JPH0329852A - Method for decomposing solid specimen - Google Patents

Method for decomposing solid specimen

Info

Publication number
JPH0329852A
JPH0329852A JP16382589A JP16382589A JPH0329852A JP H0329852 A JPH0329852 A JP H0329852A JP 16382589 A JP16382589 A JP 16382589A JP 16382589 A JP16382589 A JP 16382589A JP H0329852 A JPH0329852 A JP H0329852A
Authority
JP
Japan
Prior art keywords
combustion
gas
temperature
solid sample
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16382589A
Other languages
Japanese (ja)
Other versions
JP2781013B2 (en
Inventor
Shigeo Yasuda
保田 成夫
Yamao Itou
伊東 日本男
Yutaka Tanaka
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1163825A priority Critical patent/JP2781013B2/en
Publication of JPH0329852A publication Critical patent/JPH0329852A/en
Application granted granted Critical
Publication of JP2781013B2 publication Critical patent/JP2781013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To enhance analytical accuracy by heating a solid specimen in a temp. rise pattern relatively rapid in the first half and relatively slow in the latter half based on the m.p. of the solid specimen and confirming the combustion of a volatile component before burning a non-volatile component. CONSTITUTION:Inert gas such as argon is allowed to flow to a quartz tube 4 from a gas supply port 1 to hold a heating oven 8 to combustion temp. and oxygen gas is supplied from a supply part and an absorbing bottle 9 for trapping combustion formed gas is connected to the outlet of the tube 4. Next, the solid specimen weighted by a boat 3 is inserted in the tube 4 from an insert port 2 and the boat 3 is moved to an evaporation part 5. Subsequently, the evaporation part 5 is heated to the m.p. of the specimen or to temp. higher than the m.p. by about 50 deg.C at a relatively rapid temp. rise speed and subsequently heated at a relatively slow temp. rise speed. The gas evaporated by the evaporation part 5 is sent to a combustion part 7 to be burnt in the presence of the oxygen gas from the supply port 6 and the combustion formed gas is trapped in the bottle 9. Further, after the combustion of the volatile component is completed, the inert gas from the supply port 1 is changed over to oxygen gas and the non-volatile component in the boat 3 is perfectly burnt.

Description

【発明の詳細な説明】 (産業」二の利用分野) 本発明は、固体試料を段階的に完全に燃焼分解させ、ガ
ス分析装置に供給可能な形態に変換する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application in Industry) The present invention relates to a method for completely combusting and decomposing a solid sample in stages and converting it into a form that can be supplied to a gas analyzer.

(従来の技術) 従来、固体試料中の窒素や硫黄などの元素を分析する方
法は、固体試料の分解燃焼による生或ガスを回収し、該
ガス成分をそれぞれの分析器で分析する手法がとられて
いる。第2図は、固体試料の分解装置の概念図である。
(Prior art) Conventionally, the method of analyzing elements such as nitrogen and sulfur in a solid sample has been to collect gas produced by decomposition and combustion of a solid sample, and analyze the gas components using respective analyzers. It is being FIG. 2 is a conceptual diagram of a solid sample decomposition device.

