JPH0331762A - Method for decomposing solid sample - Google Patents

Method for decomposing solid sample

Info

Publication number
JPH0331762A
JPH0331762A JP16533889A JP16533889A JPH0331762A JP H0331762 A JPH0331762 A JP H0331762A JP 16533889 A JP16533889 A JP 16533889A JP 16533889 A JP16533889 A JP 16533889A JP H0331762 A JPH0331762 A JP H0331762A
Authority
JP
Japan
Prior art keywords
combustion
section
solid sample
gas
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16533889A
Other languages
Japanese (ja)
Inventor
Shigeo Yasuda
保田 成夫
Yamao Itou
伊東 日本男
Yutaka Tanaka
豊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP16533889A priority Critical patent/JPH0331762A/en
Publication of JPH0331762A publication Critical patent/JPH0331762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To completely decompose and burn a large amt. of solid fuel in a short period of time by burning a solid sample stepwise in conformity with the decomposition combustion state of the solid sample in accordance with a prescribed combustion pattern. CONSTITUTION:The solid sample is set in an evaporating section 5 of an decomposing apparatus and while gaseous oxygen is run to a combustion section 7 behind this section, the gas is kept at the max. temp. of a combustion operation. This method is constituted by first heating and decomposing the solid sample in a short period of time in the sharp heating up pattern up to the m.p. of the solid sample or the temp. higher by 50 deg. than the m.p. under the flow of an inert gas to the evaporating section 5, holding the sample at this temp. for a specified period of time at need, then continuing the heating in the gentle heating up pattern, switching the inert gas to be supplied to the evaporating section 5 to the gaseous oxygen upon confirmation that the end of the combustion of the volatile component in the combustion section 7 during this time to gradually decompose the non-volatile component, and supplying the inert gas again to the evaporation section 5 and cooling the same down to room temp. after the sample is completely burned. The perfect combustion decomposition of a large amt. of about 1g solid sample is enabled by adopting this constitution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体試料を段階的に完全に燃焼分解させ、ガ
ス分析装置に供給可能な形態に変換する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for completely combusting and decomposing a solid sample in stages and converting it into a form that can be supplied to a gas analyzer.

(従来の技術) 従来、固体試料中の窒素や硫黄などの元素を分析する方
法は、固体試料の分解燃焼による生成ガスを回収し、該
ガス成分をそれぞれの分析器で分析する手法がとられて
いる。第2図は、固体試料の分解装置の概念図である。
(Prior Art) Conventionally, the method of analyzing elements such as nitrogen and sulfur in a solid sample has been to recover the gas produced by decomposition and combustion of the solid sample, and analyze the gas components using respective analyzers. ing. FIG. 2 is a conceptual diagram of a solid sample decomposition device.

この装置は、ガス供給口1がら不活性ガスを、ガス供給
口6から酸素ガスをそれぞれ流し、加熱炉8を850〜
900℃に温度コントロールしておき、予め、試料用ボ
ート(以下単にボートという)3を秤量し、これに固体
試料を入れて+qび秤量した後、挿入口2より石英管4
内に挿入し、加熱炉8の人口5まで該ボートを移動し、
この位置で固体試料の揮発・分解状態を観察しながら、
加熱炉の余熱によって徐々に揮発させ、その後、ボート
3を加熱炉8の中央の燃焼部7まで移動させ、しばらく
その状態を保持した後、ガス供給口1から供給する不活
性ガスを酸素ガスに切り換えて燃焼分解させ、ガス供給
口6から供給される酸素ガスにより、最終的に完全燃焼
させる。燃焼生成ガスは燃焼管4の出口に接続された吸
収瓶9の吸収液に捕捉される。この吸収液は種々の検出
手段、例えばイオンクロマト法、滴定法等の手段により
目的物質の検出が行われる。
In this device, an inert gas is supplied through a gas supply port 1, and oxygen gas is supplied through a gas supply port 6, and a heating furnace 8 is
The temperature is controlled at 900°C, a sample boat (hereinafter simply referred to as a boat) 3 is weighed, a solid sample is placed in it and weighed, and then the quartz tube 4 is inserted through the insertion port 2.
and move the boat to population 5 of heating furnace 8,
While observing the volatilization and decomposition state of the solid sample at this position,
It is gradually volatilized by the residual heat of the heating furnace, and then the boat 3 is moved to the combustion part 7 in the center of the heating furnace 8, and after maintaining that state for a while, the inert gas supplied from the gas supply port 1 is converted into oxygen gas. The gas is switched to combustion and decomposition, and is finally completely combusted by the oxygen gas supplied from the gas supply port 6. The combustion product gas is captured in an absorption liquid in an absorption bottle 9 connected to the outlet of the combustion tube 4. The target substance in this absorption liquid is detected by various detection means such as ion chromatography and titration.

