JP2016003896A - Heat separation type ch analysis measurement system in transparent heating furnace - Google Patents

Heat separation type ch analysis measurement system in transparent heating furnace Download PDF

Info

Publication number
JP2016003896A
JP2016003896A JP2014122937A JP2014122937A JP2016003896A JP 2016003896 A JP2016003896 A JP 2016003896A JP 2014122937 A JP2014122937 A JP 2014122937A JP 2014122937 A JP2014122937 A JP 2014122937A JP 2016003896 A JP2016003896 A JP 2016003896A
Authority
JP
Japan
Prior art keywords
combustion
furnace
carbon
sample
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014122937A
Other languages
Japanese (ja)
Other versions
JP6603918B2 (en
Inventor
佐藤 綾子
Ayako Sato
綾子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014122937A priority Critical patent/JP6603918B2/en
Publication of JP2016003896A publication Critical patent/JP2016003896A/en
Application granted granted Critical
Publication of JP6603918B2 publication Critical patent/JP6603918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of controlling combustion by various conditions, while watching a changing state caused by heating of a sample, and determining simply and accurately carbon and hydrogen in the state.SOLUTION: While controlling a combustion state by each condition such as a heating temperature, heating speed and an oxygen amount, each amount of carbon and hydrogen is determined simultaneously, simply and accurately by using a calibration curve by an organic compound standard sample.

Description

本発明は、すす(元素状炭素)の燃焼研究における炭素及び水素の定量に関する      The present invention relates to the determination of carbon and hydrogen in soot (elemental carbon) combustion studies.

有機炭素の不完全燃焼により発生するすす(元素状炭素)については、1)大気中微小粒子状物質(PM2.5)の測定、2)ディーゼル排気粒子(DEP)の研究、3)バイオマスや産業廃棄物の利用方法、4)環境中の有毒物の除去に有効な活性炭の製造などにおいて、多くの研究が行われている。 Regarding soot (elemental carbon) generated by incomplete combustion of organic carbon, 1) measurement of atmospheric particulate matter (PM2.5), 2) research on diesel exhaust particles (DEP), 3) biomass and industry Many researches have been conducted on the use of wastes and 4) the production of activated carbon that is effective in removing toxic substances in the environment.

中でも大気中微小粒子状物質(PM2.5)中の炭素成分の分析方法として、有機炭素区分OCと元素状炭素区分ECとして計測が行われるが、He中の加熱により不完全燃焼で発生するすすが、OC,ECの区分定量に誤差を与える支障があることが指摘されている。 In particular, as an analysis method of carbon components in atmospheric fine particulate matter (PM2.5), measurement is performed as organic carbon category OC and elemental carbon category EC, but soot generated by incomplete combustion due to heating in He However, it has been pointed out that there is an obstacle in the classification of OC and EC.

一方、環境浄化に用いられる活性炭の性能や、炭の製造、エネルギー資源としてのバイオマスや産業廃棄物の燃焼をコントロールして最適条件を求めるための良い研究ツールがない。バイオマス発電では工業分析として元素分析(炭素、水素)が必要であるが、各材料の特質を捕まえるためには加熱途中の目視、及びCH量の測定も重要と思われる。     On the other hand, there is no good research tool to determine the optimum conditions by controlling the performance of activated carbon used for environmental purification, the production of charcoal, and the combustion of biomass and industrial waste as energy resources. Biomass power generation requires elemental analysis (carbon, hydrogen) as an industrial analysis, but visual observation during heating and measurement of CH content are also important in order to capture the characteristics of each material.