この装置は、ガス供給口1から不活性ガスを、ガス供給
口6から酸素ガスをそれぞれ流し、加熱炉8を850〜
900℃に温度コントロールしておき、予め、試料用ボ
ート(以下中にボートという)3を秤量し、これに固体
試料を入れて再び秤量した後、挿入口2より石英管4内
に挿入し、加熱炉8の入口5まで該ボートを移動し、こ
の位置で固体試料の揮発・分解状態を観察しながら、加
熱炉の余熱によって徐々に揮発させ、その後、ボート3
を加想炉8の中央の燃焼部7まで移動させ、しばらくそ
の状態を保持した後、ガス供給[I +から供給する不
活性ガスを酸素ガスに切り換えて燃焼分解させ、ガス供
給口6から供給される酸素ガスにより、最終的に完全燃
焼させる。燃焼生成ガスは燃焼管4の出口に接続された
吸収瓶9の吸収液に捕捉される。この吸収液は種々の検
出手段、例えばイオンクロマ1・法、滴定法等の手段に
より[1的物質の検出が行われる。
This device supplies inert gas from gas supply port 1 and oxygen gas from gas supply port 6, and heats heating furnace 8 from 850 to 850.
The temperature is controlled at 900°C, and a sample boat (hereinafter referred to as boat) 3 is weighed in advance, a solid sample is placed in it, and the sample is weighed again, and then inserted into the quartz tube 4 through the insertion port 2. The boat is moved to the entrance 5 of the heating furnace 8, and while observing the volatilization and decomposition state of the solid sample at this position, the solid sample is gradually volatilized by the residual heat of the heating furnace.
is moved to the combustion part 7 in the center of the creative furnace 8, and after maintaining that state for a while, the inert gas supplied from the gas supply [I + is switched to oxygen gas to be combusted and decomposed, and then supplied from the gas supply port 6. Finally, complete combustion is achieved using oxygen gas. The combustion product gas is captured in an absorption liquid in an absorption bottle 9 connected to the outlet of the combustion tube 4. Detection of substances in this absorption liquid is performed by various detection means, such as ion chroma method, titration method, etc.

(.発明が解決しようとする課題) 一l−記の固体試料の分解方法では、高温に保持された
加熱炉の入口に、固体試料を収容したボートをゆっくり
と近付け、試料の押発・分解状態を観察しながら、加熱
炉中に1・1・1体試料を移動する時期を判断するとい
う、分析若の経験に依存して分析が行われていた。この
分析操作が少しでも早すぎると不完全燃焼を起こし、固
体試料中の目的成分を回収することができない。また、
多情の試料を」二記の分解方法で処F1!することは、
上記の分析操作が−Fi複雑になり、不完全燃焼を避け
ることが極めて難しい。従って、微量分析への適用が困
難であった。
(Problem to be Solved by the Invention) In the method for decomposing a solid sample described in 1-1, a boat containing a solid sample is slowly brought closer to the entrance of a heating furnace maintained at a high temperature, and the sample is extruded and decomposed. Analyzes were conducted based on the experience of analysts, who determined when to move samples one by one into the heating furnace while observing their conditions. If this analysis operation is performed even slightly too quickly, incomplete combustion will occur, making it impossible to recover the target component in the solid sample. Also,
Dispose of the sample of passion using two methods of disassembly F1! What to do is
The above-mentioned analytical operation -Fi becomes complicated, and it is extremely difficult to avoid incomplete combustion. Therefore, it has been difficult to apply it to trace analysis.

本発明は、上記の欠点を解ti’i L、多量の固体試
料を完全に分解燃焼させることができる分解方法を提供
しようとするものである。
The present invention aims to solve the above-mentioned drawbacks and provide a decomposition method that can completely decompose and burn a large amount of solid samples.

(課題を解決するための手段) 本発明は、固体試料を段階的に分解し、燃焼!1:成ガ
スを1−+1収する方法において、固体試料を分解装置
の気化部にセ・ソトし、該気化部に続く燃焼部に酸素ガ
スを流しながら、燃焼操作の最高温度に保持し、まず、
該気化゛室に不活性ガスを流しながら、」二記の固体試
料をその融点ないし融点より50℃高い温度まで、比較
的高い昇温速度で加熱し、必要に応Qて、該温度に一定
時間保持した後、上記昇温速度より緩やかな界温速度で
加熱を続け、その間、燃焼部における揮発成分の燃焼の
終rを確認3 した後、」二記気化部に供給する不活性ガスを酸素ガス
に切り換えて、不揮発成分を徐々に分解し、最終的に試
料を完全に燃焼させた後、上記気化部に再び不活t/I
Eガスを供給して室温まで冷却することを特徴とする固
体試料の分解方法である。
(Means for Solving the Problem) The present invention decomposes a solid sample in stages and burns it! 1: In the method of collecting 1-+1 of the gas, the solid sample is placed in the vaporization section of the decomposition device, and maintained at the maximum temperature of the combustion operation while flowing oxygen gas into the combustion section following the vaporization section, first,
While flowing an inert gas into the vaporization chamber, heat the solid sample mentioned above at a relatively high heating rate to its melting point or 50°C higher than the melting point, and if necessary, maintain the temperature constant. After holding for a certain period of time, heating is continued at an interfacial temperature rate slower than the temperature increase rate mentioned above, and after confirming the end of combustion of volatile components in the combustion section, the inert gas supplied to the vaporization section is After switching to oxygen gas to gradually decompose the non-volatile components and finally completely burn the sample, inert t/I was added to the vaporization section again.
This method of decomposing a solid sample is characterized by supplying E gas and cooling it to room temperature.