(発明が解決しようとする課題) −1−、記の固体試料の分解方法では、高温に保持され
た加熱炉の人口に、固体試料を収容したボートをゆっく
りと近付け、試料の揮発・分解状態を観察しながら、加
熱炉中に固体試料を移動する時期を判断するという、分
析者の経験に依存して分析が行われていた。この分析操
作が少しでも早すぎると不完全燃焼を起こし、固体試料
中の目的成分を回収することができない。また、多ji
1の試寥lを」二3己の分角り方法で処理することは、
」−記の分析操作が一層複雑になり、不完全燃焼を避け
ることが極めて難しい。従って、微量分析への適用が困
難であった。
(Problems to be Solved by the Invention) In the method for decomposing a solid sample described in -1-, a boat containing a solid sample is slowly brought close to a heating furnace maintained at a high temperature, and the sample is in a state of volatilization and decomposition. Analyzes depend on the experience of the analyst to determine when to move the solid sample into the heating furnace while observing the If this analysis operation is performed even slightly too quickly, incomplete combustion will occur, making it impossible to recover the target component in the solid sample. Also, many
Processing the first trial using my own method is,
”-The analytical operations described above become even more complicated, and it is extremely difficult to avoid incomplete combustion. Therefore, it has been difficult to apply it to trace analysis.

本発明は、」−記の欠点を解消し、多量の固体試料を完
全に分解燃焼させることができる分解方法を堤供しよう
とするものである。
The present invention aims to solve the above drawbacks and provide a decomposition method that can completely decompose and burn a large amount of solid samples.

(課題を解決するための手段) 本発明は、固体試料を段階的に分解し、燃焼生成ガスを
回収する方法において、固体試料を分解装置の気化部に
セットし、該気化部に続く燃焼部に酸素ガスを流しなが
ら、燃焼操作の最高温度に保持し、まず、該気化室に不
活性ガスを流しながら、」1記の固体、、t: j’l
をその融点ないし融点より50℃高い温度まで、比較的
高い昇温速度で加熱し、必要に応じて、該温度に一定時
間保持した後、−に記昇湿速度より緩やかな昇温速度で
加熱を続け、その間、燃焼部における揮発成分の燃焼の
終rを確認した後、」−配気化部に供給する不活性ガス
を酸素ガスに切り換えて、不揮発成分を徐々に分解し、
最終的に試料を完全に燃焼させた後、」ユ記気化部にt
llび不活性ガスを供給して室温まで冷却することを特
徴とする固体試料の分解方法である。
(Means for Solving the Problems) The present invention provides a method for decomposing a solid sample in stages and recovering combustion generated gas, in which a solid sample is set in a vaporization section of a decomposition device, and a combustion section following the vaporization section is provided. While flowing oxygen gas into the chamber, the temperature is maintained at the maximum temperature for combustion operation, and first, while flowing an inert gas into the vaporization chamber, the solid of ``1'', t: j'l
to its melting point or a temperature 50°C higher than the melting point at a relatively high rate of temperature increase, and if necessary, after holding at that temperature for a certain period of time, heat at a rate of temperature increase slower than the rate of humidity increase described in -. In the meantime, after confirming the completion of combustion of volatile components in the combustion section, the inert gas supplied to the air distribution section is switched to oxygen gas to gradually decompose the non-volatile components,
Finally, after completely burning the sample, the
This is a method for decomposing a solid sample, which is characterized by supplying an inert gas and cooling it to room temperature.

(作用) 第1図は、本発明を実施するための分解装置の概念図で
ある。この装置は、気化部5に昇温パターンをプログラ
ムすることのできる加熱炉lOと燃焼部7に850〜9
00℃の燃焼温度を保持することのできる加熱炉8をイ
ーfし、石英管4がそれらを貞通させたものであり、気
化部5の上流にガス供給口lと試料挿入口2を設け、気
化部用の加熱炉10には冷却装置11及び加熱炉コント
ロール装置12が付設されている。また、燃焼部7には
酸素ガス供給1」6が設けられ、燃焼部の下流には燃焼
生成ガスを捕捉するための吸収瓶9が接続されている。
(Operation) FIG. 1 is a conceptual diagram of a disassembly apparatus for carrying out the present invention. This device has a heating furnace lO in which a temperature increase pattern can be programmed in the vaporization part 5, and a combustion part 7 in which the
A heating furnace 8 capable of maintaining a combustion temperature of 00° C. is installed, and a quartz tube 4 is made to pass through them, and a gas supply port 1 and a sample insertion port 2 are provided upstream of the vaporization section 5. A cooling device 11 and a heating furnace control device 12 are attached to the heating furnace 10 for the vaporizing section. Further, the combustion section 7 is provided with an oxygen gas supply 1'' 6, and an absorption bottle 9 for capturing combustion generated gas is connected downstream of the combustion section.

固体試料の分解方法の手順を説明すると、ガス供給[コ
1から石英管4にアルゴン等の不活性ガスを流し、燃焼
部の加熱炉8を燃焼湿度に保持し、供給116から酸素
ガスを供給し、加熱炉8の温度を安定させてから、燃焼
生成ガスを捕捉するための吸収液を適用収容した吸収瓶
9を、石英管4の出1コに接続する。次に、固体試料を
ボート3にI・r呈して挿入口2から石英管4内に挿入
し、該ボートを気化部5に移動する。加熱炉10のコン
トロール装置I2に対し、打潟パターンのプログラムを
セットし、スタートボタンを押して4温を開始する。固
体試料の融点若しくは融点より50℃高い温度まで比較
的急な昇温速度で気化部5を加熱し、その後は比較的緩
やかな昇温速度で加熱する。昇温速度は、分解対象であ
る固体試料によって異なるが、固体試料の融点ないし融
点より50″C高い温度まで加熱する時の昇温速度は、
50〜b 〜b 温速度は、前段の昇温速度より小さい昇温速度で、例え
ば、5〜b 気化部5で気化されたガスは、燃焼部7に送られ、ガス
供給口6からの酸素ガスにより燃焼される。燃焼生成ガ
スは燃焼部から吸収瓶9に送られ捕捉される。燃焼部に
おいて、揮発性成分の燃焼の終了を確認してから、ガス
供給口1からの不活性ガスを酸素ガスに切り換え、ボー
ト3内の不揮発性成分を完全に燃焼させる。固体試料か
らの揮発性成分の抜けは、燃焼部の炎の消失を目視する
ことにより、容易に確認することができる。固体試料が
完全に燃焼したことを確認してから、加熱炉10の加熱
を停止し、ガス供給口1から再び不活性ガスを流し、加
熱炉10の冷却装置11を作動させて気化部5内の温度
を室温まで下げ、試料挿入1コ2に該ボート3を戻して
分析を終了する。
To explain the steps of the method for decomposing a solid sample, an inert gas such as argon is flowed from the gas supply 1 to the quartz tube 4, the heating furnace 8 in the combustion section is maintained at combustion humidity, and oxygen gas is supplied from the supply 116. After stabilizing the temperature of the heating furnace 8, an absorption bottle 9 containing an absorption liquid for trapping combustion generated gas is connected to one outlet of the quartz tube 4. Next, the solid sample is transferred to the boat 3 and inserted into the quartz tube 4 through the insertion port 2, and the boat is moved to the vaporization section 5. A program for the wafer pattern is set in the control device I2 of the heating furnace 10, and the start button is pressed to start 4-heating. The vaporization section 5 is heated at a relatively rapid rate of temperature increase to the melting point of the solid sample or a temperature 50° C. higher than the melting point, and then heated at a relatively slow rate of temperature increase. The rate of temperature increase varies depending on the solid sample to be decomposed, but the rate of temperature increase when heating to the melting point of the solid sample or a temperature 50"C higher than the melting point is:
50~b~b The temperature rate is lower than the temperature increase rate of the previous stage, for example, 5~b The gas vaporized in the vaporization section 5 is sent to the combustion section 7, and the oxygen from the gas supply port 6 is Burned by gas. The combustion generated gas is sent from the combustion section to the absorption bottle 9 and captured. In the combustion section, after confirming the completion of combustion of the volatile components, the inert gas from the gas supply port 1 is switched to oxygen gas, and the nonvolatile components in the boat 3 are completely combusted. The removal of volatile components from the solid sample can be easily confirmed by visually observing the disappearance of the flame in the combustion section. After confirming that the solid sample has completely burned, the heating of the heating furnace 10 is stopped, the inert gas is supplied again from the gas supply port 1, and the cooling device 11 of the heating furnace 10 is activated to cool down the inside of the vaporization section 5. The temperature of the boat 3 is lowered to room temperature, and the boat 3 is returned to the sample insertion boat 1 2 to complete the analysis.

このように本発明では、固体試料の融点を1つの指標に
して、主に揮発性成分を分離する1111段を比較約2
な昇温パターンで短時間で′加熱骨Mし、後段は不揮発
性成分の不完全燃焼を避けるために比較的績やかな昇温
パターンで加熱し、燃焼部における揮発性成分の燃焼を
確認してから、気化部に酸素ガスを供給して不揮発成分
の燃焼を行うもので、固体試料の分解燃焼状態に合わせ
て段階的に燃焼させるため、例えば、IgaKの多量の
固体試料についても完全に燃焼分解させることができる
ようになった。また、気化部側熱炉を昇温パターンのプ
ログラムに従ってコントロールし、燃焼部の揮発性成分
の燃焼の終了をセンサー笠により検知して不活性ガスか
ら酸素ガスへの切り換えを行うことにより、分析操作を
自動化することが可能となった。
In this way, in the present invention, the melting point of the solid sample is used as an indicator, and the 1111 stage, which mainly separates volatile components, is compared with about 2
The bones were heated in a short period of time with a moderate temperature increase pattern, and the latter stage was heated with a relatively gentle temperature increase pattern to avoid incomplete combustion of non-volatile components, and the combustion of volatile components in the combustion section was confirmed. After that, oxygen gas is supplied to the vaporization section to burn the non-volatile components.The combustion is performed in stages according to the decomposition and combustion state of the solid sample, so for example, even a large amount of solid sample of IgaK can be completely burned. Now it can be disassembled. In addition, the heating furnace on the vaporizing section side is controlled according to the temperature increase pattern program, and a sensor cap detects the end of combustion of volatile components in the combustion section, and the switch from inert gas to oxygen gas is performed. It has become possible to automate.

(実施例1) 第1図の装置を用い、三菱化成製高密度ポリエチレン(
商品名二ノパテブクI’:530G)を0.5g石英製
ボートに採取し、次の燃焼条件で分解試験を行った。ま
ず、燃焼部に酸素ガスを300m1/sinで導入し、
該燃焼部の加熱炉を800℃に加熱して安定するのを待
って、気化部にアルゴンガスを400m1/鳳inで流
し、上記のボートを気化部にセットする。次いで、気化
部を第1段の昇温速度150℃/sinで490℃まで
昇iJ L/、6分間保持した後、第2段の昇温速度0
75℃/sinで800℃まで昇温し、この間、700
℃において揮発性成分の燃焼の終了を確認し、気化部へ
の供給ガスをアルゴンガスから300m1/sinの酸
素ガスに切り換え、800℃で2分間保持して固体試料
を燃焼させた。この間、ボート中に不完全燃焼を示すス
スの付着もなく、最終的に固体試料が完全に燃焼したこ
とも確認された。燃焼分解時間は全体で15分であった
(Example 1) Using the apparatus shown in Figure 1, high-density polyethylene manufactured by Mitsubishi Kasei (
0.5 g of Ninopate Buku I' (trade name: 530G) was collected in a quartz boat, and a decomposition test was conducted under the following combustion conditions. First, oxygen gas is introduced into the combustion section at a rate of 300 m1/sin,
After heating the heating furnace of the combustion section to 800° C. and waiting for it to stabilize, argon gas was flowed into the vaporization section at a rate of 400 ml/in, and the above-mentioned boat was set in the vaporization section. Next, the vaporizing section was raised to 490°C at a temperature increase rate of 150°C/sin in the first stage, and held for 6 minutes, and then the temperature increase rate in the second stage was increased to 0.
The temperature was raised to 800°C at a rate of 75°C/sin, and during this time, the
After confirming the completion of combustion of the volatile components at 800° C., the gas supplied to the vaporization section was switched from argon gas to oxygen gas at 300 ml/sin, and the temperature was held at 800° C. for 2 minutes to burn the solid sample. During this time, there was no soot attached to the boat indicating incomplete combustion, and it was confirmed that the solid sample had finally been completely burned. The total combustion decomposition time was 15 minutes.

(実施例2) 第1図の装置を用い、水添ピッチ0.5gを石英製ボー
トに収容し、硫黄の分析を行った。
(Example 2) Using the apparatus shown in FIG. 1, 0.5 g of hydrogenated pitch was placed in a quartz boat, and sulfur was analyzed.

まず、燃焼部に酸素ガスを300■l/sinで導入し
、該燃焼部の加熱炉を900℃に加熱して安定するのを
待って、気化部にアルゴンガスを400sl/sinで
流し、上記のボートを気化部にセ−y)した。次いで、
気化部を第1段の昇温速度150℃/−1nで370℃
まで昇温し、第2段の昇温速度5℃/−inで550℃
まで昇温し、第3段の昇温速度20℃/+sinで70
0℃まで昇温し、第4段で昇温速度100℃/g+in
で900℃まで昇温し、その温度で3分間保持して固体
試料を燃焼させた。この間、第2段でピッチが溶けて炭
化する状況が観察され、700℃において揮発性成分の
燃焼の終了を確認し、気化部への供給ガスをアルゴンガ
スから酸素ガスに切り換えたところ、第3段で炭化物が
燃焼する状況が観察された。この間、ボート中に不完全
燃焼を示すススの付nもなく、最終的に固体試料が完全
に燃焼したことも確認された。石英管の下流に接続した
吸収瓶には、0.3%の過酸化水素溶液を15m1収容
して、燃焼生成ガスを吸収させ、該吸収液に水を加えて
を100m1に定容してイオンクロマトグラフで分析し
たところ、硫黄の含fr量は0.37%であった。
First, oxygen gas is introduced into the combustion section at 300 sl/sin, the heating furnace of the combustion section is heated to 900°C, wait until it becomes stable, argon gas is flowed into the vaporization section at 400 sl/sin, and the above A boat was placed in the vaporization section. Then,
The vaporization section was heated to 370°C at a heating rate of 150°C/-1n in the first stage.
The temperature was increased to 550°C at a heating rate of 5°C/-in in the second stage.
The temperature was raised to 70°C at the third stage heating rate of 20°C/+sin.
Raise the temperature to 0℃ and increase the temperature at the 4th stage to 100℃/g+in.
The temperature was raised to 900° C. and held at that temperature for 3 minutes to burn the solid sample. During this time, it was observed that the pitch was melting and carbonizing in the second stage, and after confirming that the combustion of volatile components had finished at 700°C, the gas supplied to the vaporization section was switched from argon gas to oxygen gas. A situation where carbide was burned in the stage was observed. During this time, there was no soot in the boat indicating incomplete combustion, and it was confirmed that the solid sample had finally been completely burned. An absorption bottle connected downstream of the quartz tube contains 15 ml of 0.3% hydrogen peroxide solution to absorb combustion generated gas, and water is added to the absorption liquid to make a constant volume of 100 ml to absorb ions. Chromatographic analysis showed that the sulfur content was 0.37%.