環境省大気中微小粒子状物質(PM2.5)成分測定マニュアル平成24年4月19日 環境省Ministry of the Environment Air Microparticulate Matter (PM2.5) Component Measurement Manual April 19, 2012 Ministry of the Environment

三井造船技報no.190(2007-3)Mitsui Engineering & Shipbuilding Technical Report no.190 (2007-3)

大気中微小粒子状物質(PM2.5)の炭素成分測定のIMPROVE法による測定中、有機炭素の不完全燃焼により発生した煤と捕集したPM2.5中のすすを区別するために、光学的な手法を用いる。はじめに捕集ろ紙中の元素状炭素を照射しておき、加熱により後から出るすすに対する光学器の反応分を不完全な燃焼による有機炭素量としている。しかし、捕集ろ紙の中の元素状炭素の量が多い場合や、密度の不均一な場合は困難である。さらに光学器の劣化、色のついたものの誤反応などいくつかの問題が指摘されている。実際の測定データに測定値に対する補正の量があまりに大きいものがあり、問題を有している。有機物がすすを出さずに燃えきる条件を探すことが出来れば補正は必要なくなる。微量の試料ですすの発生を直視でき、同時に正確に炭素、水素量を測る方法があれば有効である。 In order to distinguish soot generated by incomplete combustion of organic carbon and soot in collected PM2.5 during measurement by IMPROVE method of carbon component measurement of fine particulate matter (PM2.5) in the atmosphere. Use the appropriate method. First, the elemental carbon in the collected filter paper is irradiated, and the amount of organic carbon due to incomplete combustion is determined by the reaction of the optical device with respect to the soot discharged later by heating. However, it is difficult when the amount of elemental carbon in the collection filter paper is large or when the density is not uniform. Furthermore, several problems have been pointed out, such as deterioration of optical instruments and false reaction of colored objects. Some actual measurement data has a too large amount of correction for the measurement value, which is problematic. If it is possible to search for a condition where the organic material burns without producing soot, no correction is necessary. It is effective if there is a method that can directly measure the amount of carbon and hydrogen at the same time, and can observe the occurrence of soot in a small amount of sample.

また、炭や活性炭の製造研究においても材料の炭化の過程は、熱分解プロセスとして重要である。炭化の温度条件で発熱量が違ってくるので、少量の試料を用いてさまざまなすすの発生状況を直視でき、数量化できれば研究の効率が良い。ペレットやバイオマスの燃焼具合も直視観察と状況の数量化により、効率的な研究ができる。 In the production research of charcoal and activated carbon, the carbonization process of the material is important as a pyrolysis process. Since the calorific value varies depending on the carbonization temperature, it is possible to look directly at the state of various soot generation using a small amount of sample. Efficient research is also possible by directly observing the combustion of pellets and biomass and quantifying the situation.

同様に、デーゼルエンジンの排気(DEP)やトンネル粉塵などに含まれるすすの研究や炭素繊維、カーボンナノチューブなど炭素原子で構成される物質の燃焼条件の研究において、少量のサンプルを用いて直視しながら加熱し中間の炭素、水素の正確な定量が簡便に出来る方法は有用である。 Similarly, while studying soot in diesel engine exhaust (DEP), tunnel dust, etc., and studying the combustion conditions of carbon atoms such as carbon fibers and carbon nanotubes, using a small amount of sample, It is useful to use a method that can easily perform accurate quantification of intermediate carbon and hydrogen by heating.

ようするに、試料の加熱による変化の状態を見ながら、燃焼を諸条件でコントロールし、其の状況における炭素と水素の簡便且つ正確な定量は有効である。 Thus, it is effective to control the combustion under various conditions while observing the state of change due to heating of the sample, and simple and accurate determination of carbon and hydrogen in that situation is effective.

上記目的を解決する本発明は、第1の透明な加熱炉と第2の燃焼炉と、試料を加熱分解燃焼するための透明な燃焼管を有し、この二つの炉にまたがる燃焼管の中の第2の燃焼炉部分に相当する部分には金属触媒を充填し、第1の透明な加熱炉は燃焼温度及び加熱スピードをコントロールする機能を有し、第2の燃焼炉は第1の炉で発生するガスを完全燃焼させる機能を有し、さらにキャリアガスにより運ばれた其のガスの中から所定の元素の含有量(μg、ppm、w/w%)、及び含有比の中から必要な測定値を求めるための検出及び計算手段を有することを特徴とする。   The present invention that solves the above-described object has a first transparent heating furnace, a second combustion furnace, and a transparent combustion tube for pyrolytic combustion of a sample. A portion corresponding to the second combustion furnace portion is filled with a metal catalyst, the first transparent heating furnace has a function of controlling the combustion temperature and the heating speed, and the second combustion furnace is the first furnace. It has a function to completely burn the gas generated in the above, and it is necessary from the content (μg, ppm, w / w%) and content ratio of the specified element from the gas carried by the carrier gas It has a detection and calculation means for obtaining an accurate measurement value.

また、第1の透明な加熱炉と第2の燃焼炉と、試料を加熱分解燃焼するための透明な燃焼管を前記各炉に有し、第1の加熱炉は試料の燃焼状態を目視しながら燃焼温度及び加熱スピードをコントロールする機能を有し、第2の炉の中の燃焼管には金属触媒を充填し第1の炉で発生するガスを完全燃焼させて、さらにキャリアガスにより運ばれた其のガスの中から所定の元素の含有量(μg、ppm、w/w%)、及び含有比の中から必要な測定値を求めるための検出及び計算手段を有することを特徴とする。 Each of the furnaces has a first transparent heating furnace, a second combustion furnace, and a transparent combustion tube for thermally decomposing and burning the sample. The first heating furnace visually observes the combustion state of the sample. It has the function of controlling the combustion temperature and heating speed, and the combustion tube in the second furnace is filled with a metal catalyst so that the gas generated in the first furnace is completely burned and further carried by the carrier gas. It is characterized by having a detection and calculation means for obtaining a necessary measurement value from the content (μg, ppm, w / w%) of the predetermined element from the gas and the content ratio.

本発明の方法は第1に大気中の微小粒子状物質の炭素成分の熱分解過程で有機炭素によって発生する元素状炭素の複雑な変化についてIMPROVE法に定める各温度フラクションごとのすすの発生を直視できるので、OC(有機炭素)の定量について基礎データを取って正確に定量出来る利点がある。 First, the method of the present invention directly looks at the generation of soot for each temperature fraction defined in the IMPROVE method for complex changes in elemental carbon generated by organic carbon during the thermal decomposition of the carbon component of fine particulate matter in the atmosphere. Since it is possible, there is an advantage that it can be accurately determined by taking basic data for the determination of OC (organic carbon).

本発明の方法は第2に炭化物の研究においては炭化の熱分解プロセスを空気の添加やスピード、温度条件など直視しながら調節できるので、各材料それぞれの炭化の特徴を効率よく捉え定量することができる。下水汚泥炭化物には炭化が十分進行しているかの自己発熱特性
を水素と炭素の原子数比(=H%/C原子量÷C%/H原子量)で確認するが、本発明の方法でより簡便に且つ精密に測定できる。
Secondly, the method of the present invention can adjust the pyrolysis process of carbonization while looking directly at the addition of air, speed, temperature conditions, etc. in the study of carbides. it can. The sewage sludge carbide confirms the self-heating characteristics of whether carbonization is sufficiently advanced by the atomic ratio of hydrogen to carbon (= H% / C atomic weight ÷ C% / H atomic weight). And can be measured accurately.

本発明の方法は第3に有機半導体の材料である低分子材料と高分子材料の純度の解析に効果がある。それぞれの材料としての性能について有機物としてトータルな炭素量を測っているが、熱分離による分解工程の把握も純度の解析に重要である。熱分解性の有機半導体材料についての不純物の解析方法として温度を正確にコントロールした熱分離方式による正確な定量は有効である。 Third, the method of the present invention is effective in analyzing the purity of low-molecular materials and high-molecular materials, which are organic semiconductor materials. Although the total carbon content is measured as an organic substance for the performance as each material, grasping the decomposition process by thermal separation is also important for the analysis of purity. As a method for analyzing impurities in a thermally decomposable organic semiconductor material, accurate quantification by a thermal separation method in which the temperature is accurately controlled is effective.

本発明の方法は第4に発生するガスの還元部をつけて、検出系はTCD検出器のみならずFID,検出器、赤外線検出器、あるいはイオンクロマトグラフィー計をつければN,S,F,Cl,Br,I,Pの定量に利用できる。さらに燃焼残渣の灰分から金属の定量に利用できる。捕集拡散部分に炭酸ガス、水分の吸収管を取り付ければ重量法CH計に利用できる。捕集拡散部分にかえてガスを吸収液に導き、自動滴定装置でS,F,Cl,Br,I,Pの定量に利用できる。ようするに熱分解により発生するガス中の各元素の挙動を目で見ながら定量的に得られる効果がある。 The method of the present invention is provided with a reducing part for the fourth generated gas, and if the detection system is equipped with not only a TCD detector but also a FID, detector, infrared detector, or ion chromatography meter, N, S, F, It can be used for the determination of Cl, Br, I, P. Furthermore, it can be used for the determination of metals from the ash content of combustion residues. If an absorption tube for carbon dioxide and moisture is attached to the collection and diffusion part, it can be used for the gravimetric CH meter. Instead of the collection and diffusion part, the gas is guided to the absorption liquid and can be used for the determination of S, F, Cl, Br, I, and P with an automatic titrator. Thus, there is an effect obtained quantitatively while visually observing the behavior of each element in the gas generated by the thermal decomposition.

図1は本発明の分析システムの構成を示す説明図である。FIG. 1 is an explanatory diagram showing the configuration of the analysis system of the present invention. 図2は本発明の実施方法による炭化の様子を示すものである。(実施例2)FIG. 2 shows the state of carbonization by the method of the present invention. (Example 2) 図3は本発明の実施方法による無酸素燃焼のすすの目視である。(実施例3)FIG. 3 is a visual view of the soot of oxygen-free combustion according to the method of the present invention. Example 3

本発明の分析システムの構成の例を図1に示す。透明な加熱炉である第1の炉と第2の燃焼炉及び燃焼ガスを補集拡散させる部分と、検出系、計算システムで構成される。透明な加熱炉である第1の炉と第2の燃焼炉に1本の燃焼管を設置し、外から試料をサンプル挿入棒に乗せて、透明加熱炉の中ほどにおく。第1の炉で発生する燃焼ガスを第2の炉で完全燃焼させ、キャリヤーガスで捕集拡散器にため、さらに検出系に流す。検出系はガスの量を電気的に検出する検出器を有し、有機化合物標準試料を用いて検量線を作成し熱分離により発生するガスを計算システムにより分析値に出力する。透明な加熱炉は任意に設定した条件で昇温する。すすの燃焼状況を温度、加熱スピードを調節しながら発生する炭素、水素の量を求める。 An example of the configuration of the analysis system of the present invention is shown in FIG. The first and second combustion furnaces, which are transparent heating furnaces, a part for collecting and diffusing the combustion gas, a detection system, and a calculation system. One combustion tube is installed in the first and second combustion furnaces, which are transparent heating furnaces, and a sample is placed on the sample insertion rod from the outside and placed in the middle of the transparent heating furnace. The combustion gas generated in the first furnace is completely burned in the second furnace, and the carrier gas is used as a collection diffuser and further flows to the detection system. The detection system has a detector that electrically detects the amount of gas, creates a calibration curve using an organic compound standard sample, and outputs the gas generated by thermal separation to the analysis value by the calculation system. The temperature of the transparent heating furnace is raised under arbitrarily set conditions. Determine the amount of carbon and hydrogen generated by adjusting the temperature and heating speed of the soot combustion state.

以下に多層カーボンナノチューブMWCNTを500℃まで加熱し、様子を目で観察しながら発生するガスの炭素と水素を定量し、さらに950℃に上げて完全に燃えるまでの炭素と水素の量を実験的に確かめた例を示す。本来多層カーボンナノチューブMWCNTは炭素の塊であるが、このように500℃以下で燃える炭素が多量に存在しているものもあり、多層カーボンナノチューブMWCNTの低温での燃焼性を調べることができる。
(実験)
Below, the multi-walled carbon nanotube MWCNT is heated to 500 ° C, the amount of carbon and hydrogen in the generated gas is quantified while observing the state visually, and the amount of carbon and hydrogen until it is completely burned up to 950 ° C is experimentally determined. An example confirmed is shown in. Originally, the multi-walled carbon nanotube MWCNT is a lump of carbon, but there are some carbons that burn at a temperature of 500 ° C. or less as described above, and the multi-wall carbon nanotube MWCNT can be examined for flammability at low temperatures.
(Experiment)

多層カーボンナノチューブMWCNTの低温での燃焼性の実験を以下に示す。
(表1)
多層カーボンナノチューブの熱分解によるCH分析 試料量1.7533mg
段階 炉温度 C % H %
1 500℃ 11.42 0.39
2 950℃ 80.09 0.55

Experiments on low temperature flammability of the multi-walled carbon nanotube MWCNT are shown below.
(Table 1)
CH analysis by thermal decomposition of multi-walled carbon nanotubes Sample amount 1.7533mg
Stage Furnace temperature C% H%
1 500 ° C 11.42 0.39
2 950 ° C 80.09 0.55

図2は籾殻をモデルにして本システムで炭化する様子を目で観察しながら完全に燃えるまでの状態を示したものである。400℃(図中上)では炭状であるが500℃(図中、真ん中)でかなり燃え、700℃(図中下)では完全に燃えてきれいな白色の灰が残った。これは灰分なので燃焼前後の重さで灰分量もわかる。第2の炉では完全に燃焼して二酸化炭素になるので、有機化合物標準試料を用いた検量線で定量すれば、各条件による炭素及び水素の量的関係を正確に調べることができる。 Fig. 2 shows the state until it completely burns while visually observing the carbonization of this system using rice husk as a model. It was charcoal at 400 ° C (upper in the figure) but burned considerably at 500 ° C (middle in the figure) and completely burned at 700 ° C (lower in the figure), leaving a clean white ash. Since this is ash, the amount of ash is also known by the weight before and after combustion. Since the second furnace burns completely into carbon dioxide, the quantitative relationship between carbon and hydrogen under each condition can be accurately examined by quantifying with a calibration curve using an organic compound standard sample.

図3はPM2.5の炭素成分分析のIMPROVE法で定義される550℃ヘリウム気流中無酸素状態での各バイオマスの炭化の様子である。図中上と真ん中はまだ炭化が進んでいないので燃焼したものはOC4に区分されるものであるが、図中下のバイオマスは550℃ヘリウム中無酸素で炭化されており、IMPROVE法でEC1に区分されることになる。IMPROVE法では2%酸素を添加してすぐのところを光学補正法で補正してEC1から差し引き且つOC4に加えることで修正するが、この実験では元素状炭素は存在しない状態なのであるから、発生した元素状炭素がDRI計での補正量と一致するかどうか検証できる。 FIG. 3 shows the state of carbonization of each biomass in an oxygen-free state in a 550 ° C. helium stream defined by the IMPROVE method of carbon component analysis of PM2.5. Since the carbonization has not progressed yet in the upper and middle in the figure, the burned one is classified as OC4, but the lower biomass in the figure is carbonized with oxygen-free in 550 ° C helium, and it is converted to EC1 by the IMPROVE method. It will be divided. In the IMPROVE method, the point immediately after adding 2% oxygen is corrected by the optical correction method and subtracted from EC1 and added to OC4. However, in this experiment, elemental carbon does not exist, so it occurred. It is possible to verify whether the elemental carbon matches the correction amount of the DRI meter.

PM2.5中の炭素成分の定量に用いるDRI計は温度上昇過程で発生したすすの光学的手法による補正を行うが、其の方法にいくつかの問題点が指摘されている。発明の方法はすすの発生状況を少量の試料を用いて目視により捉えることができるので有機炭素の燃焼状況の研究に有用である。また、バイオマスの開発にCHの元素分析が必要であるが、不完全燃焼の過程のCHの定量的計測がより重要と思われる。直視できる過程と燃焼の中間の定量はバイオマス分野、石炭石油分野、廃棄物燃焼分野などのすすの研究に有用である。またカーボンナノチューブや炭素繊維はわが国の産業上重要なものであるが、以上に述べた方法による炭素含有率の測定により、燃焼条件による品質管理にも有用である。さらに、環境中の有害な物質は、其の与える影響が世界的な問題であり国際的な取り組みが重要である。国際標準試料を用いてシンプルな検量線を作成し測定できる本発明の方法は、これらの有害物質を少量の試料を用いて各国共通の計測値を出せる有効な技術である。

The DRI meter used for the determination of carbon components in PM2.5 corrects soot generated during the temperature rise process using an optical method, but some problems have been pointed out in this method. The method of the invention is useful for studying the combustion state of organic carbon because it can visually grasp the state of soot generation using a small amount of sample. In addition, CH elemental analysis is necessary for biomass development, but quantitative measurement of CH in the process of incomplete combustion seems to be more important. Quantification between the process that can be seen directly and the combustion is useful for soot research in the biomass field, coal petroleum field, waste combustion field, etc. Carbon nanotubes and carbon fibers are important in Japan, but they are also useful for quality control under combustion conditions by measuring the carbon content by the method described above. Furthermore, harmful effects in the environment are a global problem, and international efforts are important. The method of the present invention, which can create and measure a simple calibration curve using an international standard sample, is an effective technique that can produce a measurement value common to each country using a small amount of these harmful substances.

1.第1炉(透明加熱炉)
2.第2炉(燃焼炉)
3.燃焼管
4.試料導入棒
5.試料
6.捕集拡散部
7.検出部
8.計算システム



1. First furnace (transparent heating furnace)
2. Second furnace (combustion furnace)
3. Combustion tube
4.Sample introduction rod
5.Sample
6. Collection and diffusion section
7.Detector
8.Calculation system



Claims (2)

第1の透明な加熱炉と第2の燃焼炉と、試料を加熱分解燃焼するための透明な燃焼管を有し、この二つの炉にまたがる燃焼管の中の第2の燃焼炉部分に相当する部分には金属触媒を充填して、第1の透明な加熱炉は燃焼温度及び加熱スピードをコントロールする機能を有し、
第2の燃焼炉は第1の炉で発生するガスを完全燃焼させる機能を有し、さらにキャリアガスにより運ばれた其のガスの中から所定の元素の含有量(μg、ppm、w/w%)、及び含有比の中から必要な測定値を求めるための検出及び計算手段を有する分析測定システム
A first transparent heating furnace, a second combustion furnace, and a transparent combustion tube for pyrolyzing and burning the sample, and corresponding to the second combustion furnace portion in the combustion tube extending over the two furnaces The part to be filled is filled with a metal catalyst, and the first transparent heating furnace has a function of controlling the combustion temperature and the heating speed,
The second combustion furnace has a function of completely burning the gas generated in the first furnace, and the content of a predetermined element (μg, ppm, w / w) from the gas carried by the carrier gas. %), And an analytical measurement system having detection and calculation means for obtaining a necessary measurement value from the content ratio
第1の透明な加熱炉と第2の燃焼炉と、試料を加熱分解燃焼するための透明な燃焼管をそれぞれ有し、第2の炉の中の燃焼管には金属触媒を充填し、第1の加熱炉は試料の燃焼状態を目視しながら燃焼温度及び加熱スピードをコントロールする機能を有し、
第1の炉で発生するガスを第2の燃焼炉で完全燃焼させて、さらにキャリアガスにより運ばれた其のガスの中から所定の元素の含有量(μg、ppm、w/w%)、及び含有比の中から必要な測定値を求めるための検出及び計算手段を有する分析測定システム
A first transparent heating furnace, a second combustion furnace, and a transparent combustion tube for pyrolyzing and burning the sample, the combustion tube in the second furnace is filled with a metal catalyst, 1 has a function of controlling the combustion temperature and heating speed while visually observing the combustion state of the sample.
The gas generated in the first furnace is completely burned in the second combustion furnace, and the content (μg, ppm, w / w%) of a predetermined element from the gas carried by the carrier gas, And an analytical measurement system having detection and calculation means for obtaining a necessary measurement value from the content ratio
JP2014122937A 2014-06-14 2014-06-14 Heat separation type CH analysis measurement system in transparent heating furnace Active JP6603918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014122937A JP6603918B2 (en) 2014-06-14 2014-06-14 Heat separation type CH analysis measurement system in transparent heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122937A JP6603918B2 (en) 2014-06-14 2014-06-14 Heat separation type CH analysis measurement system in transparent heating furnace

Publications (2)

Publication Number Publication Date
JP2016003896A true JP2016003896A (en) 2016-01-12
JP6603918B2 JP6603918B2 (en) 2019-11-13

Family

ID=55223275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122937A Active JP6603918B2 (en) 2014-06-14 2014-06-14 Heat separation type CH analysis measurement system in transparent heating furnace

Country Status (1)

Country Link
JP (1) JP6603918B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022036310A (en) * 2020-08-22 2022-03-07 綾子 佐藤 Full automatic device of carbonizing minute amount of specimen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4635676Y1 (en) * 1966-07-05 1971-12-08
JPS5784355A (en) * 1980-11-13 1982-05-26 Sumitomo Chem Co Ltd Element analyzing method and device therefor
JPH0331762A (en) * 1989-06-29 1991-02-12 Mitsubishi Kasei Corp Method for decomposing solid sample
US5236353A (en) * 1992-03-06 1993-08-17 Leco Corporation Vertical combustion furnace
JP2014085215A (en) * 2012-10-23 2014-05-12 Ayako Sato System for unified analysis and measurement of various forms of carbon and nitrogen which employs calibration curve based on organic compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4635676Y1 (en) * 1966-07-05 1971-12-08
JPS5784355A (en) * 1980-11-13 1982-05-26 Sumitomo Chem Co Ltd Element analyzing method and device therefor
JPH0331762A (en) * 1989-06-29 1991-02-12 Mitsubishi Kasei Corp Method for decomposing solid sample
US5236353A (en) * 1992-03-06 1993-08-17 Leco Corporation Vertical combustion furnace
JP2014085215A (en) * 2012-10-23 2014-05-12 Ayako Sato System for unified analysis and measurement of various forms of carbon and nitrogen which employs calibration curve based on organic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022036310A (en) * 2020-08-22 2022-03-07 綾子 佐藤 Full automatic device of carbonizing minute amount of specimen

Also Published As

Publication number Publication date
JP6603918B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
Dunnigan et al. Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles
Mason et al. Observations on the release of gas-phase potassium during the combustion of single particles of biomass
Abreu et al. Ash deposition during the co-firing of bituminous coal with pine sawdust and olive stones in a laboratory furnace
Crombie et al. The effect of pyrolysis conditions on biochar stability as determined by three methods
Kijo-Kleczkowska et al. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form
Fernandes et al. Particle emissions from a domestic pellets-fired boiler
Guoliang et al. Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning
Ferrara et al. Pyrolysis of coal, biomass and their blends: Performance assessment by thermogravimetric analysis
Ayllón et al. Influence of temperature and heating rate on the fixed bed pyrolysis of meat and bone meal
Wang et al. Characteristics of gaseous pollutants from biofuel-stoves in rural China
Amaral et al. Comparative study for hardwood and softwood forest biomass: Chemical characterization, combustion phases and gas and particulate matter emissions
Vershinina et al. The ignition parameters of the coal-water slurry droplets at the different methods of injection into the hot oxidant flow
Rahim et al. Determination of chlorine in solid fuels using an improved Eschka method
Vicente et al. Influence of operating conditions on chemical composition of particulate matter emissions from residential combustion
Zhang et al. On-line measurement and kinetic studies of sodium release during biomass gasification and pyrolysis
CN103512858A (en) Measuring method of carbon, hydrogen and nitrogen contents in biomass fuel
Piotrowska et al. Residues from the production of biofuels for transportation: Characterization and ash sintering tendency
Anez et al. Detection of incipient self-ignition process in solid fuels through gas emissions methodology
Meng et al. Parametric studies on corn combustion characteristics in a fixed bed: Primary air flow rate and different corn lengths
Konieczyński et al. Research into properties of dust from domestic central heating boiler fired with coal and solid biofuels
Dziok et al. Mercury release from municipal solid waste in the thermal treatment process
Calvo et al. TG-MS as a technique for a better monitoring of the pyrolysis, gasification and combustion of two kinds of sewage sludge
Pielsticker et al. Influence of biomass torrefaction parameters on fast pyrolysis products under flame-equivalent conditions
Emenike et al. Composition and morphology of biomass-based soot from updraft gasifier system
Severy et al. Performance and emissions control of commercial-scale biochar production unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190919

R150 Certificate of patent or registration of utility model

Ref document number: 6603918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250