WO2023112679A1 - Elemental analysis method, and elemental analysis device - Google Patents
Elemental analysis method, and elemental analysis device Download PDFInfo
- Publication number
- WO2023112679A1 WO2023112679A1 PCT/JP2022/044172 JP2022044172W WO2023112679A1 WO 2023112679 A1 WO2023112679 A1 WO 2023112679A1 JP 2022044172 W JP2022044172 W JP 2022044172W WO 2023112679 A1 WO2023112679 A1 WO 2023112679A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- heating furnace
- sample
- heating
- elemental analysis
- Prior art date
Links
- 238000000921 elemental analysis Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000007789 gas Substances 0.000 claims abstract description 116
- 238000010438 heat treatment Methods 0.000 claims abstract description 110
- 239000011261 inert gas Substances 0.000 claims abstract description 55
- 239000012159 carrier gas Substances 0.000 claims abstract description 51
- DHNCFAWJNPJGHS-UHFFFAOYSA-J [C+4].[O-]C([O-])=O.[O-]C([O-])=O Chemical compound [C+4].[O-]C([O-])=O.[O-]C([O-])=O DHNCFAWJNPJGHS-UHFFFAOYSA-J 0.000 claims abstract description 19
- 238000004458 analytical method Methods 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 63
- 229910052799 carbon Inorganic materials 0.000 description 63
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical compound [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000012024 dehydrating agents Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 239000012494 Quartz wool Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001745 non-dispersive infrared spectroscopy Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/12—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
Definitions
- the present invention relates to an elemental analysis method and an elemental analysis apparatus for analyzing elements such as carbon (C) and sulfur (S) contained in samples such as steel, non-ferrous metals and ceramics.
- this type of elemental analysis apparatus introduces a container (boat) containing a sample into a heating furnace, and analyzes the gas to be analyzed generated from the sample heated and burned in the heating furnace.
- This elemental analyzer is configured to supply a combustion-supporting gas such as oxygen gas into the heating furnace to accelerate the combustion of the sample.
- the present invention has been made in view of the above problems, and the main problem is to separate and detect the organic carbon component and the inorganic carbon component contained in the sample.
- the elemental analysis method according to the present invention is a method of elemental analysis in which a sample containing at least a carbonate carbon component is heated in a heating furnace, and an analysis target gas generated from the heated sample is analyzed with a gas analyzer, After starting to heat the sample in a state in which an inert gas is supplied as a carrier gas into the heating furnace, the carrier gas supplied into the heating furnace is switched from the inert gas to the combustion-supporting gas. do.
- the heating of the sample is started while an inert gas is supplied as a carrier gas into the heating furnace, so the sample burns and CO 2 derived from the inorganic carbon component is produced. Instead, only volatile organic carbon components are generated, which can be detected by gas analyzers. Thereafter, by switching the carrier gas supplied to the heating furnace to a combustion-supporting gas and starting the combustion of the sample, CO 2 derived from the inorganic carbon component is generated and can be detected by an analyzer. By switching the carrier gas supplied into the heating furnace from the non-volatile gas to the combustion-supporting gas while the sample is being heated, the organic carbon component and the inorganic carbon component are separated and removed from the sample. can be analyzed quantitatively.
- organic carbon component means carbon contained in organic substances such as hydrocarbons.
- inorganic carbon component means elemental carbon and crystalline carbon, and does not include carbonate carbon such as calcium carbonate.
- inert gas means a gas having an inert gas component concentration of 99% or more, and the term “combustion-supporting gas” means that the oxygen concentration in the gas is It means a gas whose concentration is equal to or higher than that of oxygen.
- the heating furnace it is preferable to raise the temperature of the heating furnace while supplying an inert gas as a carrier gas into the heating furnace.
- an inert gas as a carrier gas into the heating furnace.
- the signal strength of the gas to be analyzed detected by the analyzer rises and reaches an initial peak value, and then the heating of the heating furnace is started. is preferred.
- the temperature of the heating furnace is raised after the analyzer detects the organic carbon component, so if the sample contains a carbonate carbon component, the organic carbon component and the carbonate carbon component can be separated. can be detected by
- the carrier gas supplied to the heating furnace is preferably switched from an inert gas to a combustion-supporting gas. In this way, the carbonate carbon component and the inorganic carbon component contained in the sample can be more reliably separated and detected.
- a front chamber communicating with the heating furnace is provided in the front stage of the heating furnace, the sample is placed in the front chamber, and after the front chamber is filled with an inert gas, the It is preferable to start heating the sample by putting the sample into the heating furnace from the front chamber. In this way, carbon dioxide in the atmosphere can be prevented from entering the heating furnace when the sample is put into the heating furnace, so that the organic carbon component can be analyzed with high accuracy.
- the elemental analysis method of the present invention is a method of elemental analysis in which a sample is heated in a heating furnace and a gas to be analyzed generated from the heated sample is analyzed by a gas analyzer, and an undesired carrier gas is present in the heating furnace.
- the heating of the sample is started while the active gas is being supplied, the temperature of the heating furnace is raised in this state, and then the carrier gas supplied into the heating furnace is switched from the inert gas to the combustion-supporting gas. You may do so. Even with such an elemental analysis method, the same effects as those of the above-described elemental analysis method can be obtained.
- the elemental analysis apparatus of the present invention comprises a heating furnace for heating a sample, and an analyzer for analyzing an analysis target gas generated from the sample heated and burned in the heating furnace, wherein The heating of the sample is started in a state in which an inert gas is supplied as a carrier gas, and after the temperature of the heating furnace is raised in this state, the carrier gas to be supplied is switched from the inert gas to a combustion-supporting gas. It is characterized by: With such an elemental analysis apparatus, the same effects as those of the above-described elemental analysis method can be achieved.
- the organic carbon component and the inorganic carbon component contained in the sample can be separated and detected.
- FIG. 4 is a diagram showing an example of temporal changes in the type of carrier gas to be supplied, the temperature of the heating furnace, and the signal intensity of the gas analyzer in the elemental analysis method of the embodiment.
- the flow chart of the elemental-analysis apparatus used by the experiment example. 4 is a graph showing changes over time in signal intensity detected by a gas analyzer in an experimental example; A table showing the results of quantification of each carbon component in an experimental example.
- the elemental analysis apparatus 100 of the present embodiment heats and burns a powdery or bulk solid sample S, and extracts carbon (C), sulfur (S), etc. contained in the sample S from the gas generated thereby.
- samples include those containing inorganic materials such as steel and non-ferrous metals, those containing organic materials such as coal, and those containing both inorganic and organic materials.
- this elemental analysis apparatus 100 includes a heating furnace 1 in which a container V containing a sample S is arranged, and a gas (analysis gas) generated from the sample S heated and burned in the heating furnace 1
- a gas analyzer 2 for analyzing a target gas) and a carrier gas supply mechanism 3 for supplying a carrier gas into the heating furnace 1 are provided.
- the container V accommodates, for example, a powdery sample S inside.
- the container V of this embodiment has an elongated shape with an opening at the top, and is specifically a porcelain combustion boat, a ceramic board, a quartz board, or the like.
- the shape of the container V is not limited to this, and various shapes can be used.
- the heating furnace 1 is a tubular furnace having therein a heating space 1 s into which the container V is taken in and out. By heating the container V, the sample S is heated and gas is generated.
- the heating furnace 1 as shown in FIG. , and a power supply circuit (not shown) that supplies electric power to the electric resistor 12 to generate heat.
- the heating furnace 1 is configured such that the temperature of the furnace body 11 (furnace temperature) can be arbitrarily set, and the current value of the furnace temperature can be measured by a temperature sensor such as a thermocouple.
- the furnace main body 11 is a tubular (straight) ceramic molded body, and has an opening (sample inlet/outlet) 1p for inserting a container V into the heating space 1s at one end along the tube axis direction. is formed. At the other end of the furnace body 11, a gas outlet 1q is formed for leading the gas generated from the sample S to the gas analyzer 2. As shown in FIG.
- the furnace body 11 may be heated by passing an electric current through an electric resistance furnace to perform resistance heating (Joule heating).
- the furnace body 11 is made of a conductive metal.
- a method of induction-heating the container V or the sample S accommodated in the furnace main body 11 may be used.
- An open/close lid 13 is provided at the opening 1p of the furnace body 11.
- the open/close lid 13 moves between a closed position for closing the opening 1p and an open position for opening the opening 1p, and is driven by an actuator such as an air cylinder.
- a front chamber 4 s is provided in the front stage of the heating furnace 1 to accommodate the container V before being put into the heating furnace 1 .
- the front chamber 4 s is formed by the inner space of the box-shaped housing 4 and is configured to communicate with the opening 1 p of the heating furnace 1 through the opening/closing lid 13 .
- An inert gas filling channel L5 through which an inert gas such as nitrogen gas flows and an exhaust channel (not shown) are connected to the front chamber 4s, so that the air in the front chamber 4s can be replaced with the inert gas. It's like
- the gas analyzer 2 analyzes the gas generated in the heating furnace 1 and obtains the content of each component contained in the sample S.
- analysis is performed using a non-dispersive infrared absorption method (NDIR method).
- this gas analyzer 2 has a non-dispersive infrared detector (not shown), and detects CO 2 , CO, SO 2 and the like contained in the gas led out from the gas outlet 1q of the heating furnace 1. By doing so, the contents of carbon (C), sulfur (S), etc. contained in the sample S are obtained.
- NDIR method non-dispersive infrared absorption method
- the gas analyzer 2 is provided on a gas lead-out passage L1 connected to the gas outlet 1q of the heating furnace 1, and a dust filter 5 and a A dehydrating agent 6 and the like are provided.
- the carrier gas supply mechanism 3 supplies different types of carrier gas (specifically, a combustion-supporting gas and an inert gas) into the heating furnace 1 in a switchable manner.
- the carrier gas supply mechanism 3 includes a combustion-supporting gas supply source 31, an inert gas supply source 32, a carrier gas supply passage L2 for supplying the carrier gas into the heating furnace 1, and a combustion-supporting gas a combustion-supporting gas introduction passage L3 connecting the supply source 31 and the carrier gas supply passage L2, an inert gas introduction passage L4 connecting the inert gas supply source 32 and the carrier gas supply passage L2;
- a switching mechanism 33 is provided for switching the connection destination of the carrier gas supply flow path L2 between the combustion-supporting gas introduction flow path L3 and the inert gas introduction flow path L4.
- the combustion-supporting gas supply source 31 is for sending the combustion-supporting gas to the combustion-supporting gas introduction path L3. It includes a regulator and the like. This combustion-supporting gas promotes the combustion of the sample in the heating furnace 1, and is specifically O 2 (oxygen) gas.
- the inert gas supply source 32 is for feeding the inert gas to the inert gas introduction path L4, and specifically includes a gas cylinder filled with the inert gas, a regulator attached to the gas cylinder, and the like. It is a thing. Specifically, this inert gas is N 2 (nitrogen) gas, Ar (argon gas) gas, He (helium) gas, or the like.