(作用) 第1図は、本発明を実施するための分解装置の概念図で
ある。この装置は、気化部5に昇温パターンをプログラ
ムすることのできる加熱炉10と燃焼部7に850〜9
00℃の燃焼温度を保持することのできる加熱炉8を有
し、石英管4がそれらを貫通させたものであり、気化部
5の上流にガス供給口lと試料挿入口2を設け、気化部
用の加熱炉10には冷却装置11及び加熱炉コントロー
ル装置12が付設されている。また、燃焼部7には酸素
ガス供給口6が設けられ、燃焼部の下流には燃焼生成ガ
スを捕捉するための吸収瓶9が接続されている。
(Operation) FIG. 1 is a conceptual diagram of a disassembly apparatus for carrying out the present invention. This device has a heating furnace 10 in which a temperature increase pattern can be programmed in the vaporization part 5, and a combustion part 7 in which 850 to 900
It has a heating furnace 8 that can maintain a combustion temperature of 00°C, with a quartz tube 4 passing through it, and a gas supply port 1 and a sample insertion port 2 are provided upstream of the vaporization section 5. A cooling device 11 and a heating furnace control device 12 are attached to the heating furnace 10 for the department. Further, the combustion section 7 is provided with an oxygen gas supply port 6, and an absorption bottle 9 for capturing combustion generated gas is connected downstream of the combustion section.

4 ト’il体試料の分解方法の手順を説明すると、ガス供
給1コ1から石英管4にアルゴン等の不活性ガスを流し
、燃焼部の加熱炉8を燃焼温度に保持し、供給口6から
酸素ガスを供給し、加熱炉8の?!;!度を安定させて
から、゛燃焼生成ガスを捕捉するための吸収液を適量収
容した吸収瓶9を、石英管4の出口に接続する。次に、
固体試料をボート3に秤量して押入口2から石英管4内
に挿入し、該ボートを気化部5に移動する。加熱炉10
のコントロール装圃12に対し、昇温パターンのプログ
ラムをセットし、スタートボタンを押して昇温を開始す
る。固体試料の融点若しくは融点より50℃高い温度ま
で比較的急な昇温速度で気化部5を加熱し、その後は比
較的緩やかな昇温速度で加熱する。昇温速度は、分解対
象である固体試料によって異なるが、固体試料の融点な
いし融点より50℃高い温度まで加熱する時の昇温速度
は、50〜1806C/min,好ましくは100〜1
508C/minとし、その後の比較的緩やかな昇?!
!速度は、前段の昇温速度より小さい’t+’温速度で
、例えば、5〜100℃/n+inが採用される。
4 To explain the procedure of the decomposition method for a t'il body sample, inert gas such as argon is flowed from the gas supply port 1 to the quartz tube 4, the heating furnace 8 in the combustion section is maintained at the combustion temperature, and the supply port 6 is Oxygen gas is supplied from the heating furnace 8? ! ;! After the temperature is stabilized, an absorption bottle 9 containing an appropriate amount of absorption liquid for trapping combustion generated gas is connected to the outlet of the quartz tube 4. next,
A solid sample is weighed into a boat 3 and inserted into the quartz tube 4 through the inlet 2, and the boat is moved to the vaporization section 5. Heating furnace 10
A temperature increase pattern program is set for the control equipment 12, and the start button is pressed to start temperature increase. The vaporization section 5 is heated at a relatively rapid rate of temperature increase to the melting point of the solid sample or a temperature 50° C. higher than the melting point, and then heated at a relatively slow rate of temperature increase. The heating rate varies depending on the solid sample to be decomposed, but the heating rate when heating to the melting point of the solid sample or a temperature 50°C higher than the melting point is 50 to 1806 C/min, preferably 100 to 1806 C/min.
508C/min and then a relatively gradual increase? !
! The rate is a 't+' temperature rate that is lower than the temperature increase rate in the previous stage, for example, 5 to 100°C/n+in.

気化部5で気化されたガスは、燃焼部7に送られ、ガス
供給口6からの酸素ガスにより燃焼される。燃焼生成ガ
スは燃焼部から吸収瓶9に送られ捕捉される。燃焼部に
おいて、揮発性成分の燃焼の終了を確認してから、ガス
供給口1からの不活性ガスを酸素ガスに切り換え、ボー
ト3内の不揮発性成分を完全に燃焼させる。固体試料か
らの揮発性成分の抜けは、燃焼部の炎の消失を目視する
ことにより、容易に確認することができる。固体試料が
完全に燃焼したことを確認してから、加熱炉10の加熱
を停止し、ガス供給口1から再び不活ヤ1ミガスを流し
、加熱炉10の冷却装置11を作動させて気化部5内の
温度を室温まで下げ、試料挿入口2に該ボート3を戻し
て分析を終了する。
The gas vaporized in the vaporization section 5 is sent to the combustion section 7, where it is combusted with oxygen gas from the gas supply port 6. The combustion generated gas is sent from the combustion section to the absorption bottle 9 and captured. In the combustion section, after confirming the completion of combustion of the volatile components, the inert gas from the gas supply port 1 is switched to oxygen gas, and the nonvolatile components in the boat 3 are completely combusted. The removal of volatile components from the solid sample can be easily confirmed by visually observing the disappearance of the flame in the combustion section. After confirming that the solid sample has completely burned, the heating of the heating furnace 10 is stopped, the inert gas is supplied again from the gas supply port 1, and the cooling device 11 of the heating furnace 10 is activated to complete the vaporization section. The temperature inside the boat 5 is lowered to room temperature, and the boat 3 is returned to the sample insertion port 2 to complete the analysis.

このように本発明では、固体試料の融点を1つの指標に
して、主に揮発性成分を分離する前段を比較的急な昇温
パターンで短時間で加熱分解し、後段は不揮発t/L 
+戊分の不完全燃焼を避けるために比較的緩やかな昇温
パターンで加熱し、燃焼部における揮発性成分の燃焼を
確認してから、気化部に酸素ガスを供給して不揮発或分
の燃焼を行うもので、固体試料の分解燃焼状態に合わせ
て段階的に燃焼させるため、例えば、1g程度の多竜の
固体試料についても完全に燃焼分解させることができる
ようになった。また、気化部加熱炉を昇温パターンのプ
ログラムに従ってコントロールし、燃焼部の揮発性成分
の燃焼の終了をセンサー等により検知して不活性ガスか
ら酸素ガスへの切り換えを行うことにより、分析操作を
自動化することが可能となった。
In this way, in the present invention, the melting point of a solid sample is used as an index, and the first stage, which mainly separates volatile components, is thermally decomposed in a short time with a relatively rapid temperature increase pattern, and the second stage is a non-volatile t/L.
In order to avoid incomplete combustion of the +, the temperature is heated with a relatively gradual temperature increase pattern, and after confirming the combustion of volatile components in the combustion section, oxygen gas is supplied to the vaporization section to achieve combustion of the non-volatile components. Since the combustion is performed in stages according to the state of decomposition and combustion of the solid sample, it has become possible to completely burn and decompose, for example, a solid sample of about 1 g of Talong. In addition, analysis operations can be performed by controlling the vaporization section heating furnace according to a temperature increase pattern program, detecting the end of combustion of volatile components in the combustion section using sensors, etc., and switching from inert gas to oxygen gas. It has become possible to automate.

(実施例1) 第1因の装置を用い、三菱化I戊製高密度ポリエチレン
(西品名二ノバテソクIE3300)を0.5g石英製
ボートに採取し、次の燃焼条件で分解試験を行った。ま
ず、燃焼部に酸素ガスを7 300ml/minで導入し、該燃焼部の加熱炉を80
0℃に加熱して安定するのを待って、気化部にアルゴン
ガスを400i+I/minで流し、.]一記のボート
を気化部にセットする。次いで、気化部を第1段の昇温
速度150℃/minで490℃まで冒,温し、6分間
保持した後、第2段の昇温速度75°C /IIIin
で800℃まで昇温し、この間、700°Cにおいて揮
発性成分の燃焼の終了を16’認し、気化部への供給ガ
スをアルゴンガスから300ml/IIlinの酸素ガ
スに切り換え、800℃で2分間保持して固体試料を燃
焼させた。この間、ボート中に不完全燃焼を示すススの
付着もなく、最終的に固体試料が完全に燃焼したことも
確認された。燃焼分解時間は全体で15分であった。
(Example 1) Using the apparatus of the first cause, 0.5 g of high-density polyethylene manufactured by Mitsubishi Kaisha (Nishi product name Ninova Tesoku IE3300) was collected in a quartz boat, and a decomposition test was conducted under the following combustion conditions. First, oxygen gas is introduced into the combustion section at a rate of 7300 ml/min, and the heating furnace of the combustion section is heated at 80 ml/min.
After heating to 0°C and waiting for it to stabilize, argon gas was flowed through the vaporization section at 400i+I/min. ] Set the boat listed above in the vaporization section. Next, the vaporization section was heated to 490°C at a temperature increase rate of 150°C/min in the first stage, held for 6 minutes, and then heated at a temperature increase rate of 75°C/IIIin in the second stage.
The temperature was raised to 800°C at 800°C, and during this time, the completion of combustion of volatile components was confirmed at 700°C, and the gas supplied to the vaporization section was switched from argon gas to 300ml/IIlin oxygen gas, and at 800°C, the temperature was increased to 800°C. Hold for a minute to burn off the solid sample. During this time, there was no soot attached to the boat indicating incomplete combustion, and it was confirmed that the solid sample had finally been completely burned. The total combustion decomposition time was 15 minutes.

(尖施例2) 第1図の装置を用い、水添ビッチ0.5gを石英製ボー
トに収容し、硫黄の分析を行った。
(Tip Example 2) Using the apparatus shown in FIG. 1, 0.5 g of hydrogenated bitch was placed in a quartz boat, and sulfur was analyzed.

まず、燃焼部に酸素ガスを300ml/winで導入し
、該燃焼部の加熱炉を900℃に加熱して安8 定するのを待って、気化部にアルゴンガス(400ml
/minで流し、」二記のボートを気化部にセットした
。次いで、気化部を第1段の昇温速+文t5o°C /
winで370℃まで昇混し、第2段の昇温速度5°C
/minで550℃まで昇温し、第3段の昇温速度20
℃/winで700℃まで昇温し、第4段で昇温速度1
00℃/IIlinで900℃まで昇温し、その温度で
3分間保持して固体試料を燃焼させた。この間、第2段
でピッチが溶けて炭化する状況が観察され、700℃に
おいて押発性成分の燃焼の終rを確認し、気化部への供
給ガスをアルゴンガスから酸素ガスに切り換えたところ
、第3段で炭化物が燃焼する状況が観察された。この間
、ボート中に不完全燃焼を示すススの付着もなく、最終
的に固体試料が完全に燃焼したことも確認された。石英
管の下流に接続した吸収瓶には、0.3%の過酸化水素
溶液を15n+1収容して、燃焼生成ガスを吸収させ、
該吸収液に水を加えてをloon+lに定容してイオン
クロマトグラフで分析したところ、硫黄の含有量は0.
37%であった。
First, oxygen gas is introduced into the combustion section at a rate of 300 ml/win, the heating furnace of the combustion section is heated to 900°C, wait until it stabilizes, and argon gas (400 ml/win) is introduced into the vaporization section.
The boat was set in the vaporization section. Next, the vaporization section is heated at the temperature increase rate of the first stage + t5o°C/
Mix to 370℃ with win, temperature increase rate of 5℃ in second stage
/min to 550℃, and the third stage temperature increase rate was 20℃.
The temperature is increased to 700℃ at ℃/win, and the temperature increase rate is 1 in the 4th stage.
The temperature was raised to 900° C. at 00° C./IIlin and held at that temperature for 3 minutes to burn the solid sample. During this time, it was observed that the pitch was melting and carbonizing in the second stage, and when it was confirmed that the extrusive component had finished burning at 700°C, the gas supplied to the vaporization section was switched from argon gas to oxygen gas. In the third stage, combustion of carbide was observed. During this time, there was no soot attached to the boat indicating incomplete combustion, and it was confirmed that the solid sample had finally been completely burned. The absorption bottle connected downstream of the quartz tube contains 15n+1 0.3% hydrogen peroxide solution to absorb combustion generated gas,
When water was added to the absorption liquid to make a constant volume of one loon+l and analyzed by ion chromatography, the sulfur content was found to be 0.
It was 37%.

同時に、従来の有機元素分析法(1」本化学会編「実験
化学高座第16巻有機化合物の分析方法1昭和39年3
J]IOF’1発行)により、1−.j己水添ビッチの
硫黄含有量を分析した。銀粒を充填した吸収瓶を上記燃
焼管の出目に接続し、硫黄成分を硫酸銀として該銀粒に
捕捉し、重量差測定により分析したところ、硫黄の含右
量は0.38%で、両者の測定値はよく一致していた。
At the same time, conventional organic elemental analysis methods (1) edited by the Chemical Society of Japan, Experimental Chemistry Koza Vol.
J] IOF'1 issue), 1-. The sulfur content of self-hydrogenated bitch was analyzed. An absorption bottle filled with silver grains was connected to the outlet of the combustion tube, and the sulfur component was captured in the silver grains as silver sulfate, and analyzed by weight difference measurement, and the sulfur content was found to be 0.38%. , both measurements were in good agreement.

(実施例3) 第1図の装置を用い、試料はバイエル社製ボカンB−4
325(ポリブチレンテレフタレー1・)を0.511
g石英製ボートに収容し、次の燃焼条件で分解処理し、
燃焼生成ガスから臭素を分析した。まず、燃焼部に酸素
ガスを150ml/minで導入し、該燃焼部の加熱炉
を900℃に加熱して安定するのを待って、気化部にア
ルゴンガスを200ml/minで流し、−1ユ記のボ
ートを気化部にセットした。次いで、気化部を第1段の
昇温速度150℃/minで400℃まで昇温し、6分
間保持した後、第2段の昇温速度75℃/IIlinで
900℃まで昇温し、この間、700℃において揮発性
成分の燃焼の終了を確認し、気化部への供給ガスをアル
ゴンガスから150nl/IIlinの酸素ガスに切り
換え、900℃で3分間保持して固体試料を燃焼させた
。この間、ボート中に不完全燃焼を示すススの付若もな
く、最終的に固体試料が完全に燃焼したことも確認され
た。石英管の下流に接続した吸収瓶には、0.3%の過
酸化水素を20ml収容し、燃焼生成ガスを吸収させ、
該吸収液に水を加えてを100mlに定容してイオンク
ロマトグラフで臭素を検出した。その結果、臭素の分析
イ直は5.58%であった。同時に同一試料を従来の4
−r機元素分析法である銀粒の重量増加より求める方法
で分析したところ、分析値は5.37%で両者の値はよ
く一致した。燃焼分解時間は全体で18分と短時間であ
った。
(Example 3) Using the apparatus shown in Figure 1, the sample was Bokan B-4 manufactured by Bayer.
325 (polybutylene terephthalate 1.) 0.511
g Stored in a quartz boat and decomposed under the following combustion conditions,
Bromine was analyzed from combustion gas. First, oxygen gas is introduced into the combustion section at 150 ml/min, the heating furnace of the combustion section is heated to 900°C, wait until it becomes stable, argon gas is flowed into the vaporization section at 200 ml/min, and -1 unit is heated. The boat described above was set in the vaporizer. Next, the temperature of the vaporizing section was raised to 400 °C at a temperature increase rate of 150 °C/min in the first stage, and held for 6 minutes, and then the temperature was raised to 900 °C at a temperature increase rate of 75 °C/IIlin in the second stage, and during this time. After confirming the completion of combustion of the volatile components at 700°C, the gas supplied to the vaporization section was switched from argon gas to 150 nl/IIlin oxygen gas, and held at 900°C for 3 minutes to burn the solid sample. During this time, there was no soot in the boat indicating incomplete combustion, and it was confirmed that the solid sample had finally been completely burned. An absorption bottle connected downstream of the quartz tube contained 20 ml of 0.3% hydrogen peroxide to absorb combustion generated gas.
Water was added to the absorption liquid to make the volume to 100 ml, and bromine was detected by ion chromatography. As a result, the analytical accuracy of bromine was 5.58%. At the same time, the same sample was
When analyzed using the -r machine elemental analysis method, which is determined from the weight increase of silver grains, the analytical value was 5.37%, which was a good agreement between the two values. The total combustion decomposition time was as short as 18 minutes.

(発明の効果) 本発明は、上記の構成を採用することに?り、多量の固
体試料を比較的短時間で完全に燃焼させることができ、
その後の分析精度の向上に大きく寄与するものである。
(Effects of the Invention) Does the present invention employ the above configuration? It is possible to completely burn a large amount of solid sample in a relatively short time.
This greatly contributes to improving the accuracy of subsequent analysis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための固体試料分解装置の概
念図であり、第2図は従来の固体試料分解装置の概念図
である。 1,6・・・ガス供給口,3・・・試料用ボート,4・
・・石英管,5・・・気化部,7・・・燃焼部,8,1
0・・・加熱炉。
FIG. 1 is a conceptual diagram of a solid sample decomposition device for implementing the present invention, and FIG. 2 is a conceptual diagram of a conventional solid sample decomposition device. 1, 6... Gas supply port, 3... Sample boat, 4...
... Quartz tube, 5... Vaporization section, 7... Combustion section, 8, 1
0...Heating furnace.

Claims (1)

【特許請求の範囲】[Claims] 固体試料を段階的に分解し、燃焼生成ガスを回収する方
法において、固体試料を分解装置の気化部にセットし、
該気化部に続く燃焼部に酸素ガスを流しながら、燃焼操
作の最高温度に保持し、まず、該気化室に不活性ガスを
流しながら、上記の固体試料をその融点ないし融点より
50℃高い温度まで、比較的高い昇温速度で加熱し、必
要に応じて、該温度に一定時間保持した後、上記昇温速
度より緩やかな昇温速度で加熱を続け、その間、燃焼部
における揮発成分の燃焼の終了を確認した後、上記気化
部に供給する不活性ガスを酸素ガスに切り換えて、不揮
発成分を徐々に分解し、最終的に試料を完全に燃焼させ
た後、上記気化部に再び不活性ガスを供給して室温まで
冷却することを特徴とする固体試料の分解方法。
In a method of decomposing a solid sample in stages and recovering combustion generated gas, the solid sample is set in the vaporization section of the decomposition device,
While flowing oxygen gas into the combustion section following the vaporization section, the temperature is maintained at the maximum temperature for the combustion operation, and first, while flowing an inert gas into the vaporization chamber, the solid sample is heated to its melting point or at a temperature 50° C. higher than its melting point. The temperature is heated at a relatively high rate until the temperature reaches 100 degrees, and if necessary, after holding at that temperature for a certain period of time, heating is continued at a rate slower than the above temperature increase rate, during which volatile components are combusted in the combustion section. After confirming that the inert gas supplied to the vaporization section is completed, the inert gas supplied to the vaporization section is switched to oxygen gas to gradually decompose the non-volatile components.Finally, after the sample is completely combusted, the inert gas supplied to the vaporization section is changed to oxygen gas. A method for decomposing a solid sample, characterized by supplying a gas and cooling it to room temperature.
JP1163825A 1989-06-28 1989-06-28 Solid sample decomposition method Expired - Fee Related JP2781013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163825A JP2781013B2 (en) 1989-06-28 1989-06-28 Solid sample decomposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163825A JP2781013B2 (en) 1989-06-28 1989-06-28 Solid sample decomposition method

Publications (2)

Publication Number Publication Date
JPH0329852A true JPH0329852A (en) 1991-02-07
JP2781013B2 JP2781013B2 (en) 1998-07-30

Family

ID=15781454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163825A Expired - Fee Related JP2781013B2 (en) 1989-06-28 1989-06-28 Solid sample decomposition method

Country Status (1)

Country Link
JP (1) JP2781013B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163545A (en) * 2011-01-17 2012-08-30 Ayako Sato Low-temperature combustion type analysis and measurement system depending upon metal catalyst effect
WO2023112679A1 (en) * 2021-12-14 2023-06-22 株式会社堀場テクノサービス Elemental analysis method, and elemental analysis device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849011B2 (en) * 2007-05-31 2011-12-28 株式会社三菱化学アナリテック Method of burning sample for analysis
JP4849010B2 (en) * 2007-05-31 2011-12-28 株式会社三菱化学アナリテック Method of burning sample for analysis
JP2014085215A (en) * 2012-10-23 2014-05-12 Ayako Sato System for unified analysis and measurement of various forms of carbon and nitrogen which employs calibration curve based on organic compounds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124765A (en) * 1986-11-25 1989-05-17 Inst Fr Petrole Method and apparatus for measuring content of at least two elements selected from among at least two fractions of carbon, hydrogen, sulfur and nitrogen of organic substance sample

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124765A (en) * 1986-11-25 1989-05-17 Inst Fr Petrole Method and apparatus for measuring content of at least two elements selected from among at least two fractions of carbon, hydrogen, sulfur and nitrogen of organic substance sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163545A (en) * 2011-01-17 2012-08-30 Ayako Sato Low-temperature combustion type analysis and measurement system depending upon metal catalyst effect
WO2023112679A1 (en) * 2021-12-14 2023-06-22 株式会社堀場テクノサービス Elemental analysis method, and elemental analysis device

Also Published As

Publication number Publication date
JP2781013B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
JP2003065958A (en) Method and apparatus for analysing sulfur
US4916077A (en) Method and apparatus for oxidative decomposition and analysis of a sample
JPH0329852A (en) Method for decomposing solid specimen
US4950456A (en) Apparatus for analysis of a sample for sulphur
JP3764701B2 (en) Oil content measuring method and apparatus
JP4034884B2 (en) Elemental analysis equipment for samples
Byrne et al. Mechanisms of chloride interferences in atomic absorption spectrometry using a graphite furnace atomizer investigated by electrothermal vaporization inductively coupled plasma mass spectrometry. Part 2. Effect of sodium chloride matrix and ascorbic acid chemical modifier on manganese
JPH0331762A (en) Method for decomposing solid sample
JP2010523938A (en) Method for monitoring the concentration of dissolved substances in aqueous media
JP4849010B2 (en) Method of burning sample for analysis
JP2008298608A (en) Method for combusting sample to be analyzed
JP2000002699A (en) Analyzer for element in sample
JP2010122160A (en) Mercury analyzing apparatus and method therefor
JP6551102B2 (en) Breath analyzer
JPH06242097A (en) Organic carbon measuring equipment
Dědina Nonplasma devices for atomization and detection of volatile metal species by atomic absorption and fluorescence
Kunwar et al. Hot-injection procedures for the rapid analysis of biological samples by electrothermal atomic-absorption spectrometry
DE4231727C2 (en) Method and device for the combustion of analytical solid samples in a vertical combustion apparatus
JP4564686B2 (en) Elemental analysis equipment for samples
JP7332545B2 (en) Combustion method for liquid samples
JP2001174448A (en) Nitrogen concentration measuring apparatus
JP2000241404A (en) Carbon fractionation analysis device
JP2708236B2 (en) Analysis of trace carbon, sulfur and phosphorus in metal samples
Tessari et al. Determination of subnanogram amounts of chromium in different matrices by flameless atomic-absorption spectroscopy
DE4309045C2 (en) Method for the simultaneous determination of organically bound halides in water and device for carrying out the method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees