JP2005003422A - Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus - Google Patents

Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus Download PDF

Info

Publication number
JP2005003422A
JP2005003422A JP2003164992A JP2003164992A JP2005003422A JP 2005003422 A JP2005003422 A JP 2005003422A JP 2003164992 A JP2003164992 A JP 2003164992A JP 2003164992 A JP2003164992 A JP 2003164992A JP 2005003422 A JP2005003422 A JP 2005003422A
Authority
JP
Japan
Prior art keywords
wafer
total reflection
hydrofluoric acid
temperature
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003164992A
Other languages
Japanese (ja)
Inventor
Yoshifumi Hata
良文 畑
Yuichi Yoshinaka
優一 吉仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003164992A priority Critical patent/JP2005003422A/en
Publication of JP2005003422A publication Critical patent/JP2005003422A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a total reflection X-ray analyzing method which enables a gaseous phase decomposition-total reflection fluorescent X-ray analyzing method capable of a quantitative measurement of higher sensitivity and precision, and an analyzer therefor. <P>SOLUTION: The thin film or natural oxidation film formed on the surface of a wafer is decomposed in a hydrofluoric acid gaseous phase (1a and 1b). Next, a recovery liquid for recovering a decomposed substance produced by the decomposition in the hydrofluoric acid gaseous phase is dripped on the surface of the wafer to be scanned over the whole surface of the wafer (2). Subsequently, the recovery liquid is dried on the surface of the wafer to form a dry mark (3). Then, the dry mark is measured by the total reflection fluorecent X-ray analysis (4). Herein, a gaseous decomposition is accelerated at a temperature lower than the liquefying temperature of hydrofluoric acid when the thin film or natural oxidation film on the surface of the wafer is decomposed and a sample stage on which the wafer is held in a vacuum state is subsequently heated to accelerate the separation of residue for lowering the analytical precision of a very small amount of impurities (1b). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハ表面の微量不純物を分析するための表面分析装置である全反射蛍光X線分析装置を用いた高感度の分析方法および気相分解処理装置に関するものである。
【0002】
【従来の技術】
近年の半導体デバイスの微細化に従い、半導体ウエハ表面の微量不純物の分析が非常に重要になっている。これは、ごく微量の金属不純物であってもゲート酸化膜の耐圧を低下させるなど、トランジスタの電気特性を変動させるためである。従って、半導体デバイスの電気特性を向上するには、ウエハ表面の不純物を出来る限り低減する必要がある。そのため、ウエハ表面の不純物量を高感度かつ正確に分析する必要がある。
【0003】
高感度なウエハ表面の組成分析法として、ウエハ表面の微量不純物を濃縮・回収したのちに全反射蛍光X線分析装置で測定する方法がある(例えば特許文献1、2)。この分析方法は気相分解−全反射蛍光X線分析法と呼ばれている。
【0004】
この気相分解−全反射蛍光X線分析法の測定方法のフローチャートを図4に示す。図4に示すとおり、気相分解−全反射蛍光X線分析法は、
(1)ウエハ表面の薄膜または自然酸化膜をフッ酸蒸気中で気相分解する工程、
(2)気相分解された酸化膜を回収液によって回収する工程、
(3)回収液を乾燥する工程、
(4)回収液を乾燥した痕を全反射蛍光X線分析で測定する工程、
以上の4工程からなる。
【0005】
このようにすることによって、ウエハ全面の汚染物を一箇所に集めて気相分解−全反射蛍光X線分析法により測定するので、高感度分析が可能となる。
【0006】
【特許文献1】
特開2000−9615号公報
【特許文献2】
特開2001−201442号公報
【0007】
【発明が解決しようとする課題】
しかし上記の気相分解−全反射蛍光X線分析法では、以下に示すように乾燥痕の形状が測定精度に影響するという問題がある。
【0008】
一般的に全反射蛍光X線分析では、特開平6−207889号公報および特開平8−327566号公報に記載されているように、測定対象部の形状によって定量分析値が変動することが知られている。つまり、気相分解−全反射蛍光X線分析法においては、ウエハ表面の汚染物を回収した後に乾燥しているため、回収・乾燥条件などによって乾燥痕の形状が変化して、定量分析値が変化する問題がある。特に酸化膜中の微量不純物の測定においては、酸化膜を分解、回収、乾燥するため、乾燥痕中にSi残渣が多く含まれて乾燥痕の形状が大きくなり、定量分析値の変動は著しい問題となってくる。
【0009】
本発明の目的は、上記課題に鑑みて、より高感度、高精度の定量測定が可能な気相分解−全反射蛍光X線分析法を可能とする全反射X線分析方法および分析装置を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の全反射蛍光X線分析方法は、ウエハ表面の微量不純物を分析する全反射蛍光X線分析方法であって、前記ウエハ表面に形成された薄膜または自然酸化膜をフッ酸気相中で分解する工程と、前記フッ酸気相中での分解で生じた分解物を回収するための回収液をウエハ表面に滴下して前記回収液を前記ウエハ表面の全面に走査する工程と、前記回収液を前記ウエハ表面上で乾燥させて乾燥痕を形成する工程と、前記乾燥痕を全反射蛍光X線分析で測定する工程とを備え、前記ウエハ表面の薄膜または自然酸化膜を分解する工程において、フッ酸が液化する温度以下の温度で気相分解を促進する工程と、減圧状態で前記ウエハを保持している試料ステージを加熱し、前記微量不純物の分析精度を低下させる残渣の脱離を促進する工程を含む。
【0011】
このような構成とすることで、乾燥痕中の不要な残渣が除去でき、全反射蛍光X線分析に適した乾燥痕とするための分解生成物を得ることができ、高感度、高精度の分析が可能となる。
【0012】
また、本発明の全反射蛍光X線分析方法において、前記気相分解を促進する工程と前記残渣の脱離を促進する工程とを複数回繰り返すことが好ましい。
【0013】
このような構成とすることで、さらに十分に乾燥痕中の不要な残渣が除去でき、全反射蛍光X線分析に適した乾燥痕とするための分解生成物を得ることができ、さらに高感度、高精度の分析が可能となる。
【0014】
また、本発明の全反射蛍光X線分析方法において、前記気相分解を促進する工程は、前記試料ステージの温度を20℃以下、容器内雰囲気をフッ酸雰囲気下で行い、前記残渣の脱離を促進する工程は、前記試料ステージの温度を40℃以上、容器内圧力を100Pa以下とすることが好ましい。
【0015】
このような構成とすることで、全反射蛍光X線分析での測定の障害となるSi残渣を低減した乾燥痕が得られ、高感度、高精度な全反射蛍光X線分析が可能となる。
【0016】
また、本発明の気相分解処理装置は、ウエハを保持するとともに前記ウエハの温度を制御する試料ステージを備えた密閉容器と、開閉バルブを介して前記密閉容器内にガス状態でフッ酸を供給する薬品瓶と、前記密閉容器内を排気する排気ポンプと、前記開閉バルブの開閉と前記排気ポンプの稼動とによる前記密閉容器内の雰囲気制御と、前記試料ステージの温度制御とを行う制御装置とを備え、前記ウエハ表面の薄膜または自然酸化膜を分解する際に、前記制御装置による前記密閉容器内の雰囲気制御と前記試料ステージの温度制御とによって、前記フッ酸が液化する温度以下の温度で気相分解を促進する工程と、減圧状態で前記ウエハを保持している試料ステージを加熱し、微量不純物の分析精度を低下させる残渣の脱離を促進する工程を実施する。
【0017】
このような構成とすることで、微量不純物の分析精度を低下させる残渣を低減する試料処理が可能となり、気相分解後の回収、乾燥工程によって全反射蛍光X線分析に適した乾燥痕を得ることができ、高感度、高精度な全反射蛍光X線分析が可能となる。
【0018】
また、本発明の気相分解処理装置において、前記制御装置による前記密閉容器内の雰囲気制御と前記試料ステージの温度制御とによって、前記気相分解を促進する工程と前記残渣の脱離を促進する工程とを複数回繰り返すことが好ましい。
【0019】
このような構成とすることで、微量不純物の分析精度を低下させる残渣を低減する試料処理が可能となり、気相分解後の回収、乾燥工程を繰り返すことで、さらに全反射蛍光X線分析に適した乾燥痕を得ることができ、さらに高感度、高精度な全反射蛍光X線分析が可能となる。
【0020】
【発明の実施の形態】
(第1の実施形態)
この発明の第1の実施形態を図1に基づいて説明する。
【0021】
図1はこの発明の第1の実施形態である分析方法のフローチャートである。なお、図1のフローチャートに示されるウエハ表面の分解物を回収する工程、回収液を乾燥する工程、全反射蛍光X線分析する工程は従来例と同様である。
【0022】
本発明の分析方法では気相分解のステップにおいて、試料ステージの温度および気相分解容器内の雰囲気を複数の条件によって処理し、必要に応じて繰り返すことを特徴としている。
【0023】
本実施形態では、まず試料ステージ温度を15℃とし、気相分解容器内をフッ酸雰囲気とし、この状態を3分間保持している、続いて試料ステージを40℃に加熱して気相分解容器を100Paの真空とし、この状態を2分間保持している。そしてこの処理を3回繰り返している。
【0024】
この本実施形態と従来例との比較結果を次に示す。
【0025】
図2は膜厚500nmのSi酸化膜上に5pgのFe,Ni,Cuの標準試薬を滴下して、従来法と本発明とによる気相分解−全反射蛍光X線分析法で分析し、その測定結果から各元素の検出下限値を求めた結果である。
【0026】
図2に示すとおり本発明の方法では検出下限が向上していることが分かる。これは、本発明ではSi残渣が低減されて乾燥痕の形状が小さくなっているため、各元素のピーク強度が高まるとともにバックグラウンド強度も低減されているので、検出下限が向上しているためである。
【0027】
このように本発明の気相分解−全反射蛍光X線分析法を用いれば、フッ酸雰囲気時に試料ステージを冷却してフッ酸水滴による気相分解を促す処理と、真空排気時に試料ステージを加熱してSi残渣の脱離を促す処理を繰り返すことによってSi残渣が低減され、乾燥痕の形状を小さくすることができるため高感度な全反射蛍光X線分析が可能となる。
【0028】
(第2の実施形態)
この発明の第2の実施形態である気相分解試料処理装置の形態を図3に基づいて説明する。
【0029】
図3において、5は気相分解処理するウエハ、6はウエハ5をセットする試料ステージ、7は密閉容器、8は密閉容器7の上蓋、9は薬品瓶、10は薬品瓶9に入れられたフッ酸、11は密閉容器にフッ酸10のガスを導入するための開閉バルブ、12は密閉容器7内にフッ酸ガスの導入および密閉容器7内を真空排気するための排気ポンプである。
【0030】
次に、この気相分解試料処理装置を用いて全反射蛍光X線分析を行う測定手順について説明する。
【0031】
まず、ウエハ5を温度が制御できる試料ステージ6にセットする。次に、ウエハ5をセットすると密閉容器7の上蓋8を閉じる。次に、試料ステージ6の温度を15℃として、開閉バルブ11を開き、排気ポンプ12を稼動すると薬品瓶9に入れられたフッ酸10のガスを密閉容器7内に導入する。これにより、密閉容器7内はフッ酸雰囲気となる。次に、あらかじめセットされた経過時間後、試料ステージ温度を40℃にするとともに開閉バルブ11を閉じ、密閉容器7内を約10Paの真空とし、あらかじめ設定された時間だけこの状態を保持する。この2段階の試料処理を設定された回数繰り返し、気相分解処理が終了する。その後、次の回収処理へ進む。
【0032】
このように本実施形態の気相分解試料処理装置では、フッ酸雰囲気でのウエハ冷却と真空雰囲気でのウエハ加熱とを繰り返すことができ、フッ酸水滴の付着によるSi酸化膜の分解と、Siとフッ素との化合物とのウエハ表面からの脱離とを効率的に実施している。
【0033】
これによって、気相分解工程後の回収、乾燥工程による乾燥痕中のSi残渣が低減され乾燥痕の形状を小さくすることができるため、高感度な全反射蛍光X線分析が可能となる。
【0034】
【発明の効果】
本発明による全反射蛍光X線分析方法および気相分解処理装置によれば、Si酸化膜の気相分解処理において生じるSiとフッ素との化合物による残渣を低減することができ、気相分解処理による乾燥痕の形状を小さくできるため、高感度な全反射蛍光X線分析が可能となる。
【0035】
これによって、半導体デバイス製造工程における適切な汚染評価が可能となり、安定した半導体デバイスの生産ができる効果がある。
【図面の簡単な説明】
【図1】本発明の分析方法を説明するフローチャート
【図2】本発明と従来法との検出下限を比較した図
【図3】本発明による気相分解試料処理装置を説明する図
【図4】従来の分析方法を説明するフローチャート
【符号の説明】
1 気相分解工程
2 回収工程
3 乾燥工程
4 全反射蛍光X線分析工程
5 ウエハ
6 試料ステージ
7 密閉容器
8 上蓋
9 薬品瓶
10 フッ酸
11 開閉バルブ
12 排気ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly sensitive analysis method and a vapor phase decomposition apparatus using a total reflection X-ray fluorescence analyzer which is a surface analyzer for analyzing trace impurities on the surface of a semiconductor wafer.
[0002]
[Prior art]
With the recent miniaturization of semiconductor devices, analysis of trace impurities on the surface of a semiconductor wafer has become very important. This is to change the electrical characteristics of the transistor, such as reducing the breakdown voltage of the gate oxide film even with a very small amount of metal impurities. Therefore, in order to improve the electrical characteristics of the semiconductor device, it is necessary to reduce impurities on the wafer surface as much as possible. Therefore, it is necessary to analyze the amount of impurities on the wafer surface with high sensitivity and accuracy.
[0003]
As a highly sensitive composition analysis method for the wafer surface, there is a method in which trace impurities on the wafer surface are concentrated and collected and then measured with a total reflection X-ray fluorescence spectrometer (for example, Patent Documents 1 and 2). This analysis method is called gas phase decomposition-total reflection X-ray fluorescence analysis.
[0004]
FIG. 4 shows a flowchart of the measurement method of the vapor phase decomposition-total reflection fluorescent X-ray analysis method. As shown in FIG. 4, the gas phase decomposition-total reflection X-ray fluorescence analysis method is
(1) A step of vapor-phase decomposition of a thin film on a wafer surface or a natural oxide film in hydrofluoric acid vapor,
(2) a step of recovering the vapor-phase decomposed oxide film with a recovery liquid;
(3) drying the recovered liquid;
(4) a step of measuring a trace of dried recovered liquid by total reflection X-ray fluorescence analysis,
It consists of the above four steps.
[0005]
By doing so, contaminants on the entire surface of the wafer are collected in one place and measured by vapor phase decomposition-total reflection X-ray fluorescence analysis, so that high sensitivity analysis is possible.
[0006]
[Patent Document 1]
JP 2000-9615 A [Patent Document 2]
Japanese Patent Laid-Open No. 2001-201442
[Problems to be solved by the invention]
However, the vapor phase decomposition-total reflection X-ray fluorescence analysis method has a problem that the shape of the drying mark affects the measurement accuracy as described below.
[0008]
Generally, in total reflection X-ray fluorescence analysis, it is known that the quantitative analysis value fluctuates depending on the shape of the measurement target part as described in JP-A-6-207889 and JP-A-8-327766. ing. In other words, in the vapor phase decomposition-total reflection X-ray fluorescence analysis, since the contaminants on the wafer surface are collected and then dried, the shape of the drying mark changes depending on the collection and drying conditions, and the quantitative analysis value is There are changing problems. Especially in the measurement of trace impurities in oxide film, the oxide film is decomposed, recovered, and dried, so the dry trace contains a lot of Si residue and the shape of the dry trace becomes large, and the fluctuation of quantitative analysis value is a significant problem. It becomes.
[0009]
In view of the above problems, an object of the present invention is to provide a total reflection X-ray analysis method and an analysis apparatus that enable a gas phase decomposition-total reflection X-ray fluorescence analysis method capable of quantitative measurement with higher sensitivity and accuracy. There is to do.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, a total reflection X-ray fluorescence analysis method of the present invention is a total reflection X-ray fluorescence analysis method for analyzing a trace amount of impurities on a wafer surface, which is a thin film or natural oxidation formed on the wafer surface. A step of decomposing the film in a hydrofluoric acid gas phase; and a recovery liquid for recovering a decomposition product generated by the decomposition in the hydrofluoric acid gas phase is dropped on the wafer surface, and the recovered liquid is applied to the entire surface of the wafer surface. Scanning the collected liquid on the surface of the wafer to form a drying mark, and measuring the drying mark by total reflection X-ray fluorescence analysis. In the step of decomposing the natural oxide film, the step of accelerating vapor phase decomposition at a temperature lower than the temperature at which hydrofluoric acid liquefies, the sample stage holding the wafer under reduced pressure is heated, and the analysis accuracy of the trace impurities Reducing residue Comprising the step of promoting desorption.
[0011]
By adopting such a configuration, unnecessary residues in the drying trace can be removed, and a decomposition product for obtaining a drying trace suitable for total reflection X-ray fluorescence analysis can be obtained, with high sensitivity and high accuracy. Analysis becomes possible.
[0012]
In the total reflection X-ray fluorescence analysis method of the present invention, it is preferable that the step of promoting vapor phase decomposition and the step of promoting desorption of the residue are repeated a plurality of times.
[0013]
By adopting such a configuration, unnecessary residues in the drying trace can be removed more sufficiently, and a decomposition product for obtaining a drying trace suitable for total reflection X-ray fluorescence analysis can be obtained. Highly accurate analysis is possible.
[0014]
Further, in the total reflection fluorescent X-ray analysis method of the present invention, the step of promoting the vapor phase decomposition is performed by performing the temperature of the sample stage at 20 ° C. or less and the atmosphere in the container in a hydrofluoric acid atmosphere, and removing the residue. In the step of promoting the temperature, the temperature of the sample stage is preferably 40 ° C. or higher and the pressure in the container is preferably 100 Pa or lower.
[0015]
By adopting such a configuration, dry traces in which Si residue that is an obstacle to measurement in total reflection X-ray fluorescence analysis is reduced, and high-sensitivity and high-accuracy total reflection X-ray fluorescence analysis is possible.
[0016]
Further, the vapor phase decomposition processing apparatus of the present invention supplies a hydrofluoric acid in a gas state to the sealed container having a sample stage for holding the wafer and controlling the temperature of the wafer and an open / close valve. A chemical bottle, an exhaust pump that exhausts the inside of the sealed container, a control device that controls the atmosphere in the sealed container by opening and closing the open / close valve and operating the exhaust pump, and temperature control of the sample stage; And when decomposing the thin film or the natural oxide film on the wafer surface, the control apparatus controls the atmosphere in the sealed container and the temperature control of the sample stage at a temperature equal to or lower than the temperature at which the hydrofluoric acid is liquefied. A step of promoting vapor phase decomposition and a step of heating the sample stage holding the wafer in a reduced pressure state to promote desorption of residues that reduce the analysis accuracy of trace impurities Carry out.
[0017]
With such a configuration, it is possible to perform sample processing to reduce residues that reduce the analysis accuracy of trace impurities, and to obtain drying traces suitable for total reflection X-ray fluorescence analysis through recovery and drying steps after vapor phase decomposition. Therefore, high-sensitivity and high-accuracy total reflection X-ray fluorescence analysis is possible.
[0018]
Further, in the gas phase decomposition processing apparatus of the present invention, the step of promoting the gas phase decomposition and the desorption of the residue are promoted by the atmosphere control in the sealed container and the temperature control of the sample stage by the control device. It is preferable to repeat the process several times.
[0019]
This configuration enables sample processing to reduce residues that reduce the analysis accuracy of trace impurities, and is suitable for total reflection X-ray fluorescence analysis by repeating collection and drying steps after vapor phase decomposition. Drying traces can be obtained, and further, highly sensitive and highly accurate total reflection X-ray fluorescence analysis can be performed.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
A first embodiment of the present invention will be described with reference to FIG.
[0021]
FIG. 1 is a flowchart of an analysis method according to the first embodiment of the present invention. The process of collecting the decomposition product on the wafer surface, the process of drying the collected liquid, and the process of total reflection X-ray fluorescence analysis shown in the flowchart of FIG. 1 are the same as in the conventional example.
[0022]
The analysis method of the present invention is characterized in that in the vapor phase decomposition step, the temperature of the sample stage and the atmosphere in the vapor phase decomposition vessel are processed under a plurality of conditions and repeated as necessary.
[0023]
In this embodiment, first, the sample stage temperature is set to 15 ° C., the inside of the gas phase decomposition vessel is set to a hydrofluoric acid atmosphere, and this state is maintained for 3 minutes. Subsequently, the sample stage is heated to 40 ° C. Is set to a vacuum of 100 Pa, and this state is maintained for 2 minutes. This process is repeated three times.
[0024]
The comparison result between this embodiment and the conventional example is shown below.
[0025]
FIG. 2 shows a case where 5 pg of Fe, Ni, Cu standard reagent is dropped on a 500 nm-thickness Si oxide film and analyzed by vapor phase decomposition-total reflection X-ray fluorescence analysis according to the conventional method and the present invention. It is the result of obtaining the lower limit of detection of each element from the measurement result.
[0026]
As shown in FIG. 2, it can be seen that the detection limit is improved in the method of the present invention. This is because the Si residue is reduced in the present invention and the shape of the drying mark is reduced, so that the peak intensity of each element is increased and the background intensity is also reduced, so the lower detection limit is improved. is there.
[0027]
As described above, by using the vapor phase decomposition-total reflection X-ray fluorescence analysis method of the present invention, the sample stage is cooled in a hydrofluoric acid atmosphere to promote vapor phase decomposition with hydrofluoric acid water droplets, and the sample stage is heated during vacuum evacuation. By repeating the process for urging the removal of the Si residue, the Si residue can be reduced and the shape of the drying mark can be reduced, so that highly sensitive total reflection X-ray fluorescence analysis can be performed.
[0028]
(Second Embodiment)
An embodiment of a vapor phase decomposition sample processing apparatus according to the second embodiment of the present invention will be described with reference to FIG.
[0029]
In FIG. 3, 5 is a wafer to be subjected to vapor phase decomposition processing, 6 is a sample stage on which the wafer 5 is set, 7 is a sealed container, 8 is an upper lid of the sealed container 7, 9 is a chemical bottle, and 10 is placed in a chemical bottle 9. A hydrofluoric acid, 11 is an open / close valve for introducing the gas of hydrofluoric acid 10 into the sealed container, and 12 is an exhaust pump for introducing hydrofluoric acid gas into the sealed container 7 and evacuating the inside of the sealed container 7.
[0030]
Next, a measurement procedure for performing total reflection X-ray fluorescence analysis using this vapor phase decomposition sample processing apparatus will be described.
[0031]
First, the wafer 5 is set on the sample stage 6 whose temperature can be controlled. Next, when the wafer 5 is set, the upper lid 8 of the sealed container 7 is closed. Next, when the temperature of the sample stage 6 is set to 15 ° C., the open / close valve 11 is opened and the exhaust pump 12 is operated, and the gas of hydrofluoric acid 10 contained in the chemical bottle 9 is introduced into the sealed container 7. Thereby, the inside of the airtight container 7 becomes a hydrofluoric acid atmosphere. Next, after an elapse time set in advance, the sample stage temperature is set to 40 ° C., the open / close valve 11 is closed, the inside of the sealed container 7 is evacuated to about 10 Pa, and this state is maintained for a preset time. This two-stage sample processing is repeated a set number of times, and the vapor phase decomposition processing is completed. Thereafter, the process proceeds to the next collection process.
[0032]
As described above, in the vapor phase decomposition sample processing apparatus of the present embodiment, the wafer cooling in the hydrofluoric acid atmosphere and the wafer heating in the vacuum atmosphere can be repeated, the decomposition of the Si oxide film due to the attachment of hydrofluoric acid water droplets, and the Si And the desorption of the compound of fluorine and fluorine from the wafer surface is carried out efficiently.
[0033]
As a result, the Si residue in the drying trace by the recovery after the vapor phase decomposition step and the drying step can be reduced and the shape of the drying trace can be reduced, so that highly sensitive total reflection X-ray fluorescence analysis can be performed.
[0034]
【The invention's effect】
According to the total reflection X-ray fluorescence analysis method and the vapor phase decomposition apparatus according to the present invention, it is possible to reduce the residue due to the compound of Si and fluorine generated in the vapor phase decomposition process of the Si oxide film. Since the shape of the drying mark can be reduced, highly sensitive total reflection X-ray fluorescence analysis can be performed.
[0035]
As a result, it is possible to perform an appropriate contamination evaluation in the semiconductor device manufacturing process, and it is possible to produce a stable semiconductor device.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating an analysis method of the present invention. FIG. 2 is a diagram comparing detection limits of the present invention with a conventional method. FIG. 3 is a diagram illustrating a gas phase decomposition sample processing apparatus according to the present invention. ] Flowchart explaining conventional analysis method [Explanation of symbols]
1 Gas phase decomposition process 2 Collection process 3 Drying process 4 Total reflection fluorescent X-ray analysis process 5 Wafer 6 Sample stage 7 Sealed container 8 Upper lid 9 Chemical bottle 10 Hydrofluoric acid 11 Opening and closing valve 12 Exhaust pump

Claims (5)

ウエハ表面の微量不純物を分析する全反射蛍光X線分析方法であって、
前記ウエハ表面に形成された薄膜または自然酸化膜をフッ酸気相中で分解する工程と、
前記フッ酸気相中での分解で生じた分解物を回収するための回収液をウエハ表面に滴下して前記回収液を前記ウエハ表面の全面に走査する工程と、
前記回収液を前記ウエハ表面上で乾燥させて乾燥痕を形成する工程と、
前記乾燥痕を全反射蛍光X線分析で測定する工程とを備え、
前記ウエハ表面の薄膜または自然酸化膜を分解する工程において、
フッ酸が液化する温度以下の温度で気相分解を促進する工程と、
減圧状態で前記ウエハを保持している試料ステージを加熱し、前記微量不純物の分析精度を低下させる残渣の脱離を促進する工程を含むことを特徴とする全反射蛍光X線分析方法。
A total reflection X-ray fluorescence analysis method for analyzing trace impurities on a wafer surface,
Decomposing a thin film or a natural oxide film formed on the wafer surface in a hydrofluoric acid gas phase;
A step of dropping a recovery liquid for recovering decomposition products generated by decomposition in the hydrofluoric acid gas phase onto the wafer surface and scanning the recovery liquid over the entire surface of the wafer;
Drying the recovered liquid on the wafer surface to form drying marks;
Measuring the drying mark by total reflection X-ray fluorescence analysis,
In the step of decomposing the thin film or natural oxide film on the wafer surface,
Accelerating vapor phase decomposition at a temperature below the temperature at which hydrofluoric acid liquefies;
A total reflection X-ray fluorescence analysis method comprising a step of heating a sample stage holding the wafer in a depressurized state to promote desorption of a residue that reduces the analysis accuracy of the trace impurities.
前記気相分解を促進する工程と前記残渣の脱離を促進する工程とを複数回繰り返すことを特徴とする請求項1に記載の全反射蛍光X線分析方法。The total reflection X-ray fluorescence analysis method according to claim 1, wherein the step of promoting the gas phase decomposition and the step of promoting the desorption of the residue are repeated a plurality of times. 前記気相分解を促進する工程は、前記試料ステージの温度を20℃以下、容器内雰囲気をフッ酸雰囲気下で行い、前記残渣の脱離を促進する工程は、前記試料ステージの温度を40℃以上、容器内圧力を100Pa以下とすることを特徴とする請求項1または2に記載の全反射蛍光X線分析方法。The step of promoting the vapor phase decomposition is performed at a temperature of the sample stage of 20 ° C. or less and the atmosphere in the container is a hydrofluoric acid atmosphere, and the step of promoting the desorption of the residue is performed at a temperature of the sample stage of 40 ° C. The total internal reflection X-ray fluorescence analysis method according to claim 1 or 2, wherein the pressure in the container is 100 Pa or less. ウエハを保持するとともに前記ウエハの温度を制御する試料ステージを備えた密閉容器と、開閉バルブを介して前記密閉容器内にガス状態でフッ酸を供給する薬品瓶と、前記密閉容器内を排気する排気ポンプと、前記開閉バルブの開閉と前記排気ポンプの稼動とによる前記密閉容器内の雰囲気制御と、前記試料ステージの温度制御とを行う制御装置とを備え、
前記ウエハ表面の薄膜または自然酸化膜を分解する際に、前記制御装置による前記密閉容器内の雰囲気制御と前記試料ステージの温度制御とによって、前記フッ酸が液化する温度以下の温度で気相分解を促進する工程と、減圧状態で前記ウエハを保持している試料ステージを加熱し、微量不純物の分析精度を低下させる残渣の脱離を促進する工程を実施することを特徴とする気相分解処理装置。
A sealed container having a sample stage for holding the wafer and controlling the temperature of the wafer, a chemical bottle for supplying hydrofluoric acid in a gas state into the sealed container via an on-off valve, and exhausting the sealed container An exhaust pump, and a control device that controls the atmosphere in the sealed container by opening and closing the open / close valve and operating the exhaust pump, and temperature control of the sample stage,
When decomposing the thin film or natural oxide film on the wafer surface, vapor phase decomposition is performed at a temperature lower than the temperature at which the hydrofluoric acid is liquefied by controlling the atmosphere in the sealed container by the control device and controlling the temperature of the sample stage. And a step of heating the sample stage holding the wafer in a reduced pressure state and promoting the desorption of residues that reduce the analysis accuracy of trace impurities. apparatus.
前記制御装置による前記密閉容器内の雰囲気制御と前記試料ステージの温度制御とによって、前記気相分解を促進する工程と前記残渣の脱離を促進する工程とを複数回繰り返すことを特徴とする請求項4に記載の気相分解処理装置。The step of promoting the vapor phase decomposition and the step of promoting the desorption of the residue are repeated a plurality of times by controlling the atmosphere in the sealed container and the temperature control of the sample stage by the control device. Item 5. The gas phase decomposition treatment apparatus according to Item 4.
JP2003164992A 2003-06-10 2003-06-10 Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus Pending JP2005003422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164992A JP2005003422A (en) 2003-06-10 2003-06-10 Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164992A JP2005003422A (en) 2003-06-10 2003-06-10 Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus

Publications (1)

Publication Number Publication Date
JP2005003422A true JP2005003422A (en) 2005-01-06

Family

ID=34091615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164992A Pending JP2005003422A (en) 2003-06-10 2003-06-10 Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus

Country Status (1)

Country Link
JP (1) JP2005003422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190403A (en) * 2012-03-15 2013-09-26 Toshiba Corp Apparatus and method for analysing impurity
JP2017053806A (en) * 2015-09-11 2017-03-16 株式会社東芝 Analysis pretreatment device
JP2019078684A (en) * 2017-10-26 2019-05-23 信越半導体株式会社 Silicon wafer metal impurity analysis method
JP2019201118A (en) * 2018-05-17 2019-11-21 信越半導体株式会社 Evaluation method for semiconductor substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013190403A (en) * 2012-03-15 2013-09-26 Toshiba Corp Apparatus and method for analysing impurity
JP2017053806A (en) * 2015-09-11 2017-03-16 株式会社東芝 Analysis pretreatment device
US10962519B2 (en) 2015-09-11 2021-03-30 Toshiba Memory Corporation Analysis pretreatment device
JP2019078684A (en) * 2017-10-26 2019-05-23 信越半導体株式会社 Silicon wafer metal impurity analysis method
JP2019201118A (en) * 2018-05-17 2019-11-21 信越半導体株式会社 Evaluation method for semiconductor substrate

Similar Documents

Publication Publication Date Title
JP3298974B2 (en) Thermal desorption gas analyzer
JPH11204509A (en) Plasma etching device, its in-situ monitoring and cleaning method
JP6118031B2 (en) Impurity analysis apparatus and method
WO1997009735A1 (en) Simultaneous specimen and stage cleaning device for analytical electron microscope
KR20180014175A (en) Silicon substrate analyzing device
KR100263512B1 (en) Method of impurity analysis in silicon wafer
JP3473699B2 (en) Silicon wafer etching method and apparatus and impurity analysis method
JP2005003422A (en) Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus
JP2005134170A (en) Electron spectroscopic analysis method and analysis apparatus
JP2004028787A (en) Total reflection fluorescent x-ray analysis method, total reflection fluorescent x-ray analysis pretreatment device, and total reflection fluorescent x-ray analyzer
JP2005098962A (en) Evolved gas analysis method, and analyzer thereof
JP2973638B2 (en) Impurity analysis method
JP5413342B2 (en) Silicon wafer surface layer etching method and silicon wafer metal contamination analysis method
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP2001242052A (en) Method for analyzing impurity in semiconductor substrate or chemicals
JP2004109072A (en) Analysis method for metal impurity in solution
JPH07159293A (en) Method and apparatus for analyzing surface
JPH11316220A (en) Method and apparatus for high-accuracy analysis of trace element in metal
JP2005326219A (en) Analysis sample preparing apparatus, analysis sample preparing method and semiconductor sample analysis method
Yamagami et al. Development of vapor phase decomposition-total-reflection X-ray fluorescence spectrometer
JP2000332072A (en) Surface analysis method of semiconductor substrate
KR19980066309A (en) Metal impurities analysis method in semiconductor layer
KR100668101B1 (en) Method of estimating the concentration of metal contamination in wafer and apparatus for heating wafer
KR20000067357A (en) Method for collection contamination sample of semiconductor wafers surface
JP2009103511A (en) Evaluation method and evaluation device of adsorbate or inclusion on specific part on sample surface