- the carrier gas supply flow path L2 has a starting end connected to the combustion-supporting gas introduction flow path L3 and the inert gas introduction flow path L4, a terminal end connected to the furnace main body 11 of the heating furnace 1, and communicated with the heating space 1s. ing.
- the switching mechanism 33 is provided at a connection point between the carrier gas supply channel L2 and the combustion-supporting gas introduction channel L3 and the inert gas introduction channel L4.
- the switching mechanism 33 is a three-way valve or the like that selectively opens and closes the combustion-supporting gas introduction passage L3 and the inert gas introduction passage L4.
- the sample S accommodated in the container V is placed in the front chamber 4s, and an inert gas (such as N 2 gas) is introduced into the front chamber 4s from the inert gas filling channel L5. is supplied to replace the air in the front chamber 4s with an inert gas (step S1).
- an inert gas such as N 2 gas
- the opening/closing lid 13 is in the closed position.
- the heating furnace 1 is operated using the operation panel or the like to set the set temperature of the furnace main body 11 to a predetermined first set temperature, thereby heating the inside of the furnace main body 11 (step S2).
- the first set temperature is preferably 100° C. or higher and 700° C. or lower, more preferably 200° C. or higher and 500° C. or lower.
- an inert gas eg, N2 gas
- the supply flow rate of the inert gas from the carrier gas supply flow path L2 is, for example, 1 L/min or more and 5 L/min or less, but is not limited thereto.
- the order of steps S1 to S3 may be changed.
- the opening/closing lid 13 is moved to the open position to open the furnace, as shown in FIG. 3(c).
- the sample entrance 1p of the main body 11 is opened, and a metal rod or the like is used to push out the container V containing the sample S from the front chamber 4s into the heating space 1s (step S4).
- a metal rod or the like is used to push out the container V containing the sample S from the front chamber 4s into the heating space 1s (step S4).
- the opening/closing lid 13 is moved to the closed position to close the sample inlet/outlet 1p of the furnace body 11 as shown in FIG. 3(d).
- the organic carbon component volatilizes from the heated sample S, and an intensity signal derived from the organic carbon component is detected in the gas analyzer 2 as shown in FIG.
- the sample inlet/outlet 1p is closed, until the peak value of the intensity signal derived from the organic carbon component (the “initial peak value” in the claims) is detected in the gas analyzer 2, preferably the organic It is preferable to keep the set temperature of the furnace body 11 constant until the peak value of the intensity signal derived from the carbon component is no longer detected.
- the carrier gas supplied to the furnace body 11 only the inert gas continues to flow without flowing the combustion-supporting gas.
- the heating furnace 1 is operated using the operation panel or the like to change the set temperature of the furnace main body 11 to a second set temperature higher than the first set temperature, thereby increasing the temperature inside the furnace main body 11 (step S5).
- the change from the first set temperature to the second set temperature is preferably performed at least after the gas analyzer 2 detects the peak value of the signal intensity derived from the organic carbon component, and the gas analyzer 2 detects the organic carbon component. More preferably after no signal strength is detected.
- the second set temperature may be a temperature at which the inorganic carbon component contained in the sample is combusted, and is preferably 800° C. or higher and 1500° C. or lower, more preferably 1000° C. or higher and 1200° C. or lower.
- the carbon salt carbon component contained in the sample can be extracted separately from the organic carbon component and the inorganic carbon component.
- the heating rate is not particularly limited, it is preferably 0.1° C./second or more and 1° C./second or less, and the lower the temperature rising rate, the better, in order to easily resolve the peak of the signal intensity.
- the carbonate carbon component contained in the sample S is thermally decomposed to generate CO 2 .
- the gas analyzer 2 detects an intensity signal derived from the carbonate carbon component.
- the carrier gas is supplied into the furnace main body 11 at least until the peak value of the intensity signal derived from the carbonate carbon component is no longer detected in the gas analyzer 2 after at least the temperature rise of the furnace main body 11 is started. , only the inert gas continues to flow without flowing the combustion-supporting gas.
- step S6 This carrier gas switching is preferably performed at least after the gas analyzer 2 no longer detects the signal intensity derived from the carbon salt carbon component, and more preferably after the temperature in the furnace body 11 reaches 1000° C. or higher.
- the carrier gas is switched to the combustion-supporting gas, the sample S is soon combusted to generate CO 2 , and an intensity signal derived from the inorganic carbon component is detected in the gas analyzer 2 as shown in FIG. 4 .
- the set temperature of the furnace body 11 may be maintained at the second set temperature, or may be raised.
- the supply flow rate of the combustion-supporting gas from the carrier gas supply flow path L2 may be the same as or different from the supply amount of the inert gas in the previous step.
- the supply flow rate of the combustion-supporting gas is, for example, 1 L/min or more and 5 L/min or less, but is not limited thereto.
- the heating of the sample S is started while the inert gas is being supplied as the carrier gas into the heating furnace 11. is combusted to generate only volatile organic carbon components without generating CO 2 derived from inorganic carbon components, which can be detected by the gas analyzer 2 . Then, after the signal intensity of the gas to be analyzed detected by the gas analyzer 2 rises and reaches the first peak value (that is, after the organic carbon component is detected by the gas analyzer 2), Since the temperature of the heating furnace 1 is raised while the inert gas is flowing, the carbonate carbon component contained in the sample S can be detected separately from the organic carbon component and the inorganic carbon component.
- the carrier gas supplied to the heating furnace 1 is switched to a combustion-supporting gas to start the combustion of the sample S, thereby generating CO 2 derived from the inorganic carbon component, which is detected by the gas analyzer 2. can be done.
- the organic carbon component, the carbonate carbon component, and the inorganic carbon component can be separated from the sample S, detected by the gas analyzer 2, and quantitatively analyzed.
- the present invention is not limited to the above embodiments.
- the elemental analysis apparatus 100 of the above-described embodiment is provided with the front chamber 4 in the front stage of the heating furnace 1, but the present invention is not limited to this.
- the front chamber 4 may not be provided, and the sample S stored in the container V may be put into the furnace main body 11 from the state of being placed in an air atmosphere. .
- the inert gas supplied to the furnace body 11 as a carrier gas may have a concentration of inert gas components of 99% or more, and is not limited to a single component gas such as N 2 gas, but a plurality of inert gas components. (O 2 etc.) may be mixed. In this case, if the O 2 concentration contained is high, the sample will not be steamed and will be oxidized, so the O 2 concentration is preferably 100 ppm or less.
- the combustion-supporting gas supplied to the furnace body 11 as a carrier gas may have an O 2 concentration equal to or higher than the O 2 concentration in the air.
- a gas in which a plurality of components (for example, CO 2 etc.) are mixed may be used instead of a single component gas.
- the CO 2 concentration in the combustion-supporting gas is low, and specifically, the CO 2 concentration is preferably 100 ppm or less.
- the combustion-supporting gas may contain an inert gas component.
- the temperature is raised while supplying the inert gas as the carrier gas, but the present invention is not limited to this.
- the carrier gas to be supplied is switched from an inert gas to a combustion-supporting gas, and then the temperature is raised. good too. Also in this way, the organic carbon component and the carbonate carbon component can be separated and detected.
- the organic carbon component is detected separately from the carbonate carbon component and the inorganic carbon component by lowering the first set temperature, but the present invention is not limited to this.
- at least the organic carbon component and the inorganic carbon component can be separated and detected by the gas analyzer 2. For example, by increasing the first set temperature, the organic carbon component and the carbonate carbon component overlap. It is also possible to detect only the inorganic carbon component alone by detecting it with the gas analyzer 2 .
- FIG. 6 shows a flow diagram of the elemental analyzer used in this experimental example.
- the carrier gas supply mechanism was configured to manually switch between nitrogen gas (inert gas) and oxygen gas (combustion-supporting gas) by means of a three-way valve.
- the front chamber in the front stage of the heating furnace was filled with nitrogen gas to prevent contact between the sample and the atmosphere during measurement standby.
- a quartz tube was used for the furnace body of the heating furnace, and the temperature inside the furnace could be set up to 1000°C.
- a converter was installed in the rear stage of the heating furnace to promote oxidation of the generated gas. Copper oxide (600° C.) was used as the converter.
- a dust filter (quartz wool) and a dehydrating agent (potassium hydroxide) were installed in the rear stage of the heating furnace to remove dust and water generated during combustion.
- a non-dispersive infrared detector is used as the detector, and it is constructed so that only the gas to be analyzed can be selectively detected by an optical filter.
- sample and measurement A simulated sample (total 12.5 mg) prepared by mixing tyrosine (2.4 mg) and calcium carbonate (10.1 mg) was weighed in a quartz boat, and after weighing, the quartz boat was placed in the front chamber. Then, using an insertion rod, the quartz boat was inserted into a heating furnace set at 400°C. Here, the organic matter is thermally decomposed at around 400° C. to generate CHx, CO, etc., but is converted to CO 2 by the subsequent converter. After inserting the sample, the furnace temperature was raised to 1000° C. at a rate of about 0.5° C./second, and after reaching 1000° C., the carrier gas to be supplied was switched from nitrogen to oxygen and held for 100 seconds.
- FIG. 7 shows the results of the analysis.
- a signal intensity peak of organic carbon (derived from tyrosine) was detected shortly after the start of measurement. After 600 seconds from the start of measurement, the signal intensity gradually began to be detected due to thermal decomposition of calcium carbonate. Immediately after switching the carrier gas from nitrogen to oxygen, the signal intensity peak of inorganic carbon was detected. The measurement was completed at 1500 seconds, and after the measurement was completed, the integrated value of each peak was obtained and the concentration was calculated.
- FIG. 8 shows the calculated quantitative values of each component. As can be seen from FIGS. 7 and 8, it was confirmed that the organic carbon, carbonate carbon, and inorganic carbon in the sample could be separated and quantified.
- the present invention it becomes possible to separate and detect the organic carbon component and the inorganic carbon component contained in the sample.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
In this elemental analysis method, a specimen including at least a carbonate carbon component is heated in a heating furnace, and a gas analyzer is used to analyze an analysis target gas generated from the heated specimen, wherein heating of the specimen is started in a state in which an inert gas is being supplied into the heating furnace as a carrier gas, after which the carrier gas being supplied into the heating furnace is switched from the inert gas to a combustion-supporting gas.
Description
本発明は、例えば、鉄鋼や非鉄金属、セラミックス等の試料に含まれる炭素(C)、硫黄(S)等の元素を分析する元素分析方法及び元素分析装置に関するものである。
The present invention relates to an elemental analysis method and an elemental analysis apparatus for analyzing elements such as carbon (C) and sulfur (S) contained in samples such as steel, non-ferrous metals and ceramics.
この種の元素分析装置としては、特許文献1に示すように、試料を収容した容器(ボート)を加熱炉に導入して、当該加熱炉で加熱されて燃焼した試料から生じる分析対象ガスを分析するものがある。この元素分析装置は、酸素ガス等の支燃性ガスを加熱炉内に供給し、試料の燃焼を促進させるように構成されている。
As shown in Patent Document 1, this type of elemental analysis apparatus introduces a container (boat) containing a sample into a heating furnace, and analyzes the gas to be analyzed generated from the sample heated and burned in the heating furnace. there is something to do This elemental analyzer is configured to supply a combustion-supporting gas such as oxygen gas into the heating furnace to accelerate the combustion of the sample.
ところで上記した元素分析装置では、有機炭素成分と無機炭素成分を含む試料を分析する場合、支燃性ガスを流している加熱炉内に試料を投入して分析を開始すると、試料が燃焼することで無機炭素成分由来の二酸化炭素が生じるとともに、揮発性である有機炭素成分が試料から放出されてしまい、これらの成分が分析計で重複して検出されるため、各炭素成分を定量的に分析することが難しい。
By the way, in the case of analyzing a sample containing an organic carbon component and an inorganic carbon component in the elemental analysis apparatus described above, if the sample is put into a heating furnace in which a combustion-supporting gas is flowing and the analysis is started, the sample will burn. At the same time, carbon dioxide derived from inorganic carbon components is generated, and volatile organic carbon components are released from the sample. difficult to do
本発明は上記課題に鑑みてなされたものであり、試料に含まれる有機炭素成分と無機炭素成分を分離して検出できるようにすることを主たる課題とするものである。
The present invention has been made in view of the above problems, and the main problem is to separate and detect the organic carbon component and the inorganic carbon component contained in the sample.
すなわち本発明にかかる元素分析方法は、少なくとも炭酸塩炭素成分を含む試料を加熱炉で加熱し、当該加熱された試料から生じる分析対象ガスをガス分析計で分析する元素分析方法であって、前記加熱炉内にキャリアガスとして不活性ガスを供給している状態で前記試料の加熱を開始した後、前記加熱炉内に供給するキャリアガスを不活性ガスから支燃性ガスに切り替えることを特徴とする。
That is, the elemental analysis method according to the present invention is a method of elemental analysis in which a sample containing at least a carbonate carbon component is heated in a heating furnace, and an analysis target gas generated from the heated sample is analyzed with a gas analyzer, After starting to heat the sample in a state in which an inert gas is supplied as a carrier gas into the heating furnace, the carrier gas supplied into the heating furnace is switched from the inert gas to the combustion-supporting gas. do.
このような元素分析方法であれば、まず加熱炉内にキャリアガスとして不活性ガスを供給している状態で試料の加熱を開始するので、試料が燃焼して無機炭素成分由来のCO2を生じさせることなく、揮発性の有機炭素成分のみを発生させ、これをガス分析計で検出することができる。そしてその後、加熱炉に供給するキャリアガスを支燃性ガスに切り替えて試料の燃焼を開始させることで、無機炭素成分由来のCO2を生じさせ、これを分析計で検出することができる。このように、試料を加熱している状態で、加熱炉内に供給するキャリアガスを不揮発性ガスから支燃性ガスに切り替えることで、有機炭素成分と無機炭素成分とを分離して試料から取り出すことができ、これらを定量的に分析することができる。
In such an elemental analysis method, the heating of the sample is started while an inert gas is supplied as a carrier gas into the heating furnace, so the sample burns and CO 2 derived from the inorganic carbon component is produced. Instead, only volatile organic carbon components are generated, which can be detected by gas analyzers. Thereafter, by switching the carrier gas supplied to the heating furnace to a combustion-supporting gas and starting the combustion of the sample, CO 2 derived from the inorganic carbon component is generated and can be detected by an analyzer. By switching the carrier gas supplied into the heating furnace from the non-volatile gas to the combustion-supporting gas while the sample is being heated, the organic carbon component and the inorganic carbon component are separated and removed from the sample. can be analyzed quantitatively.
なお本明細書において、「有機炭素成分」とは、例えば炭化水素等、有機物に含まれる炭素を意味する。また「無機炭素成分」とは、元素状炭素及び結晶性炭素を意味し、炭酸カルシウム等の炭酸塩炭素を含まない。
また本明細書では、「不活性ガス」とは、不活性ガス成分の濃度が99%以上であるガスを意味し、「支燃性ガス」とは、ガス中の酸素濃度が、空気中の酸素濃度と同等又はそれ以上であるガスを意味する。 In this specification, the term "organic carbon component" means carbon contained in organic substances such as hydrocarbons. The term "inorganic carbon component" means elemental carbon and crystalline carbon, and does not include carbonate carbon such as calcium carbonate.
In this specification, the term "inert gas" means a gas having an inert gas component concentration of 99% or more, and the term "combustion-supporting gas" means that the oxygen concentration in the gas is It means a gas whose concentration is equal to or higher than that of oxygen.
また本明細書では、「不活性ガス」とは、不活性ガス成分の濃度が99%以上であるガスを意味し、「支燃性ガス」とは、ガス中の酸素濃度が、空気中の酸素濃度と同等又はそれ以上であるガスを意味する。 In this specification, the term "organic carbon component" means carbon contained in organic substances such as hydrocarbons. The term "inorganic carbon component" means elemental carbon and crystalline carbon, and does not include carbonate carbon such as calcium carbonate.
In this specification, the term "inert gas" means a gas having an inert gas component concentration of 99% or more, and the term "combustion-supporting gas" means that the oxygen concentration in the gas is It means a gas whose concentration is equal to or higher than that of oxygen.
前記元素分析方法は、前記加熱炉内にキャリアガスとして不活性ガスを供給している状態で前記加熱炉を昇温させるのが好ましい。
このようにすれば、加熱炉を昇温させていくことで試料に含まれる炭酸塩炭素成分を熱分解により生じさせることができるので、試料に含まれる炭酸塩炭素成分を、燃焼により生じる無機炭素成分と分離して検出することができる。 In the elemental analysis method, it is preferable to raise the temperature of the heating furnace while supplying an inert gas as a carrier gas into the heating furnace.
In this way, by increasing the temperature of the heating furnace, the carbonate carbon component contained in the sample can be generated by thermal decomposition, so that the carbonate carbon component contained in the sample can be converted to inorganic carbon generated by combustion. It can be detected separately from the components.
このようにすれば、加熱炉を昇温させていくことで試料に含まれる炭酸塩炭素成分を熱分解により生じさせることができるので、試料に含まれる炭酸塩炭素成分を、燃焼により生じる無機炭素成分と分離して検出することができる。 In the elemental analysis method, it is preferable to raise the temperature of the heating furnace while supplying an inert gas as a carrier gas into the heating furnace.
In this way, by increasing the temperature of the heating furnace, the carbonate carbon component contained in the sample can be generated by thermal decomposition, so that the carbonate carbon component contained in the sample can be converted to inorganic carbon generated by combustion. It can be detected separately from the components.
また前記元素分析方法は、前記試料の加熱開始後、前記分析計により検出される前記分析対象ガスの信号強度が上昇して初めのピーク値に達した後、前記加熱炉の昇温を開始させるのが好ましい。
このようにすれば、分析計で有機炭素成分が検出された後に加熱炉を昇温させるので、試料に炭酸塩炭素成分が含まれている場合、有機炭素成分と炭酸塩炭素成分とを分離して検出できるようになる。 Further, in the elemental analysis method, after the heating of the sample is started, the signal strength of the gas to be analyzed detected by the analyzer rises and reaches an initial peak value, and then the heating of the heating furnace is started. is preferred.
In this way, the temperature of the heating furnace is raised after the analyzer detects the organic carbon component, so if the sample contains a carbonate carbon component, the organic carbon component and the carbonate carbon component can be separated. can be detected by
このようにすれば、分析計で有機炭素成分が検出された後に加熱炉を昇温させるので、試料に炭酸塩炭素成分が含まれている場合、有機炭素成分と炭酸塩炭素成分とを分離して検出できるようになる。 Further, in the elemental analysis method, after the heating of the sample is started, the signal strength of the gas to be analyzed detected by the analyzer rises and reaches an initial peak value, and then the heating of the heating furnace is started. is preferred.
In this way, the temperature of the heating furnace is raised after the analyzer detects the organic carbon component, so if the sample contains a carbonate carbon component, the organic carbon component and the carbonate carbon component can be separated. can be detected by
また前記元素分析方法は、前記加熱炉を所定温度以上に昇温した後、前記加熱炉に供給するキャリアガスを不活性ガスから支燃性ガスに切り替えるのが好ましい。
このようにすれば、試料に含まれる炭酸塩炭素成分と無機炭素成分とをより確実に分離して検出することができる。 Further, in the elemental analysis method, after heating the heating furnace to a predetermined temperature or higher, the carrier gas supplied to the heating furnace is preferably switched from an inert gas to a combustion-supporting gas.
In this way, the carbonate carbon component and the inorganic carbon component contained in the sample can be more reliably separated and detected.
このようにすれば、試料に含まれる炭酸塩炭素成分と無機炭素成分とをより確実に分離して検出することができる。 Further, in the elemental analysis method, after heating the heating furnace to a predetermined temperature or higher, the carrier gas supplied to the heating furnace is preferably switched from an inert gas to a combustion-supporting gas.
In this way, the carbonate carbon component and the inorganic carbon component contained in the sample can be more reliably separated and detected.
また前記元素分析方法では、前記加熱炉内に連通する前室を前記加熱炉の前段に設け、前記前室内に前記試料を設置し、且つ前記前室内を不活性ガスで充満させた後、前記前室内から前記加熱炉内に前記試料を投入することにより前記試料の加熱を開始させるのが好ましい。
このようにすれば、加熱炉内に試料を投入する際に大気中の二酸化炭素が加熱炉内に入り込むことを防止できるので、精度よく有機炭素成分を分析できる。 Further, in the elemental analysis method, a front chamber communicating with the heating furnace is provided in the front stage of the heating furnace, the sample is placed in the front chamber, and after the front chamber is filled with an inert gas, the It is preferable to start heating the sample by putting the sample into the heating furnace from the front chamber.
In this way, carbon dioxide in the atmosphere can be prevented from entering the heating furnace when the sample is put into the heating furnace, so that the organic carbon component can be analyzed with high accuracy.
このようにすれば、加熱炉内に試料を投入する際に大気中の二酸化炭素が加熱炉内に入り込むことを防止できるので、精度よく有機炭素成分を分析できる。 Further, in the elemental analysis method, a front chamber communicating with the heating furnace is provided in the front stage of the heating furnace, the sample is placed in the front chamber, and after the front chamber is filled with an inert gas, the It is preferable to start heating the sample by putting the sample into the heating furnace from the front chamber.
In this way, carbon dioxide in the atmosphere can be prevented from entering the heating furnace when the sample is put into the heating furnace, so that the organic carbon component can be analyzed with high accuracy.
また本発明の元素分析方法は、加熱炉で試料を加熱し、当該加熱された試料から生じる分析対象ガスをガス分析計で分析する元素分析方法であって、前記加熱炉内にキャリアガスとして不活性ガスを供給している状態で前記試料の加熱を開始し、この状態で前記加熱炉を昇温させた後、前記加熱炉内に供給するキャリアガスを不活性ガスから支燃性ガスに切り替えるようにしてもよい。
このような元素分析方法であっても、前記した元素分析方法と同様の作用効果を奏することができる。 Further, the elemental analysis method of the present invention is a method of elemental analysis in which a sample is heated in a heating furnace and a gas to be analyzed generated from the heated sample is analyzed by a gas analyzer, and an undesired carrier gas is present in the heating furnace. The heating of the sample is started while the active gas is being supplied, the temperature of the heating furnace is raised in this state, and then the carrier gas supplied into the heating furnace is switched from the inert gas to the combustion-supporting gas. You may do so.
Even with such an elemental analysis method, the same effects as those of the above-described elemental analysis method can be obtained.
このような元素分析方法であっても、前記した元素分析方法と同様の作用効果を奏することができる。 Further, the elemental analysis method of the present invention is a method of elemental analysis in which a sample is heated in a heating furnace and a gas to be analyzed generated from the heated sample is analyzed by a gas analyzer, and an undesired carrier gas is present in the heating furnace. The heating of the sample is started while the active gas is being supplied, the temperature of the heating furnace is raised in this state, and then the carrier gas supplied into the heating furnace is switched from the inert gas to the combustion-supporting gas. You may do so.
Even with such an elemental analysis method, the same effects as those of the above-described elemental analysis method can be obtained.
また本発明の元素分析装置は、試料を加熱する加熱炉と、該加熱炉で加熱され燃焼する前記試料から生じる分析対象ガスを分析する分析計とを備えるものであって、前記加熱炉内にキャリアガスとして不活性ガスを供給した状態で前記試料の加熱を開始し、この状態で前記加熱炉を昇温させた後、供給する前記キャリアガスを不活性ガスから支燃性ガスに切り替えるように構成されていることを特徴とする。
このような元素分析装置であれば、前記した元素分析方法と同様の作用効果を奏することができる。 Further, the elemental analysis apparatus of the present invention comprises a heating furnace for heating a sample, and an analyzer for analyzing an analysis target gas generated from the sample heated and burned in the heating furnace, wherein The heating of the sample is started in a state in which an inert gas is supplied as a carrier gas, and after the temperature of the heating furnace is raised in this state, the carrier gas to be supplied is switched from the inert gas to a combustion-supporting gas. It is characterized by:
With such an elemental analysis apparatus, the same effects as those of the above-described elemental analysis method can be achieved.
このような元素分析装置であれば、前記した元素分析方法と同様の作用効果を奏することができる。 Further, the elemental analysis apparatus of the present invention comprises a heating furnace for heating a sample, and an analyzer for analyzing an analysis target gas generated from the sample heated and burned in the heating furnace, wherein The heating of the sample is started in a state in which an inert gas is supplied as a carrier gas, and after the temperature of the heating furnace is raised in this state, the carrier gas to be supplied is switched from the inert gas to a combustion-supporting gas. It is characterized by:
With such an elemental analysis apparatus, the same effects as those of the above-described elemental analysis method can be achieved.
このように構成した本発明によれば、試料に含まれる有機炭素成分と無機炭素成分を分離して検出することができる。
According to the present invention configured in this manner, the organic carbon component and the inorganic carbon component contained in the sample can be separated and detected.
以下に、本発明の一実施形態について図面を参照して説明する。
An embodiment of the present invention will be described below with reference to the drawings.
<装置構成>
本実施形態の元素分析装置100は、例えば、粉末状又はバルク状の固体試料Sを加熱して燃焼させ、それによって生じたガスから当該試料Sに含まれる炭素(C)、硫黄(S)等の元素を分析するためのものである。試料としては、例えば、鉄鋼や非鉄金属等の無機材料を含むもの、石炭等の有機材料を含むもの、無機材料及び有機材料の両方を含むもの等を挙げることができる。 <Device configuration>
Theelemental analysis apparatus 100 of the present embodiment, for example, heats and burns a powdery or bulk solid sample S, and extracts carbon (C), sulfur (S), etc. contained in the sample S from the gas generated thereby. for the analysis of the elements of Examples of samples include those containing inorganic materials such as steel and non-ferrous metals, those containing organic materials such as coal, and those containing both inorganic and organic materials.
本実施形態の元素分析装置100は、例えば、粉末状又はバルク状の固体試料Sを加熱して燃焼させ、それによって生じたガスから当該試料Sに含まれる炭素(C)、硫黄(S)等の元素を分析するためのものである。試料としては、例えば、鉄鋼や非鉄金属等の無機材料を含むもの、石炭等の有機材料を含むもの、無機材料及び有機材料の両方を含むもの等を挙げることができる。 <Device configuration>
The
具体的にこの元素分析装置100は、図1に示すように、試料Sが収容された容器Vが配置される加熱炉1と、加熱炉1で加熱されて燃焼した試料Sから生じるガス(分析対象ガスともいう)を分析するガス分析計2と、加熱炉1内にキャリアガスを供給するキャリアガス供給機構3とを備えている。
Specifically, as shown in FIG. 1, this elemental analysis apparatus 100 includes a heating furnace 1 in which a container V containing a sample S is arranged, and a gas (analysis gas) generated from the sample S heated and burned in the heating furnace 1 A gas analyzer 2 for analyzing a target gas) and a carrier gas supply mechanism 3 for supplying a carrier gas into the heating furnace 1 are provided.
容器Vは、内部に例えば粉末状の試料Sが収容されるものである。本実施形態の容器Vは、上部に開口を有する長尺状をなすものであり、具体的には磁器燃焼ボート、セラミックボード又は石英ボード等である。なお容器Vの形状はこれに限られず、種々の形状とすることができる。
The container V accommodates, for example, a powdery sample S inside. The container V of this embodiment has an elongated shape with an opening at the top, and is specifically a porcelain combustion boat, a ceramic board, a quartz board, or the like. The shape of the container V is not limited to this, and various shapes can be used.
加熱炉1は、容器Vが出し入れされる加熱空間1sをその内部に有する管状炉であり、この加熱空間1sで、試料Sが収容されていない容器Vを空焼きしたり、試料Sが収容された容器Vを加熱することで試料Sを加熱してガスを発生させるものである。
The heating furnace 1 is a tubular furnace having therein a heating space 1 s into which the container V is taken in and out. By heating the container V, the sample S is heated and gas is generated.
具体的に加熱炉1は、図1に示すように、水平方向に延びる加熱空間1sを形成する炉本体11と、炉本体11の周囲に設けられて炉本体11を加熱する電気抵抗体12と、電気抵抗体12に電力を供給して通電発熱させる電源回路(不図示)とを備えている。この加熱炉1は、炉本体11の温度(炉内温度)を任意に設定でき、またその炉内温度の現在値を熱電対等の温度センサにより測定できるように構成されている。
Specifically, the heating furnace 1, as shown in FIG. , and a power supply circuit (not shown) that supplies electric power to the electric resistor 12 to generate heat. The heating furnace 1 is configured such that the temperature of the furnace body 11 (furnace temperature) can be arbitrarily set, and the current value of the furnace temperature can be measured by a temperature sensor such as a thermocouple.
炉本体11は、管状(直管状)をなすセラミック成形体であり、管軸方向に沿った一方の端部には、加熱空間1s内に容器Vを投入するための開口部(試料出入口)1pが形成されている。また炉本体11の他方の端部には、試料Sから発生したガスをガス分析計2に導出するためのガス導出口1qが形成されている。なお、炉本体11の加熱方式としては、電気抵抗炉に電流を流して抵抗加熱(ジュール発熱)させるものであっても良く、この場合に炉本体11は導電性を有する金属から形成される。その他、炉本体11内に収容された容器V又は試料Sを誘導加熱する方式であっても良い。
The furnace main body 11 is a tubular (straight) ceramic molded body, and has an opening (sample inlet/outlet) 1p for inserting a container V into the heating space 1s at one end along the tube axis direction. is formed. At the other end of the furnace body 11, a gas outlet 1q is formed for leading the gas generated from the sample S to the gas analyzer 2. As shown in FIG. The furnace body 11 may be heated by passing an electric current through an electric resistance furnace to perform resistance heating (Joule heating). In this case, the furnace body 11 is made of a conductive metal. Alternatively, a method of induction-heating the container V or the sample S accommodated in the furnace main body 11 may be used.
また炉本体11の開口部1pには開閉蓋13が設けられている。この開閉蓋13は、開口部1pを閉塞する閉塞位置と、開口部1pを開放する開放位置との間で移動するものであり、例えばエアシリンダ等のアクチュエータにより駆動する。
An open/close lid 13 is provided at the opening 1p of the furnace body 11. The open/close lid 13 moves between a closed position for closing the opening 1p and an open position for opening the opening 1p, and is driven by an actuator such as an air cylinder.
この加熱炉1の前段には、加熱炉1に投入する前の容器Vを収容しておくための前室4sが設けられている。この前室4sは、箱状をなす筐体4の内部空間により形成されており、開閉蓋13を介して加熱炉1の開口部1pに連通するように構成されている。この前室4sには、窒素ガス等の不活性ガスが流れる不活性ガス充填流路L5及び排気流路(不図示)が接続されており、前室4s内の空気を不活性ガスに置換できるようになっている。
A front chamber 4 s is provided in the front stage of the heating furnace 1 to accommodate the container V before being put into the heating furnace 1 . The front chamber 4 s is formed by the inner space of the box-shaped housing 4 and is configured to communicate with the opening 1 p of the heating furnace 1 through the opening/closing lid 13 . An inert gas filling channel L5 through which an inert gas such as nitrogen gas flows and an exhaust channel (not shown) are connected to the front chamber 4s, so that the air in the front chamber 4s can be replaced with the inert gas. It's like
ガス分析計2は、加熱炉1で生じたガスを分析して、試料Sに含まれる各成分の含有量を求めるものである。本実施形態では、例えば、非分散型赤外線吸収法(NDIR法)を用いて分析するものである。具体的にこのガス分析計2は、図示しない非分散型赤外線検出器を有しており、加熱炉1のガス導出口1qから導出されたガスに含まれるCO2、CO、SO2等を検出することで、試料Sに含まれる炭素(C)や硫黄(S)等の含有量を求めるものである。
The gas analyzer 2 analyzes the gas generated in the heating furnace 1 and obtains the content of each component contained in the sample S. In this embodiment, for example, analysis is performed using a non-dispersive infrared absorption method (NDIR method). Specifically, this gas analyzer 2 has a non-dispersive infrared detector (not shown), and detects CO 2 , CO, SO 2 and the like contained in the gas led out from the gas outlet 1q of the heating furnace 1. By doing so, the contents of carbon (C), sulfur (S), etc. contained in the sample S are obtained.
ガス分析計2は、加熱炉1のガス導出口1qに接続されたガス導出流路L1上に設けられており、このガス導出流路L1におけるガス分析計2の上流側にはダストフィルタ5や脱水剤6等が設けられている。
The gas analyzer 2 is provided on a gas lead-out passage L1 connected to the gas outlet 1q of the heating furnace 1, and a dust filter 5 and a A dehydrating agent 6 and the like are provided.
キャリアガス供給機構3は、異なる種類のキャリアガス(具体的には支燃性ガスと、不活性ガス)を加熱炉1内に切替可能に供給するものである。具体的にこのキャリアガス供給機構3は、支燃性ガス供給源31と、不活性ガス供給源32と、キャリアガスを加熱炉1内に供給するキャリアガス供給流路L2と、支燃性ガス供給源31とキャリアガス供給流路L2とを接続する支燃性ガス導入流路L3と、不活性ガス供給源32とキャリアガス供給流路L2とを接続する不活性ガス導入流路L4と、キャリアガス供給流路L2の接続先を支燃性ガス導入流路L3と不活性ガス導入流路L4との間で切り替える切替機構33とを備えている。
The carrier gas supply mechanism 3 supplies different types of carrier gas (specifically, a combustion-supporting gas and an inert gas) into the heating furnace 1 in a switchable manner. Specifically, the carrier gas supply mechanism 3 includes a combustion-supporting gas supply source 31, an inert gas supply source 32, a carrier gas supply passage L2 for supplying the carrier gas into the heating furnace 1, and a combustion-supporting gas a combustion-supporting gas introduction passage L3 connecting the supply source 31 and the carrier gas supply passage L2, an inert gas introduction passage L4 connecting the inert gas supply source 32 and the carrier gas supply passage L2; A switching mechanism 33 is provided for switching the connection destination of the carrier gas supply flow path L2 between the combustion-supporting gas introduction flow path L3 and the inert gas introduction flow path L4.
支燃性ガス供給源31は、支燃性ガス導入路L3へ支燃性ガスを送り込むためのものであり、具体的には支燃性ガスが充填されたガスボンベや、当該ガスボンベに取り付けられたレギュレータ等を含むものである。この支燃性ガスは、加熱炉1内において試料の燃焼を促進させるものであり、具体的にはO2(酸素)ガスである。
The combustion-supporting gas supply source 31 is for sending the combustion-supporting gas to the combustion-supporting gas introduction path L3. It includes a regulator and the like. This combustion-supporting gas promotes the combustion of the sample in the heating furnace 1, and is specifically O 2 (oxygen) gas.
不活性ガス供給源32は、不活性ガス導入路L4へ不活性ガスを送り込むためのものであり、具体的には不活性ガスが充填されたガスボンベや、当該ガスボンベに取り付けられたレギュレータ等を含むものである。この不活性ガスは、具体的には、N2(窒素)ガス又はAr(アルゴンガス)ガス、He(ヘリウム)ガス等である。
The inert gas supply source 32 is for feeding the inert gas to the inert gas introduction path L4, and specifically includes a gas cylinder filled with the inert gas, a regulator attached to the gas cylinder, and the like. It is a thing. Specifically, this inert gas is N 2 (nitrogen) gas, Ar (argon gas) gas, He (helium) gas, or the like.
キャリアガス供給流路L2は、その始端が支燃性ガス導入流路L3及び不活性ガス導入流路L4に接続され、終端が加熱炉1の炉本体11に接続され、加熱空間1sに連通している。
The carrier gas supply flow path L2 has a starting end connected to the combustion-supporting gas introduction flow path L3 and the inert gas introduction flow path L4, a terminal end connected to the furnace main body 11 of the heating furnace 1, and communicated with the heating space 1s. ing.
切替機構33は、本実施形態では、キャリアガス供給流路L2と、支燃性ガス導入流路L3及び不活性ガス導入流路L4との接続点に設けられている。この切替機構33は、支燃性ガス導入流路L3と不活性ガス導入流路L4をそれぞれ選択的に開閉する三方弁等である。
In this embodiment, the switching mechanism 33 is provided at a connection point between the carrier gas supply channel L2 and the combustion-supporting gas introduction channel L3 and the inert gas introduction channel L4. The switching mechanism 33 is a three-way valve or the like that selectively opens and closes the combustion-supporting gas introduction passage L3 and the inert gas introduction passage L4.
<分析方法>
次に、本実施形態の元素分析装置100を用いた元素分析方法の一例について、図2~図4を参照して説明する。 <Analysis method>
Next, an example of an elemental analysis method using theelemental analysis apparatus 100 of this embodiment will be described with reference to FIGS. 2 to 4. FIG.
次に、本実施形態の元素分析装置100を用いた元素分析方法の一例について、図2~図4を参照して説明する。 <Analysis method>
Next, an example of an elemental analysis method using the
まず、図3(a)に示すように、容器Vに収容した試料Sを前室4s内に配置し、不活性ガス充填流路L5から前室4s内に不活性ガス(N2ガス等)を供給し、前室4s内の空気を不活性ガスで置換する(ステップS1)。なおこの工程では、開閉蓋13は閉塞位置にしてある。
First, as shown in FIG. 3(a), the sample S accommodated in the container V is placed in the front chamber 4s, and an inert gas (such as N 2 gas) is introduced into the front chamber 4s from the inert gas filling channel L5. is supplied to replace the air in the front chamber 4s with an inert gas (step S1). In this step, the opening/closing lid 13 is in the closed position.
次に、操作パネル等により加熱炉1を操作し、炉本体11の設定温度を所定の第1設定温度にし、炉本体11内を加熱する(ステップS2)。この第1設定温度は、100℃以上700℃以下が好ましく、200℃以上500℃以下がより好ましい。第1設定温度をこのような範囲にすることで、後の工程で、試料Sに含まれる揮発性の有機炭素成分を炭酸塩炭素成分及び無機炭素成分と分離して抽出することができる。
Next, the heating furnace 1 is operated using the operation panel or the like to set the set temperature of the furnace main body 11 to a predetermined first set temperature, thereby heating the inside of the furnace main body 11 (step S2). The first set temperature is preferably 100° C. or higher and 700° C. or lower, more preferably 200° C. or higher and 500° C. or lower. By setting the first set temperature to such a range, the volatile organic carbon component contained in the sample S can be separated from the carbonate carbon component and the inorganic carbon component and extracted in a later step.
そして図3(b)に示すように、キャリアガス供給流路L2から炉本体11内に、キャリアガスとして不活性ガス(N2ガス等)を供給する(ステップS3)。キャリアガス供給流路L2からの不活性ガスの供給流量は、例えば1L/min以上5L/min以下であるが、これに限らない。なおステップS1~S3の各工程は順番が入れ替わってもよい。
Then, as shown in FIG. 3B, an inert gas (eg, N2 gas) is supplied as a carrier gas from the carrier gas supply passage L2 into the furnace body 11 (step S3). The supply flow rate of the inert gas from the carrier gas supply flow path L2 is, for example, 1 L/min or more and 5 L/min or less, but is not limited thereto. The order of steps S1 to S3 may be changed.
そして、温度センサにより計測される炉内温度が第1設定温度近傍(例えば±1℃以内)で安定すると、そして図3(c)に示すように、開閉蓋13を開放位置に移動させて炉本体11の試料出入口1pを開放するとともに、金属棒等を用いて試料Sを収容した容器Vを前室4sから加熱空間1s内に押し出して移動させる(ステップS4)。ここで、容器Vを移動させている間、不活性ガス充填流路L5から前室4s内に不活性ガスを供給し続けるのが好ましい。
Then, when the temperature inside the furnace measured by the temperature sensor stabilizes near the first set temperature (for example, within ±1° C.), the opening/closing lid 13 is moved to the open position to open the furnace, as shown in FIG. 3(c). The sample entrance 1p of the main body 11 is opened, and a metal rod or the like is used to push out the container V containing the sample S from the front chamber 4s into the heating space 1s (step S4). Here, while the container V is being moved, it is preferable to continue supplying the inert gas from the inert gas filling channel L5 into the front chamber 4s.
試料Sを収容した容器Vを加熱空間1s内に移動させた後、図3(d)に示すように開閉蓋13を閉塞位置に移動し、炉本体11の試料出入口1pを閉じる。すると間もなく加熱された試料Sから有機炭素成分が揮発し、図4に示すように、ガス分析計2において有機炭素成分に由来する強度信号が検出される。この工程では、試料出入口1pを閉じてから、ガス分析計2において有機炭素成分に由来する強度信号のピーク値(特許請求範囲で言う“初めのピーク値”)が検出されるまで、好ましくは有機炭素成分に由来する強度信号の強度信号のピーク値が検出されなくなるまで炉本体11の設定温度を一定にすることが好ましい。またこの工程では、炉本体11に供給するキャリアガスとして、支燃性ガスを流すことなく不活性ガスのみを流し続ける。
After moving the container V containing the sample S into the heating space 1s, the opening/closing lid 13 is moved to the closed position to close the sample inlet/outlet 1p of the furnace body 11 as shown in FIG. 3(d). Soon after, the organic carbon component volatilizes from the heated sample S, and an intensity signal derived from the organic carbon component is detected in the gas analyzer 2 as shown in FIG. In this step, after the sample inlet/outlet 1p is closed, until the peak value of the intensity signal derived from the organic carbon component (the “initial peak value” in the claims) is detected in the gas analyzer 2, preferably the organic It is preferable to keep the set temperature of the furnace body 11 constant until the peak value of the intensity signal derived from the carbon component is no longer detected. In this step, as the carrier gas supplied to the furnace body 11, only the inert gas continues to flow without flowing the combustion-supporting gas.
次に、操作パネル等により加熱炉1を操作し、炉本体11の設定温度を第1設定温度よりも高い第2設定温度に変更し、炉本体11内を昇温させる(ステップS5)。第1設定温度から第2設定温度への変更は、少なくともガス分析計2で有機炭素成分に由来する信号強度のピーク値が検出された後が好ましく、ガス分析計2で有機炭素成分に由来する信号強度が検出されなくなった後がより好ましい。この第2設定温度は、試料に含まれる無機炭素成分が燃焼する温度であればよく、例えば800℃以上1500℃以下が好ましく、1000℃以上1200℃以下がより好ましい。第2設定温度をこのような範囲することで、試料に含まれる炭素塩炭素成分を、有機炭素成分及び無機炭素成分と分離して抽出することができる。なお昇温速度は特に限定されないが、例えば0.1℃/秒以上1℃/秒以下が好ましく、信号強度のピークを分解しやすくするには、昇温速度は低い方が好ましい。
Next, the heating furnace 1 is operated using the operation panel or the like to change the set temperature of the furnace main body 11 to a second set temperature higher than the first set temperature, thereby increasing the temperature inside the furnace main body 11 (step S5). The change from the first set temperature to the second set temperature is preferably performed at least after the gas analyzer 2 detects the peak value of the signal intensity derived from the organic carbon component, and the gas analyzer 2 detects the organic carbon component. More preferably after no signal strength is detected. The second set temperature may be a temperature at which the inorganic carbon component contained in the sample is combusted, and is preferably 800° C. or higher and 1500° C. or lower, more preferably 1000° C. or higher and 1200° C. or lower. By setting the second set temperature within such a range, the carbon salt carbon component contained in the sample can be extracted separately from the organic carbon component and the inorganic carbon component. Although the heating rate is not particularly limited, it is preferably 0.1° C./second or more and 1° C./second or less, and the lower the temperature rising rate, the better, in order to easily resolve the peak of the signal intensity.