同時に、従来の有機元素分析法(D本化学会編「実験化
学高座第16巻有機化合物の分析方法J昭和39年3月
1011発行)により、」二記水1おピッチの硫黄含有
量を分析した。銅粒を充填した吸収瓶を上記燃焼管の出
口に接続し、硫黄成分を硫酸銀として該銅粒に捕捉し、
東it差測定により分析したところ、硫黄の含有量は0
38%で、両者の測定値はよく一致していた。
At the same time, the sulfur content of 1 pitch of water was analyzed using the conventional organic elemental analysis method (edited by the Chemical Society of Japan, "Jikken Kagaku Koza Vol. 16, Methods of Analyzing Organic Compounds J, Published March 1011, March 1960)". did. An absorption bottle filled with copper grains is connected to the outlet of the combustion tube, and the sulfur component is captured in the copper grains as silver sulfate,
When analyzed by TOIT difference measurement, the sulfur content was 0.
The two measurements were in good agreement at 38%.

(実施例3) 第1図の装置を用い、試料はバイエル社製ポカント43
25(ポリブチレンテレフタレート)を0.511g石
英製ボートに収容し、次の燃焼部(’I=で分解処理し
、燃焼生成ガスから臭素を分析した。まず、燃焼部に酸
素ガスを150m1/sinで導入し、該燃焼部の加熱
炉を900℃に加熱して安定するのを待って、気化部に
アルゴンガスを200m1/sinで流し、」二J己の
ボートを気化部にセットした。次いで、気化部を第1段
のシフ、 N速度150”C/sinで400℃まで昇
温し、6分間保持した後、第2段の昇温速度75℃/s
inで900℃までB iシし、この間、700℃にお
いて揮発性成分の燃焼の終了を確認し、気化部への供給
ガスをアルゴンガスから150m1/sinの酸素ガス
に切り換え、900℃で3分1jl保持して固体試料を
燃焼させた。この間、ボート中に不完全燃焼を示すスス
の付着もなく、最終的に固体試料が完全に燃焼したこと
も確認された。石英管の下流に接続した吸収瓶には、0
.3%の過酸化水素を20園1収容し、燃焼生成ガスを
吸収させ、該吸収液に水を加えてを100slに定容し
てイオンクロマトグラフで臭素を検出した。その結果、
臭素の分析値は5.58%であった。同時に同一試料を
従来の有機元素分析法である銅粒の!It lit増加
より求める方法で分析したところ、分析値は5.37%
で両者の値はよく一致した。燃焼分解時間は全体で18
分と短時間であった。
(Example 3) Using the apparatus shown in Figure 1, the sample was Pocanto 43 manufactured by Bayer.
0.511 g of 25 (polybutylene terephthalate) was placed in a quartz boat and decomposed in the next combustion section ('I=), and bromine was analyzed from the combustion generated gas. First, oxygen gas was introduced into the combustion section at a rate of 150 m1/sin. After heating the heating furnace of the combustion section to 900°C and waiting for it to stabilize, argon gas was flowed into the vaporization section at a rate of 200 m1/sin, and two J's boats were set in the vaporization section. , the vaporization section was heated to 400°C at a first stage schiff, N rate of 150"C/sin, held for 6 minutes, and then heated at a second stage temperature increase rate of 75°C/s.
During this time, the completion of combustion of the volatile components was confirmed at 700°C, and the gas supplied to the vaporization section was switched from argon gas to oxygen gas at 150 m1/sin, and heated at 900°C for 3 minutes. The solid sample was burned by holding 1 jl. During this time, there was no soot attached to the boat indicating incomplete combustion, and it was confirmed that the solid sample had finally been completely burned. The absorption bottle connected downstream of the quartz tube contains 0
.. 3% hydrogen peroxide was placed in a container containing 20 liters of hydrogen peroxide to absorb combustion gas, water was added to the absorbent solution to make a constant volume of 100 sl, and bromine was detected using an ion chromatograph. the result,
The analytical value of bromine was 5.58%. At the same time, the same sample was analyzed using the conventional organic elemental analysis method of copper grains! When analyzed using the method calculated from It lit increase, the analysis value was 5.37%.
The two values were in good agreement. Total combustion decomposition time is 18
It took only a few minutes.

(発明の効果) 不発11,1よ、]2記。構成、採用t6oと(2孕り
、多量の固体試料を比較的短時間で完全に燃焼させるこ
とができ、その後の分析精度の向」−に大きく寄与する
ものである。
(Effect of the invention) Misfire 11, 1,] 2. The configuration and adoption of this method make it possible to completely burn a large amount of solid samples in a relatively short period of time, greatly contributing to the improvement of subsequent analytical accuracy.

4、図面のin litな説明 第1図は本発明を実施するための固体試料分解装置の概
念図であり、第2図は従来の固体試料分解装置の概念図
である。
4. In-lit explanation of the drawings FIG. 1 is a conceptual diagram of a solid sample decomposition apparatus for carrying out the present invention, and FIG. 2 is a conceptual diagram of a conventional solid sample decomposition apparatus.

1.6・・・ガス供給【」、3・・・試料用ボート。1.6...Gas supply ['', 3...Sample boat.

4・・・71芙管、5・・・気化部、7・・・燃焼部。4...71 tubes, 5...vaporization section, 7...combustion section.

8.10・・・加熱炉。8.10...Heating furnace.

Claims (1)

【特許請求の範囲】 固体試料を段階的に分解し、燃焼生成ガス を回収する方法において、固体試料を分解装置の気化部
にセットし、該気化部に続く燃焼部に酸素ガスを流しな
がら、燃焼操作の最高温度に保持し、まず、該気化室に
不活性ガスを流しながら、上記の固体試料をその融点な
いし融点より50℃高い温度まで、比較的高い昇温速度
で加熱し、必要に応じて、該温度に一定時間保持した後
、上記昇温速度より緩やかな昇温速度で加熱を続け、そ
の間、燃焼部における揮発成分の燃焼の終了を確認した
後、上記気化部に供給する不活性ガスを酸素ガスに切り
換えて、不揮発成分を徐々に分解し、最終的に試料を完
全に燃焼させた後、上記気化部に再び不活性ガスを供給
して室温まで冷却することを特徴とする固体試料の分解
方法。
[Claims] In a method of decomposing a solid sample in stages and recovering combustion generated gas, the solid sample is set in a vaporization section of a decomposition device, and while oxygen gas is flowing into a combustion section following the vaporization section, While maintaining the maximum temperature of the combustion operation, first, while flowing an inert gas into the vaporization chamber, the above-mentioned solid sample is heated at a relatively high heating rate to its melting point or a temperature 50°C higher than the melting point, and as necessary. Accordingly, after maintaining the temperature for a certain period of time, heating is continued at a temperature increase rate slower than the above temperature increase rate, and after confirming the completion of combustion of the volatile components in the combustion section, the inert gas supplied to the vaporization section is The method is characterized in that the active gas is switched to oxygen gas to gradually decompose the non-volatile components, and after the sample is finally completely combusted, the inert gas is again supplied to the vaporization section to cool it to room temperature. Method for decomposing solid samples.
JP16533889A 1989-06-29 1989-06-29 Method for decomposing solid sample Pending JPH0331762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16533889A JPH0331762A (en) 1989-06-29 1989-06-29 Method for decomposing solid sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16533889A JPH0331762A (en) 1989-06-29 1989-06-29 Method for decomposing solid sample

Publications (1)

Publication Number Publication Date
JPH0331762A true JPH0331762A (en) 1991-02-12

Family

ID=15810440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16533889A Pending JPH0331762A (en) 1989-06-29 1989-06-29 Method for decomposing solid sample

Country Status (1)

Country Link
JP (1) JPH0331762A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163545A (en) * 2011-01-17 2012-08-30 Ayako Sato Low-temperature combustion type analysis and measurement system depending upon metal catalyst effect
JP2013173116A (en) * 2012-02-27 2013-09-05 Sumitomo Osaka Cement Co Ltd Apparatus and method for removing volatile substance
JP2015210111A (en) * 2014-04-24 2015-11-24 株式会社三菱化学アナリテック Nitrogen analysis method
JP2016003896A (en) * 2014-06-14 2016-01-12 佐藤 綾子 Heat separation type ch analysis measurement system in transparent heating furnace
JP2017102101A (en) * 2015-11-20 2017-06-08 株式会社日立ハイテクサイエンス Evolved gas analysis device and evolved gas analysis method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163545A (en) * 2011-01-17 2012-08-30 Ayako Sato Low-temperature combustion type analysis and measurement system depending upon metal catalyst effect
JP2013173116A (en) * 2012-02-27 2013-09-05 Sumitomo Osaka Cement Co Ltd Apparatus and method for removing volatile substance
JP2015210111A (en) * 2014-04-24 2015-11-24 株式会社三菱化学アナリテック Nitrogen analysis method
JP2016003896A (en) * 2014-06-14 2016-01-12 佐藤 綾子 Heat separation type ch analysis measurement system in transparent heating furnace
JP2017102101A (en) * 2015-11-20 2017-06-08 株式会社日立ハイテクサイエンス Evolved gas analysis device and evolved gas analysis method

Similar Documents

Publication Publication Date Title
Butcher Recent advances in optical analytical atomic spectrometry
Průša et al. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry
Darke et al. Review of solid sample introduction for plasma spectrometry and a comparison of results for laser ablation, electrothermal vaporization, and slurry nebulization
US4916077A (en) Method and apparatus for oxidative decomposition and analysis of a sample
US4833322A (en) Method and apparatus for analysis of material
Levine et al. Evaluation of a high-pressure, high-temperature microwave digestion system
JPH0331762A (en) Method for decomposing solid sample
Frentiu et al. Sono-induced cold vapour generation interfaced with capacitively coupled plasma microtorch optical emission spectrometry: Analytical characterization and comparison with atomic fluorescence spectrometry
Lundgren et al. A temperature-controlled graphite tube furnace for the determination of trace metals in solid biological tissue
Krata et al. Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination
JP2781013B2 (en) Solid sample decomposition method
Bazan Enhancement of osmium detection in inductively coupled plasma atomic emission spectrometry
JP2003302316A (en) Oil analyzing-method and oil analyzer
Tsalev et al. Electrothermal atomisation atomic absorption spectrometric determination of inorganic and methylated arsenic after pre-concentration by hydride generation and trapping the hydrides in a cerium (IV)-iodide absorbing solution
JP4849010B2 (en) Method of burning sample for analysis
JP2008298608A (en) Method for combusting sample to be analyzed
US5185268A (en) Method for the determination of total nitrogen including adding an alkali metal halide or an alkaline earth metal halide to the sample
Dědina Nonplasma devices for atomization and detection of volatile metal species by atomic absorption and fluorescence
JP2000002699A (en) Analyzer for element in sample
Kunwar et al. Hot-injection procedures for the rapid analysis of biological samples by electrothermal atomic-absorption spectrometry
Tessari et al. Determination of subnanogram amounts of chromium in different matrices by flameless atomic-absorption spectroscopy
JP2708236B2 (en) Analysis of trace carbon, sulfur and phosphorus in metal samples
Robinson et al. Speciation of mercury compounds by differential atomization‐atomic absorption spectroscopy
JPS6358160A (en) Apparatus for measuring organocarbon
Hinds et al. Determination of trace metals in platinum by electrothermal atomic absorption spectrometry following a closed-vessel microwave dissolution procedure