0023】上記構成により、スパッタリングにより表
面の酸素など不純物の除去された試料2は、空気に触れ
ることなく、予備処理室4から反応室15内に直接落下
し、分析操作を受けることになる。例えば鋼中微量酸素
分析の場合には、試料は直接グラフアイトるつぼ16を
有する反応室15中に落下し、該反応室15内で2,0
00〜2,500℃に昇温され、微量酸素はすべて炭素
によって還元され、COガスとして公知の赤外線吸収装
置によって定量される。
According to the above configuration, the sample 2 from which impurities such as oxygen on the surface have been removed by sputtering falls directly from the pretreatment chamber 4 into the reaction chamber 15 without being exposed to air, and undergoes an analysis operation. For example, in the case of trace oxygen analysis in steel, the sample directly falls into the reaction chamber 15 having the graphite crucible 16 and the reaction chamber 15
The temperature is raised to 00 to 2,500 ° C., and all trace amounts of oxygen are reduced by carbon and quantified by an infrared absorption device known as CO gas.

【0024】[0024]

【実施例】図3は試料2の表面をアルゴンスパッタリン
グした後の試料表面をオージエ電子分光法により分析し
た結果であり、横軸は電子エネルギーレベルを示し、縦
軸はオージエ微分スペクトルを表す。図3より明らかな
とおり、スパッタリングした後の試料2の表層部にはほ
とんど酸素が観測されないことから酸化膜による汚染が
完全に除去されていることがわかる。
FIG. 3 shows the result of analyzing the surface of the sample 2 after subjecting the surface of the sample 2 to argon sputtering by Auger electron spectroscopy. The horizontal axis represents the electron energy level and the vertical axis represents the Auger differential spectrum. As is clear from FIG. 3, almost no oxygen is observed in the surface layer portion of Sample 2 after sputtering, indicating that the contamination by the oxide film has been completely removed.

【0025】比較例として、前記と同様に予備処理した
試料を大気中に1分間放置した後、深さ方向にオージエ
電子分光法による分析結果を図4として示した。図4に
は高い値の酸素が検出されており、大気暴露により試料
表面が再酸化されたことがわかる。これにより、酸素分
析値に1ppm程度の誤差が生ずることが確認された。
As a comparative example, FIG. 4 shows the results of analysis by Auger electron spectroscopy in the depth direction after leaving the sample pretreated in the same manner as described above in the air for 1 minute. FIG. 4 shows that a high value of oxygen was detected, indicating that the sample surface was reoxidized by exposure to the atmosphere. Thereby, it was confirmed that an error of about 1 ppm occurs in the oxygen analysis value.

【0026】なお、本発明の実施例を鉄鋼中の微量酸素
の高精度分析方法および装置について説明したが、上記
方法及び装置は鉄鋼以外の他の金属についても適用でき
ることができることが明らかである。その場合、分析対
象金属および分析元素によって反応室を含む分析装置を
適宜選択し本発明に係る予備処理室と結合させることが
できる。
Although the embodiment of the present invention has been described with respect to a method and an apparatus for high-precision analysis of trace oxygen in steel, it is apparent that the above-described method and apparatus can be applied to metals other than steel. In that case, an analyzer including a reaction chamber can be appropriately selected depending on the metal to be analyzed and the element to be analyzed, and can be combined with the pretreatment chamber according to the present invention.

【0027】[0027]

【発明の効果】本発明は金属中微量元素の分析に当り、
不活性ガススパッタリング現象を利用し試料全表面の汚
染部の除去を同時に行い、これを直接反応室に導入する
こととしたから、再汚染のおそれがなく、金属中微量酸
素の定量を高精度かつ迅速に遂行することができる。ま
た、本発明を利用することにより金属中の微量元素の影
響を正確に知ることができるようになり、今後の高純度
材料の開発に著しく寄与できる。
The present invention relates to the analysis of trace elements in metals,
The inert gas sputtering phenomenon was used to simultaneously remove contaminated parts from the entire surface of the sample, and this was directly introduced into the reaction chamber.Therefore, there was no risk of re-contamination, and the determination of trace oxygen in metals was performed with high accuracy. Can be performed quickly. Further, by utilizing the present invention, it becomes possible to accurately know the influence of trace elements in a metal, which can significantly contribute to the development of a high-purity material in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による鉄鋼中微量酸素または窒素の分析
装置の模式図の1例である。
FIG. 1 is an example of a schematic diagram of an apparatus for analyzing trace oxygen or nitrogen in steel according to the present invention.

【図2】本発明による鉄鋼中微量炭素または硫黄の分析
装置の模式図の1例である。
FIG. 2 is an example of a schematic view of an apparatus for analyzing trace carbon or sulfur in steel according to the present invention.

【図3】本発明により処理された試料をオージエ電子分
光法にて分析した結果である。
FIG. 3 is a result of analyzing a sample processed according to the present invention by Auger electron spectroscopy.

【図4】本発明に従う予備処理後、試料を大気中に1分
間放置した後、オージエ電子分光法によって分析した結
果である。
FIG. 4 shows the result of analysis by Auger electron spectroscopy after leaving the sample in the air for 1 minute after the pretreatment according to the present invention.

【符号の説明】 2:試料 4:予備処理室 5:内壁 6:アルゴンガス源 8、12:バルブ 10:排気ポンプ 15:反応室 16:グラフアイトるつぼ 17:磁性るつぼ 20:試料押さえ 22:スパッタリング用電源 24:試料投入口 26:シヤッター 28:バルブ 30:加熱用電源 31:高周波電源 32:検出装置[Description of Signs] 2: Sample 4: Pretreatment chamber 5: Inner wall 6: Argon gas source 8, 12: Valve 10: Exhaust pump 15: Reaction chamber 16: Graphite crucible 17: Magnetic crucible 20: Sample holder 22: Sputtering Power supply 24: Sample inlet 26: Shutter 28: Valve 30: Heating power supply 31: High frequency power supply 32: Detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 31/00 G01N 1/28 G (72)発明者 安原 久雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 志村 眞 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 安彦 兼次 宮城県仙台市泉区高森6丁目27番9 (72)発明者 森本 行俊 東京都品川区西五反田3−9−23 日本ア ナリスト株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI G01N 31/00 G01N 1/28 G (72) Inventor Hisao Yasuhara 1 Kawasaki-cho, Chuo-ku, Chuo-ku, Chiba City, Chiba Prefecture In the laboratory (72) Inventor Makoto Shimura 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Research Institute Co., Ltd. (72) Inventor Kenji Yasuhiko 6-27-9 Takamori, Izumi-ku, Sendai, Miyagi Prefecture 72 Inventor Yukitoshi Morimoto 3-9-23 Nishigotanda, Shinagawa-ku, Tokyo Inside Japan Analyst Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 不活性ガス雰囲気の予備処理室内におい
て、試料表面に不活性ガススパッタリング処理を施して
該試料のほぼ全表面の汚染部をほぼ同時に除去する段階
と、前記スパッタリング処理終了後の試料を直接反応室
に移して微量元素を定量する段階と、を有することを特
徴とする金属中微量元素の高精度分析方法。
1. A step of subjecting a sample surface to an inert gas sputtering process in a pretreatment chamber in an inert gas atmosphere to substantially simultaneously remove contaminated portions on substantially the entire surface of the sample, and And directly quantifying the trace elements by directly transferring the trace elements to the reaction chamber.
【請求項2】 不活性ガススパッタリング処理は、試料
を導電性試料押さえによって点支持して行うことを特徴
とする請求項1記載の金属中微量元素の高精度分析方
法。
2. The method according to claim 1, wherein the inert gas sputtering treatment is performed by supporting the sample at a point with a conductive sample holder.
【請求項3】 微量元素は鉄鋼中の酸素、窒素、炭素あ
るいは硫黄であることを特徴とする請求項1または2記
載の金属中微量元素の高精度分析方法。
3. The method according to claim 1, wherein the trace element is oxygen, nitrogen, carbon or sulfur in steel.
【請求項4】 試料の表面汚染部を不活性ガススパッタ
リングにより除去する予備処理室と、該予備処理室にお
いて表面汚染部を除去された試料中の微量元素をガス化
する反応室と、該反応室から導かれるガスを分析定量す
る検出装置とからなり、 前記予備処理室は、上部に開閉自在の試料投入口、下部
に前記反応室に通ずる開閉自在のシャッターを具備して
なり、かつ、スパッタリング用電源、不活性ガス源が接
続されていることを特徴とする金属中微量元素の高精度
分析装置。
A pretreatment chamber for removing a surface contaminated portion of the sample by inert gas sputtering, a reaction chamber for gasifying a trace element in the sample from which the surface contaminated portion has been removed in the pretreatment chamber; A detection device for analyzing and quantifying a gas introduced from the chamber, wherein the pretreatment chamber is provided with an openable sample inlet at an upper portion, and an openable shutter which communicates with the reaction chamber at a lower portion, and a sputtering device. A high-precision analyzer for trace elements in metals, which is connected to a power supply and an inert gas source.
【請求項5】 予備処理室は、試料を点支持し陰極側に
維持する試料押さえと、陽極側に維持される内面壁とを
有してなることを特徴とする請求項4記載の金属中微量
元素の高精度分析装置。
5. The pretreatment apparatus according to claim 4, wherein the pretreatment chamber has a sample holder for supporting the sample at a point and maintaining the sample on the cathode side, and an inner wall maintained on the anode side. High-precision analyzer for trace elements.
JP11049896A 1998-02-26 1999-02-26 Method and apparatus for high-accuracy analysis of trace element in metal Pending JPH11316220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11049896A JPH11316220A (en) 1998-02-26 1999-02-26 Method and apparatus for high-accuracy analysis of trace element in metal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6226598 1998-02-26
JP10-62265 1998-02-26
JP11049896A JPH11316220A (en) 1998-02-26 1999-02-26 Method and apparatus for high-accuracy analysis of trace element in metal

Publications (1)

Publication Number Publication Date
JPH11316220A true JPH11316220A (en) 1999-11-16

Family

ID=26390341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11049896A Pending JPH11316220A (en) 1998-02-26 1999-02-26 Method and apparatus for high-accuracy analysis of trace element in metal

Country Status (1)

Country Link
JP (1) JPH11316220A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160561A2 (en) * 2000-06-01 2001-12-05 Kawasaki Steel Corporation Methods and apparatuses for pretreatment of metal samples
JP2002310959A (en) * 2001-04-16 2002-10-23 Shimadzu Corp Electron beam analyzer
EP1279958A1 (en) * 2000-10-12 2003-01-29 Kawasaki Steel Corporation Method of treating metal analysis sample and device thereof
WO2007081610A1 (en) * 2006-01-13 2007-07-19 Honeywell International Inc. Liquid-particle analysis of metal materials
JP2011056578A (en) * 2009-09-14 2011-03-24 Sumitomo Metal Ind Ltd Method for continuously casting molten steel
CN102445554A (en) * 2011-09-21 2012-05-09 河北省首钢迁安钢铁有限责任公司 Full-automatic analytical method and system for site-sample of steel refining furnace
CN111351695A (en) * 2018-12-20 2020-06-30 株式会社堀场制作所 Sample pretreatment device and analysis system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343309A (en) * 2000-06-01 2001-12-14 Kawasaki Steel Corp Pretreating method for metal analytical sample, and its device
EP1160561A3 (en) * 2000-06-01 2002-01-23 Kawasaki Steel Corporation Methods and apparatuses for pretreatment of metal samples
EP1160561A2 (en) * 2000-06-01 2001-12-05 Kawasaki Steel Corporation Methods and apparatuses for pretreatment of metal samples
EP1279958A4 (en) * 2000-10-12 2005-02-23 Jfe Steel Corp Method of treating metal analysis sample and device thereof
EP1279958A1 (en) * 2000-10-12 2003-01-29 Kawasaki Steel Corporation Method of treating metal analysis sample and device thereof
US6726739B2 (en) 2000-10-12 2004-04-27 Jfe Steel Corporation Method of treating metal analysis sample and device thereof
JP2002310959A (en) * 2001-04-16 2002-10-23 Shimadzu Corp Electron beam analyzer
WO2007081610A1 (en) * 2006-01-13 2007-07-19 Honeywell International Inc. Liquid-particle analysis of metal materials
JP2009524018A (en) * 2006-01-13 2009-06-25 ハネウェル・インターナショナル・インコーポレーテッド Liquid-particle analysis of metallic materials
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
JP2011056578A (en) * 2009-09-14 2011-03-24 Sumitomo Metal Ind Ltd Method for continuously casting molten steel
CN102445554A (en) * 2011-09-21 2012-05-09 河北省首钢迁安钢铁有限责任公司 Full-automatic analytical method and system for site-sample of steel refining furnace
CN111351695A (en) * 2018-12-20 2020-06-30 株式会社堀场制作所 Sample pretreatment device and analysis system
JP2020101416A (en) * 2018-12-20 2020-07-02 株式会社堀場製作所 Sample pretreatment device and analysis system
US11105719B2 (en) 2018-12-20 2021-08-31 Horiba, Ltd. Sample preprocessing device and analysis system

Similar Documents

Publication Publication Date Title
CN112763527B (en) Method for directly obtaining material interface oxygen potential and structure
WO2009005112A1 (en) Method for analysis of metal sample
JP2013190403A (en) Apparatus and method for analysing impurity
JPH11316220A (en) Method and apparatus for high-accuracy analysis of trace element in metal
JP3663774B2 (en) Method and apparatus for analyzing trace oxygen in metal
JP4034884B2 (en) Elemental analysis equipment for samples
JPH11281542A (en) Method for analyzing metallic impurity on silicon wafer surface and its pretreatment method
JP2004198144A (en) Method for analyzing composition and/or particle size of nonmetallic inclusion in metal sample
JP3584430B2 (en) Contaminant detection method
US6726739B2 (en) Method of treating metal analysis sample and device thereof
JP2002296269A (en) Device and method for evaluating water quality for sample water
JP2001343309A (en) Pretreating method for metal analytical sample, and its device
JP2000002699A (en) Analyzer for element in sample
JP2856006B2 (en) Trace oxygen analysis method for steel
JP2000193657A (en) Oxygen analysis method in sample and device
Sun et al. Novel matrix modifier for direct determination of palladium in gold alloy by electrothermal vaporization inductively coupled plasma mass spectrometry
Coedo et al. Study of the application of air-water flow injection inductively coupled plasma mass spectrometry for the determination of calcium in steels
JP2002168741A (en) Preliminary treatment method and device for sample for analyzing trace element in metal
JP4022347B2 (en) Analytical oxygen analysis method
JPH06224275A (en) Apparatus for preparation of analytical sample and its operating method
US20070057026A1 (en) Method for extracting non-metallic weld metal inclusions
JP2005003422A (en) Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus
JPH0979957A (en) Method and device for extracting sample
JP3439974B2 (en) Method and apparatus for analyzing oxygen or oxide by type of oxide in analysis sample
JP3328448B2 (en) Metal sample decomposition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127