炉本体11の昇温を開始すると、図3(e)に示すように、試料Sに含まれる炭酸塩炭素成分が熱分解してCO2が発生する。そして図4に示すように、ガス分析計2において炭酸塩炭素成分に由来する強度信号が検出される。この工程では、少なくとも炉本体11の昇温を開始してから、少なくともガス分析計2において炭酸塩炭素成分に由来する強度信号のピーク値が検出されなくなるまで、炉本体11内に供給するキャリアガスとして、支燃性ガスを流すことなく不活性ガスのみを流し続ける。
When the temperature rise of the furnace main body 11 is started, as shown in FIG. 3(e), the carbonate carbon component contained in the sample S is thermally decomposed to generate CO 2 . Then, as shown in FIG. 4, the gas analyzer 2 detects an intensity signal derived from the carbonate carbon component. In this step, the carrier gas is supplied into the furnace main body 11 at least until the peak value of the intensity signal derived from the carbonate carbon component is no longer detected in the gas analyzer 2 after at least the temperature rise of the furnace main body 11 is started. , only the inert gas continues to flow without flowing the combustion-supporting gas.
次に切替機構33を操作し、図3(f)に示すように、キャリアガス供給流路L2から炉本体11内に供給するキャリアガスを不活性ガス(N2)から支燃性ガス(O2)に切り替える(ステップS6)。このキャリアガスの切替えは、少なくともガス分析計2で炭素塩炭素成分に由来する信号強度が検出されなくなった後が好ましく、炉本体11の炉内温度が1000℃以上となった後がより好ましい。キャリアガスを支燃性ガスに切り替えると、間もなく試料Sが燃焼してCO2が発生し、図4に示すように、ガス分析計2において無機炭素成分に由来する強度信号が検出される。この工程では、炉本体11の設定温度を第2設定温度に保ったままでもよく、昇温させるようにしてもよい。キャリアガス供給流路L2からの支燃性ガスの供給流量は、前工程における不活性ガスの供給量と同じであってもよく、異なっていてもよい。支燃性ガスの供給流量は、例えば1L/min以上5L/min以下であるが、これに限らない。
Next, the switching mechanism 33 is operated, and as shown in FIG . 2 ) (step S6). This carrier gas switching is preferably performed at least after the gas analyzer 2 no longer detects the signal intensity derived from the carbon salt carbon component, and more preferably after the temperature in the furnace body 11 reaches 1000° C. or higher. When the carrier gas is switched to the combustion-supporting gas, the sample S is soon combusted to generate CO 2 , and an intensity signal derived from the inorganic carbon component is detected in the gas analyzer 2 as shown in FIG. 4 . In this step, the set temperature of the furnace body 11 may be maintained at the second set temperature, or may be raised. The supply flow rate of the combustion-supporting gas from the carrier gas supply flow path L2 may be the same as or different from the supply amount of the inert gas in the previous step. The supply flow rate of the combustion-supporting gas is, for example, 1 L/min or more and 5 L/min or less, but is not limited thereto.
このように構成した本実施形態の元素分析装置及び元素分析方法によれば、まず加熱炉11内にキャリアガスとして不活性ガスを供給している状態で試料Sの加熱を開始するので、試料Sが燃焼して無機炭素成分由来のCO2を生じさせることなく、揮発性の有機炭素成分のみを発生させ、これをガス分析計2で検出することができる。
そして、ガス分析計2により検出される分析対象ガスの信号強度が上昇して初めのピーク値に達した後(すなわち、ガス分析計2で有機炭素成分が検出された後)に、キャリアガスとして不活性ガスを流している状態で加熱炉1を昇温させるようにしているので、試料Sに含まれる炭酸塩炭素成分を、有機炭素成分及び無機炭素成分と分離して検出できる。
そしてその後、加熱炉1に供給するキャリアガスを支燃性ガスに切り替えて試料Sの燃焼を開始させることで、無機炭素成分由来のCO2を生じさせ、これをガス分析計2で検出することができる。
このようにして、試料Sから有機炭素成分と炭酸塩炭素成分と無機炭素成分とを分離してガス分析計2で検出することができ、これらを定量的に分析することができる。 According to the elemental analysis apparatus and the elemental analysis method of the present embodiment configured as described above, the heating of the sample S is started while the inert gas is being supplied as the carrier gas into theheating furnace 11. is combusted to generate only volatile organic carbon components without generating CO 2 derived from inorganic carbon components, which can be detected by the gas analyzer 2 .
Then, after the signal intensity of the gas to be analyzed detected by thegas analyzer 2 rises and reaches the first peak value (that is, after the organic carbon component is detected by the gas analyzer 2), Since the temperature of the heating furnace 1 is raised while the inert gas is flowing, the carbonate carbon component contained in the sample S can be detected separately from the organic carbon component and the inorganic carbon component.
After that, the carrier gas supplied to theheating furnace 1 is switched to a combustion-supporting gas to start the combustion of the sample S, thereby generating CO 2 derived from the inorganic carbon component, which is detected by the gas analyzer 2. can be done.
In this way, the organic carbon component, the carbonate carbon component, and the inorganic carbon component can be separated from the sample S, detected by thegas analyzer 2, and quantitatively analyzed.
そして、ガス分析計2により検出される分析対象ガスの信号強度が上昇して初めのピーク値に達した後(すなわち、ガス分析計2で有機炭素成分が検出された後)に、キャリアガスとして不活性ガスを流している状態で加熱炉1を昇温させるようにしているので、試料Sに含まれる炭酸塩炭素成分を、有機炭素成分及び無機炭素成分と分離して検出できる。
そしてその後、加熱炉1に供給するキャリアガスを支燃性ガスに切り替えて試料Sの燃焼を開始させることで、無機炭素成分由来のCO2を生じさせ、これをガス分析計2で検出することができる。
このようにして、試料Sから有機炭素成分と炭酸塩炭素成分と無機炭素成分とを分離してガス分析計2で検出することができ、これらを定量的に分析することができる。 According to the elemental analysis apparatus and the elemental analysis method of the present embodiment configured as described above, the heating of the sample S is started while the inert gas is being supplied as the carrier gas into the
Then, after the signal intensity of the gas to be analyzed detected by the
After that, the carrier gas supplied to the
In this way, the organic carbon component, the carbonate carbon component, and the inorganic carbon component can be separated from the sample S, detected by the
<その他の実施形態>
なお、本発明は前記実施形態に限られるものではない。
例えば、前記実施形態の元素分析装置100は、加熱炉1の前段に前室4が設けられていたがこれに限らない。他の実施形態の元素分析装置100では前室4が設けられてなくてよく、容器Vに収容した試料Sを空気雰囲気下に設置した状態から、炉本体11内に投入するようにしてもよい。 <Other embodiments>
It should be noted that the present invention is not limited to the above embodiments.
For example, theelemental analysis apparatus 100 of the above-described embodiment is provided with the front chamber 4 in the front stage of the heating furnace 1, but the present invention is not limited to this. In the elemental analysis apparatus 100 of another embodiment, the front chamber 4 may not be provided, and the sample S stored in the container V may be put into the furnace main body 11 from the state of being placed in an air atmosphere. .
なお、本発明は前記実施形態に限られるものではない。
例えば、前記実施形態の元素分析装置100は、加熱炉1の前段に前室4が設けられていたがこれに限らない。他の実施形態の元素分析装置100では前室4が設けられてなくてよく、容器Vに収容した試料Sを空気雰囲気下に設置した状態から、炉本体11内に投入するようにしてもよい。 <Other embodiments>
It should be noted that the present invention is not limited to the above embodiments.
For example, the
また他の実施形態では、炉本体11にキャリアガスとして供給する不活性ガスは、含有する不活性ガス成分の濃度が99%以上であればよく、N2ガス等の単成分ガスに限らず複数の成分(O2等)が混合したガスであってもよい。この場合、含有するO2濃度が高いと試料が蒸焼きされず酸化してしまうため、O2濃度は100ppm以下が好ましい。
同様に他の実施形態では、炉本体11にキャリアガスとして供給する支燃性ガスは、含有するO2濃度が空気中のO2濃度と同等又はそれ以上であればよく、O2ガス等の単成分ガスに限らず複数の成分(例えばCO2等)が混合したガスであってもよい。この場合、試料に含まれる炭素を分析する場合には、支燃性ガス中のCO2濃度が低いことが好ましく、具体的にはCO2濃度は100ppm以下が好ましい。また、支燃性ガス中に、不活性ガス成分が含まれていてもよい。 In another embodiment, the inert gas supplied to thefurnace body 11 as a carrier gas may have a concentration of inert gas components of 99% or more, and is not limited to a single component gas such as N 2 gas, but a plurality of inert gas components. (O 2 etc.) may be mixed. In this case, if the O 2 concentration contained is high, the sample will not be steamed and will be oxidized, so the O 2 concentration is preferably 100 ppm or less.
Similarly, in another embodiment, the combustion-supporting gas supplied to thefurnace body 11 as a carrier gas may have an O 2 concentration equal to or higher than the O 2 concentration in the air. A gas in which a plurality of components (for example, CO 2 etc.) are mixed may be used instead of a single component gas. In this case, when analyzing the carbon contained in the sample, it is preferable that the CO 2 concentration in the combustion-supporting gas is low, and specifically, the CO 2 concentration is preferably 100 ppm or less. In addition, the combustion-supporting gas may contain an inert gas component.
同様に他の実施形態では、炉本体11にキャリアガスとして供給する支燃性ガスは、含有するO2濃度が空気中のO2濃度と同等又はそれ以上であればよく、O2ガス等の単成分ガスに限らず複数の成分(例えばCO2等)が混合したガスであってもよい。この場合、試料に含まれる炭素を分析する場合には、支燃性ガス中のCO2濃度が低いことが好ましく、具体的にはCO2濃度は100ppm以下が好ましい。また、支燃性ガス中に、不活性ガス成分が含まれていてもよい。 In another embodiment, the inert gas supplied to the
Similarly, in another embodiment, the combustion-supporting gas supplied to the
さらに前記実施形態では、ガス分析計2で有機炭素成分が検出された後、キャリアガスとして不活性ガスを供給したまま昇温するようにしていたが、これに限らない。他の実施形態では、図5に示すように、ガス分析計2で有機炭素成分が検出された後、供給するキャリアガスを不活性ガスから支燃性ガスに切り替えてから昇温するようにしてもよい。このようにしても、有機炭素成分と炭酸塩炭素成分とを分離して検出することができる。
Furthermore, in the above embodiment, after the gas analyzer 2 detects the organic carbon component, the temperature is raised while supplying the inert gas as the carrier gas, but the present invention is not limited to this. In another embodiment, as shown in FIG. 5, after the gas analyzer 2 detects an organic carbon component, the carrier gas to be supplied is switched from an inert gas to a combustion-supporting gas, and then the temperature is raised. good too. Also in this way, the organic carbon component and the carbonate carbon component can be separated and detected.
また前記実施形態では、第1設定温度を低くすることで有機炭素成分を、炭酸塩炭素成分及び無機炭素成分と分離して検出するようにしていたが、これに限らない。
他の実施形態では、少なくとも有機炭素成分と無機炭素成分を分離してガス分析計2で検出できればよく、例えば第1設定温度を高くすることで、有機炭素成分と炭酸塩炭素成分とが重複してガス分析計2で検出され、無機炭素成分のみが単独で検出されるようにしてもよい。 Further, in the above embodiment, the organic carbon component is detected separately from the carbonate carbon component and the inorganic carbon component by lowering the first set temperature, but the present invention is not limited to this.
In another embodiment, at least the organic carbon component and the inorganic carbon component can be separated and detected by thegas analyzer 2. For example, by increasing the first set temperature, the organic carbon component and the carbonate carbon component overlap. It is also possible to detect only the inorganic carbon component alone by detecting it with the gas analyzer 2 .
他の実施形態では、少なくとも有機炭素成分と無機炭素成分を分離してガス分析計2で検出できればよく、例えば第1設定温度を高くすることで、有機炭素成分と炭酸塩炭素成分とが重複してガス分析計2で検出され、無機炭素成分のみが単独で検出されるようにしてもよい。 Further, in the above embodiment, the organic carbon component is detected separately from the carbonate carbon component and the inorganic carbon component by lowering the first set temperature, but the present invention is not limited to this.
In another embodiment, at least the organic carbon component and the inorganic carbon component can be separated and detected by the
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
In addition, it goes without saying that the present invention is not limited to the above-described embodiments, and that various modifications are possible without departing from the spirit of the present invention.
<実験例>
次に本発明の元素分析方法の態様を実験例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 <Experimental example>
Next, embodiments of the elemental analysis method of the present invention will be described in more detail by way of experimental examples, but the present invention is not limited to them.
次に本発明の元素分析方法の態様を実験例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 <Experimental example>
Next, embodiments of the elemental analysis method of the present invention will be described in more detail by way of experimental examples, but the present invention is not limited to them.
(装置構成)
この実験例で用いた元素分析装置のフロー図を図6に示す。この元素分析装置では、キャリアガス供給機構は三方弁により手動で窒素ガス(不活性ガス)と酸素ガス(支燃性ガス)を切り替えるように構成した。加熱炉の前段の前室内は窒素ガスで充満し、測定待機時に試料と大気との接触を防ぐようにした。加熱炉は、炉本体に石英管を使用し、炉内温度を1000℃まで設定可能なものとした。加熱炉の後段にはコンバータを設け、生成したガスの酸化を促すようにした。コンバータとしては酸化銅(600℃)を用いた。また、加熱炉の後段にダストフィルタ(石英ウール)と脱水剤(水酸化カリウム)を設け、燃焼時に発生するダストや水分を除去するようにした。検出器には非分散型赤外線検出器を使用しており、光学フィルタにより分析対象のガスのみを選択的に検出できるように構成した。 (Device configuration)
FIG. 6 shows a flow diagram of the elemental analyzer used in this experimental example. In this elemental analyzer, the carrier gas supply mechanism was configured to manually switch between nitrogen gas (inert gas) and oxygen gas (combustion-supporting gas) by means of a three-way valve. The front chamber in the front stage of the heating furnace was filled with nitrogen gas to prevent contact between the sample and the atmosphere during measurement standby. A quartz tube was used for the furnace body of the heating furnace, and the temperature inside the furnace could be set up to 1000°C. A converter was installed in the rear stage of the heating furnace to promote oxidation of the generated gas. Copper oxide (600° C.) was used as the converter. In addition, a dust filter (quartz wool) and a dehydrating agent (potassium hydroxide) were installed in the rear stage of the heating furnace to remove dust and water generated during combustion. A non-dispersive infrared detector is used as the detector, and it is constructed so that only the gas to be analyzed can be selectively detected by an optical filter.
この実験例で用いた元素分析装置のフロー図を図6に示す。この元素分析装置では、キャリアガス供給機構は三方弁により手動で窒素ガス(不活性ガス)と酸素ガス(支燃性ガス)を切り替えるように構成した。加熱炉の前段の前室内は窒素ガスで充満し、測定待機時に試料と大気との接触を防ぐようにした。加熱炉は、炉本体に石英管を使用し、炉内温度を1000℃まで設定可能なものとした。加熱炉の後段にはコンバータを設け、生成したガスの酸化を促すようにした。コンバータとしては酸化銅(600℃)を用いた。また、加熱炉の後段にダストフィルタ(石英ウール)と脱水剤(水酸化カリウム)を設け、燃焼時に発生するダストや水分を除去するようにした。検出器には非分散型赤外線検出器を使用しており、光学フィルタにより分析対象のガスのみを選択的に検出できるように構成した。 (Device configuration)
FIG. 6 shows a flow diagram of the elemental analyzer used in this experimental example. In this elemental analyzer, the carrier gas supply mechanism was configured to manually switch between nitrogen gas (inert gas) and oxygen gas (combustion-supporting gas) by means of a three-way valve. The front chamber in the front stage of the heating furnace was filled with nitrogen gas to prevent contact between the sample and the atmosphere during measurement standby. A quartz tube was used for the furnace body of the heating furnace, and the temperature inside the furnace could be set up to 1000°C. A converter was installed in the rear stage of the heating furnace to promote oxidation of the generated gas. Copper oxide (600° C.) was used as the converter. In addition, a dust filter (quartz wool) and a dehydrating agent (potassium hydroxide) were installed in the rear stage of the heating furnace to remove dust and water generated during combustion. A non-dispersive infrared detector is used as the detector, and it is constructed so that only the gas to be analyzed can be selectively detected by an optical filter.
(試料及び測定)
チロシン(2.4mg),炭酸カルシウム(10.1mg)を混合して作成した模擬試料(トータル12.5mg)を石英ボートに秤量し、秤量後、石英ボートごと前室内に設置した。そして、挿入棒を用いて、400℃に設定した加熱炉内に石英ボートを挿入した。ここで、有機物は400℃付近で熱分解してCHxやCO等を生成するが、後段のコンバータによりCO2に変換される。試料挿入後は、炉温度を1000℃まで約0.5℃/秒で昇温し、1000℃到達後に供給するキャリアガスを窒素から酸素に切り替え、100秒間保持した。 (Sample and measurement)
A simulated sample (total 12.5 mg) prepared by mixing tyrosine (2.4 mg) and calcium carbonate (10.1 mg) was weighed in a quartz boat, and after weighing, the quartz boat was placed in the front chamber. Then, using an insertion rod, the quartz boat was inserted into a heating furnace set at 400°C. Here, the organic matter is thermally decomposed at around 400° C. to generate CHx, CO, etc., but is converted to CO 2 by the subsequent converter. After inserting the sample, the furnace temperature was raised to 1000° C. at a rate of about 0.5° C./second, and after reaching 1000° C., the carrier gas to be supplied was switched from nitrogen to oxygen and held for 100 seconds.
チロシン(2.4mg),炭酸カルシウム(10.1mg)を混合して作成した模擬試料(トータル12.5mg)を石英ボートに秤量し、秤量後、石英ボートごと前室内に設置した。そして、挿入棒を用いて、400℃に設定した加熱炉内に石英ボートを挿入した。ここで、有機物は400℃付近で熱分解してCHxやCO等を生成するが、後段のコンバータによりCO2に変換される。試料挿入後は、炉温度を1000℃まで約0.5℃/秒で昇温し、1000℃到達後に供給するキャリアガスを窒素から酸素に切り替え、100秒間保持した。 (Sample and measurement)
A simulated sample (total 12.5 mg) prepared by mixing tyrosine (2.4 mg) and calcium carbonate (10.1 mg) was weighed in a quartz boat, and after weighing, the quartz boat was placed in the front chamber. Then, using an insertion rod, the quartz boat was inserted into a heating furnace set at 400°C. Here, the organic matter is thermally decomposed at around 400° C. to generate CHx, CO, etc., but is converted to CO 2 by the subsequent converter. After inserting the sample, the furnace temperature was raised to 1000° C. at a rate of about 0.5° C./second, and after reaching 1000° C., the carrier gas to be supplied was switched from nitrogen to oxygen and held for 100 seconds.
(分析結果)
分析を行った結果を図7に示す。測定開始後まもなく有機炭素(チロシン由来)の信号強度のピークが検出された。測定開始して600秒後には、炭素カルシウムが熱分解することにより、徐々に信号強度が検出され始めた。キャリアガスを窒素から酸素に切り替えた後は、すぐに無機炭素の信号強度のピークが検出された。測定を1500秒で終了し、測定終了後に各ピークの積算値を求め、その濃度を算出した。算出した各成分の定量値を図8に示す。図7及び図8から分かるように、試料中の有機炭素と炭酸塩炭素と無機炭素を分離して定量できることを確認できた。 (result of analysis)
FIG. 7 shows the results of the analysis. A signal intensity peak of organic carbon (derived from tyrosine) was detected shortly after the start of measurement. After 600 seconds from the start of measurement, the signal intensity gradually began to be detected due to thermal decomposition of calcium carbonate. Immediately after switching the carrier gas from nitrogen to oxygen, the signal intensity peak of inorganic carbon was detected. The measurement was completed at 1500 seconds, and after the measurement was completed, the integrated value of each peak was obtained and the concentration was calculated. FIG. 8 shows the calculated quantitative values of each component. As can be seen from FIGS. 7 and 8, it was confirmed that the organic carbon, carbonate carbon, and inorganic carbon in the sample could be separated and quantified.
分析を行った結果を図7に示す。測定開始後まもなく有機炭素(チロシン由来)の信号強度のピークが検出された。測定開始して600秒後には、炭素カルシウムが熱分解することにより、徐々に信号強度が検出され始めた。キャリアガスを窒素から酸素に切り替えた後は、すぐに無機炭素の信号強度のピークが検出された。測定を1500秒で終了し、測定終了後に各ピークの積算値を求め、その濃度を算出した。算出した各成分の定量値を図8に示す。図7及び図8から分かるように、試料中の有機炭素と炭酸塩炭素と無機炭素を分離して定量できることを確認できた。 (result of analysis)
FIG. 7 shows the results of the analysis. A signal intensity peak of organic carbon (derived from tyrosine) was detected shortly after the start of measurement. After 600 seconds from the start of measurement, the signal intensity gradually began to be detected due to thermal decomposition of calcium carbonate. Immediately after switching the carrier gas from nitrogen to oxygen, the signal intensity peak of inorganic carbon was detected. The measurement was completed at 1500 seconds, and after the measurement was completed, the integrated value of each peak was obtained and the concentration was calculated. FIG. 8 shows the calculated quantitative values of each component. As can be seen from FIGS. 7 and 8, it was confirmed that the organic carbon, carbonate carbon, and inorganic carbon in the sample could be separated and quantified.
本発明によれば、試料に含まれる有機炭素成分と無機炭素成分を分離して検出できるようになる。
According to the present invention, it becomes possible to separate and detect the organic carbon component and the inorganic carbon component contained in the sample.
100・・・元素分析装置
1 ・・・加熱炉
11 ・・・炉本体
2 ・・・ガス分析計
V ・・・容器
S ・・・試料
DESCRIPTION OFSYMBOLS 100... Elemental analyzer 1... Heating furnace 11... Furnace main body 2... Gas analyzer V... Container S... Sample
1 ・・・加熱炉
11 ・・・炉本体
2 ・・・ガス分析計
V ・・・容器
S ・・・試料
DESCRIPTION OF
Claims (7)
- 少なくとも炭酸塩炭素成分を含む試料を加熱炉で加熱し、当該加熱された試料から生じる分析対象ガスをガス分析計で分析する元素分析方法であって、
前記加熱炉内にキャリアガスとして不活性ガスを供給している状態で前記試料の加熱を開始した後、前記加熱炉内に供給するキャリアガスを不活性ガスから支燃性ガスに切り替える元素分析方法。 An elemental analysis method for heating a sample containing at least a carbonate carbon component in a heating furnace and analyzing an analysis target gas generated from the heated sample with a gas analyzer,
An elemental analysis method in which the heating of the sample is started in a state in which an inert gas is supplied as a carrier gas into the heating furnace, and then the carrier gas supplied into the heating furnace is switched from an inert gas to a combustion-supporting gas. . - 前記加熱炉内にキャリアガスとして不活性ガスを供給している状態で前記加熱炉を昇温させる請求項1に記載の元素分析方法。 The elemental analysis method according to claim 1, wherein the heating furnace is heated while an inert gas is being supplied as a carrier gas into the heating furnace.
- 前記試料の加熱開始後、前記ガス分析計により検出される前記分析対象ガスの信号強度が上昇して初めのピーク値に達した後、前記加熱炉の昇温を開始させる請求項2に記載の元素分析方法。 3. The method according to claim 2, wherein after starting heating of the sample, the signal strength of the gas to be analyzed detected by the gas analyzer rises and reaches a first peak value, and then the heating of the heating furnace is started. Elemental analysis method.
- 前記加熱炉を所定温度以上に昇温した後、前記加熱炉に供給するキャリアガスを不活性ガスから支燃性ガスに切り替える請求項2又は3に記載の元素分析方法。 The elemental analysis method according to claim 2 or 3, wherein after the heating furnace is heated to a predetermined temperature or higher, the carrier gas supplied to the heating furnace is switched from an inert gas to a combustion-supporting gas.
- 前記加熱炉内に連通する前室を前記加熱炉の前段に設け、
前記前室内に前記試料を設置し、且つ前記前室内を不活性ガスで充満させた後、前記前室内から前記加熱炉内に前記試料を投入することにより前記試料の加熱を開始させる請求項1~4のいずれか一項に記載の元素分析方法。 A front chamber communicating with the heating furnace is provided in the front stage of the heating furnace,
2. After placing the sample in the front chamber and filling the front chamber with an inert gas, the sample is put into the heating furnace from the front chamber to start heating the sample. The elemental analysis method according to any one of -4. - 加熱炉で試料を加熱し、当該加熱された試料から生じる分析対象ガスをガス分析計で分析する元素分析方法であって、
前記加熱炉内にキャリアガスとして不活性ガスを供給している状態で前記試料の加熱を開始し、この状態で前記加熱炉を昇温させた後、前記加熱炉内に供給するキャリアガスを不活性ガスから支燃性ガスに切り替える元素分析方法。 An elemental analysis method in which a sample is heated in a heating furnace and an analysis target gas generated from the heated sample is analyzed with a gas analyzer,
The heating of the sample is started in a state in which an inert gas is supplied as a carrier gas into the heating furnace, and the temperature of the heating furnace is raised in this state. An elemental analysis method that switches from an active gas to a combustion-supporting gas. - 試料を加熱する加熱炉と、該加熱炉で加熱され燃焼する前記試料から生じる分析対象ガスを分析するガス分析計とを備える元素分析装置であって、
前記加熱炉内にキャリアガスとして不活性ガスを供給した状態で前記試料の加熱を開始し、この状態で前記加熱炉を昇温させた後、前記加熱炉内に供給する前記キャリアガスを不活性ガスから支燃性ガスに切り替えるように構成された元素分析装置。
An elemental analyzer comprising a heating furnace for heating a sample and a gas analyzer for analyzing a gas to be analyzed generated from the sample heated and burned in the heating furnace,
The heating of the sample is started in a state in which an inert gas is supplied as a carrier gas into the heating furnace, the temperature of the heating furnace is raised in this state, and then the carrier gas supplied into the heating furnace is inert. An elemental analyzer configured to switch from a gas to a combustion-supporting gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023567672A JPWO2023112679A1 (en) | 2021-12-14 | 2022-11-30 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021202849 | 2021-12-14 | ||
JP2021-202849 | 2021-12-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023112679A1 true WO2023112679A1 (en) | 2023-06-22 |
Family
ID=86774223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/044172 WO2023112679A1 (en) | 2021-12-14 | 2022-11-30 | Elemental analysis method, and elemental analysis device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023112679A1 (en) |
WO (1) | WO2023112679A1 (en) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5661458U (en) * | 1979-10-16 | 1981-05-25 | ||
US4409336A (en) * | 1981-02-17 | 1983-10-11 | Standard Oil Company (Indiana) | Method of analysis for determining very low sulfur levels in volatilizable samples |
JPS5983054A (en) * | 1982-11-04 | 1984-05-14 | Horiba Ltd | Apparatus for analysis of element in metal |
JPH0329852A (en) * | 1989-06-28 | 1991-02-07 | Mitsubishi Kasei Corp | Method for decomposing solid specimen |
JPH06317576A (en) * | 1993-05-07 | 1994-11-15 | Nippon Steel Corp | Method for analyzing trace carbon in metallic specimen |
JPH09166590A (en) * | 1995-12-18 | 1997-06-24 | Nkk Corp | Rapid determining method for trace carbon in steel |
JP2000055794A (en) * | 1998-08-03 | 2000-02-25 | Horiba Ltd | Analyzer for element in sample |
JP2000241404A (en) * | 1998-12-25 | 2000-09-08 | Horiba Ltd | Carbon fractionation analysis device |
JP2002148250A (en) * | 2000-03-29 | 2002-05-22 | Horiba Ltd | Method and device for analyzing particulate matter in engine exhaust gas |
JP2005201809A (en) * | 2004-01-16 | 2005-07-28 | Nippon Soken Inc | Particulate material analyzing apparatus, particulate material analyzing method and program of the same |
JP2007131319A (en) * | 2005-11-10 | 2007-05-31 | Matsushita Electric Ind Co Ltd | Heat insulation box |
JP2015137906A (en) * | 2014-01-22 | 2015-07-30 | 株式会社島津製作所 | Carbon measuring apparatus |
JP2020064001A (en) * | 2018-10-18 | 2020-04-23 | 株式会社島津製作所 | Carbon measuring method and total organic carbon measuring device |
WO2020115946A1 (en) * | 2018-12-04 | 2020-06-11 | 株式会社堀場製作所 | Analysis device and analysis method |
JP2020101416A (en) * | 2018-12-20 | 2020-07-02 | 株式会社堀場製作所 | Sample pretreatment device and analysis system |
-
2022
- 2022-11-30 WO PCT/JP2022/044172 patent/WO2023112679A1/en active Application Filing
- 2022-11-30 JP JP2023567672A patent/JPWO2023112679A1/ja active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5661458U (en) * | 1979-10-16 | 1981-05-25 | ||
US4409336A (en) * | 1981-02-17 | 1983-10-11 | Standard Oil Company (Indiana) | Method of analysis for determining very low sulfur levels in volatilizable samples |
JPS5983054A (en) * | 1982-11-04 | 1984-05-14 | Horiba Ltd | Apparatus for analysis of element in metal |
JPH0329852A (en) * | 1989-06-28 | 1991-02-07 | Mitsubishi Kasei Corp | Method for decomposing solid specimen |
JPH06317576A (en) * | 1993-05-07 | 1994-11-15 | Nippon Steel Corp | Method for analyzing trace carbon in metallic specimen |
JPH09166590A (en) * | 1995-12-18 | 1997-06-24 | Nkk Corp | Rapid determining method for trace carbon in steel |
JP2000055794A (en) * | 1998-08-03 | 2000-02-25 | Horiba Ltd | Analyzer for element in sample |
JP2000241404A (en) * | 1998-12-25 | 2000-09-08 | Horiba Ltd | Carbon fractionation analysis device |
JP2002148250A (en) * | 2000-03-29 | 2002-05-22 | Horiba Ltd | Method and device for analyzing particulate matter in engine exhaust gas |
JP2005201809A (en) * | 2004-01-16 | 2005-07-28 | Nippon Soken Inc | Particulate material analyzing apparatus, particulate material analyzing method and program of the same |
JP2007131319A (en) * | 2005-11-10 | 2007-05-31 | Matsushita Electric Ind Co Ltd | Heat insulation box |
JP2015137906A (en) * | 2014-01-22 | 2015-07-30 | 株式会社島津製作所 | Carbon measuring apparatus |
JP2020064001A (en) * | 2018-10-18 | 2020-04-23 | 株式会社島津製作所 | Carbon measuring method and total organic carbon measuring device |
WO2020115946A1 (en) * | 2018-12-04 | 2020-06-11 | 株式会社堀場製作所 | Analysis device and analysis method |
JP2020101416A (en) * | 2018-12-20 | 2020-07-02 | 株式会社堀場製作所 | Sample pretreatment device and analysis system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023112679A1 (en) | 2023-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6516654B2 (en) | Apparatus and method for analyzing particulate matter in gas and apparatus and method for carbon differentiating | |
CN109254108B (en) | Analysis device and analysis method | |
JP6115483B2 (en) | Carbon measuring device | |
WO2023112679A1 (en) | Elemental analysis method, and elemental analysis device | |
EP2157421A1 (en) | Method for assaying sulfur and apparatus therefor | |
JP7217755B2 (en) | Analysis device and analysis method | |
US7497991B2 (en) | Reagent tube for top loading analyzer | |
JP3764701B2 (en) | Oil content measuring method and apparatus | |
JP4034884B2 (en) | Elemental analysis equipment for samples | |
JP4025702B2 (en) | Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method | |
US20100120162A1 (en) | Process for determining sulfur content in fuel | |
JP6136800B2 (en) | Carbon measuring device | |
JP2008298608A (en) | Method for combusting sample to be analyzed | |
JP2010276486A (en) | Sulphur analysis method and analyzer | |
JP4849010B2 (en) | Method of burning sample for analysis | |
US6577390B1 (en) | Continuous emissions monitor of multiple metal species in harsh environments | |
JP6744205B2 (en) | Elemental analysis device and elemental analysis method | |
JP2000241404A (en) | Carbon fractionation analysis device | |
JP2006322863A (en) | Method and apparatus for analyzing sulfur compound | |
JP2020064001A (en) | Carbon measuring method and total organic carbon measuring device | |
JP3211462B2 (en) | Carbon measuring device | |
JP2020106278A (en) | Combustion type carbon analysis device and carbon analysis method | |
JPH06249843A (en) | Carbon measuring device | |
Krishna et al. | A simple in-house dry ashing chamber for the rapid determination of total mercury in organic-rich solid materials by oxidative pyrolysis followed by CVAAS and FI-ICPMS detection | |
JP2001305122A (en) | Elemental analysis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22907208 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023567672 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |