JP2001174448A - Nitrogen concentration measuring apparatus - Google Patents

Nitrogen concentration measuring apparatus

Info

Publication number
JP2001174448A
JP2001174448A JP36020999A JP36020999A JP2001174448A JP 2001174448 A JP2001174448 A JP 2001174448A JP 36020999 A JP36020999 A JP 36020999A JP 36020999 A JP36020999 A JP 36020999A JP 2001174448 A JP2001174448 A JP 2001174448A
Authority
JP
Japan
Prior art keywords
concentration
nitrogen
nitrous acid
chemiluminescence
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36020999A
Other languages
Japanese (ja)
Inventor
Masao Fujio
昌男 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP36020999A priority Critical patent/JP2001174448A/en
Publication of JP2001174448A publication Critical patent/JP2001174448A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To monitor the concentration of each of various nitrogen forms by measuring the increase or the decrease in the concentration of the nitrogen. SOLUTION: In a nitrous acid measuring mode, pumps P1, P2, P6 and P7 are continuously operated, a reagent 1 (potassium iodide solution) of a predetermined amount is poured in a sample water in a pulsating manner under the control of an injection port 2 and a pump P3. As the nitrous acid in a reaction system of the nitrous acid and the potassium iodide solution in the sample water, a nitrogen monoxide gas is used. The chemiluminescence intensity generated by the monoxide gas and ozone gas generated from an ozone generator 6 is detected by a pressure reducing type chemiluminescence detector 7. The concentration of the nitrous acid in the sample water is measured from the relationship between the intensity at that time and a working curve previously set by a nitrous acid standard liquid. The measurement signal of the detector 1 is processed by an arithmetic controller 9, and converted into a concentration. The concentration is displayed by a display recording unit 10 and recorded by a printer, a recorder or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、上水・下水等の
水中に含有されている三態窒素であるアンモニウムイオ
ン(NH4 +)、亜硝酸イオン(NO2 -)、硝酸イオン
(NO3 -)およびこれらと有機体窒素の合量である全窒
素濃度を、フローインジェクション分析法および化学発
光法を用いて測定する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonium ion (NH 4 + ), a nitrite ion (NO 2 ), and a nitrate ion (NO 3 ) which are tri-state nitrogen contained in water such as clean water and sewage. - ) And an apparatus for measuring the total nitrogen concentration, which is the total amount of these and organic nitrogen, using a flow injection analysis method and a chemiluminescence method.

【0002】[0002]

【従来の技術】アンモニウムイオン(NH4 +)、亜硝酸
イオン(NO2 -)、硝酸イオン(NO 3 -)は、化学発光
式の一酸化窒素検出器とフローインジェクション分析法
を利用した三態窒素計を用いて測定する方法がある。こ
の方法は、応答性が極めて速く、測定時間の大幅な短
縮を図れる上、検量線の直線範囲が大きいことから測定
レンジは低濃度から高濃度まで極めて広く、高精度でか
つ繰り返しの再現性が高い。液相から分離した気相系
での測定であるため、試料水中に検濁物質の不純物が含
まれている場合であっても、検出器に汚れ等の悪影響を
及ぼすことが無く、また、単にろ過などの前処理を実施
することにより、気化分離器前段での配管系の汚れを防
止する事ができることが特長である。したがって、測定
対象とする試料水が下水処理や河川水、湖沼水等のほ
か、これらよりも汚れの多い試料でも迅速に三態窒素を
自動的かつ連続的に測定することができる優れた装置で
ある。
2. Description of the Related Art Ammonium ions (NH)Four +), Nitrous acid
Ion (NOTwo -), Nitrate ion (NO Three -) Is chemiluminescence
Nitric Oxide Detector and Flow Injection Analysis
There is a method of performing measurement using a tri-state nitrogen meter utilizing the method. This
Method is extremely responsive and has a significantly shorter measurement time.
Measurements can be made because the linear range of the calibration curve is large
The range is extremely wide, from low to high, with high accuracy.
High reproducibility of repetition. Gas phase system separated from liquid phase
Sample water contains impurities from turbid substances.
Even if it is rarely affected,
Has no effect and simply performs pretreatment such as filtration
This prevents contamination of the piping system at the previous stage of the vaporizer.
The feature is that it can be stopped. Therefore, the measurement
The target sample water is sewage treatment, river water, lake water, etc.
Alternatively, even for samples that are more contaminated than these,
Excellent equipment that can measure automatically and continuously
is there.

【0003】上記の三態窒素計において、アンモニア、
硝酸、亜硝酸を選択的、連続的に測定するために必要な
要件は、測定対象とする窒素形態に対する試薬注入時に
互いに試薬が混合することなく、試料水中に各試薬がパ
ルス状に注入出来ることである。これにより、精度良く
迅速に三態窒素を自動的かつ連続的な測定が達成され
る。
In the above three-state nitrogen meter, ammonia,
The requirements for selective and continuous measurement of nitric acid and nitrous acid are that the reagents can be injected in a pulsed manner into the sample water without mixing the reagents when injecting the reagents for the nitrogen form to be measured. It is. Thereby, the automatic and continuous measurement of the tri-state nitrogen is quickly and accurately achieved.

【0004】一方、アンモニウムイオン(NH4 +)、亜
硝酸イオン(NO2 -)、硝酸イオン(NO3 -)および有
機体窒素の合量を測定する全窒素濃度計は、試料を酸素
気流中で熱分解して全窒素を一酸化窒素とし、さらにこ
れをオゾンと反応させ、二酸化窒素に酸化するときに生
じる化学発光を測定する方法であり、三態窒素計と測定
原理上類似した測定装置である。
On the other hand, ammonium ions (NH 4 +), nitrite (NO 2 -), nitrate ion (NO 3 -) and total nitrogen concentration meter for measuring the total amount of organisms nitrogen, oxygen stream samples Is a method of measuring the chemiluminescence generated when the total nitrogen is converted to nitrogen monoxide by the thermal decomposition and then oxidized to nitrogen dioxide, which is similar in principle to the three-state nitrogen meter. It is.

【0005】フローインジェクション(FIA)分析法
および化学発光法の原理について以下に説明する。ま
ず、フローインジェクーション(FIA)分析法の原理
について述べる。FIAは、細管中の一定流量の試料の
流れへ、一定量の試薬を注入し、層流状態の細管内の流
れの中で試薬一試料間の混合を自動的に制御しながら、
精密かつ合理的に化学反応を行わせて計測する方法であ
る。FIAでは使用するテフロン管の容積とポンプ流量
により、注入から検出までの時間を正確に一定に保つこ
とができる。このため、注入した試料の反応過程を厳密
に制御でき、たとえ反応途中で検出しても精度・再現性
ともに優れた迅速な方法であるという特長がある。これ
により、クローズド化された系内での自動的な化学反応
を利用するため、個人差が介入しにくい分析技術であ
る。
The principles of the flow injection (FIA) analysis method and the chemiluminescence method will be described below. First, the principle of the flow injection (FIA) analysis method will be described. The FIA injects a fixed amount of a reagent into a fixed flow of a sample in a capillary, and automatically controls the mixing between the reagent and the sample in the laminar flow in the capillary.
This is a method of performing a chemical reaction precisely and rationally for measurement. In the FIA, the time from injection to detection can be kept accurately constant by the volume of the Teflon tube used and the pump flow rate. For this reason, the reaction process of the injected sample can be strictly controlled, and even if it is detected in the middle of the reaction, it is a rapid method with excellent accuracy and reproducibility. As a result, since the automatic chemical reaction in the closed system is used, it is an analysis technique that does not easily involve individual differences.

【0006】次に化学発光法の原理について述べる。Next, the principle of the chemiluminescence method will be described.

【0007】化学発光法は、一酸化窒素(NO)ガスが
オゾン(O3)ガスと反応して二酸化窒素(NO2)ガス
を生成する化学発光を利用し、その発光強度がNOの濃
度と比例関係にあることから、この発光強度を光電子増
倍管で測定し、NO濃度を測定する方法である。
The chemiluminescence method utilizes chemiluminescence in which nitric oxide (NO) gas reacts with ozone (O 3 ) gas to generate nitrogen dioxide (NO 2 ) gas, and the luminescence intensity is determined by the concentration of NO. Because of the proportional relationship, the emission intensity is measured with a photomultiplier tube to measure the NO concentration.

【0008】NO+O3→NO2+O2+hν(光) この反応の化学発光の波長域である590〜2500nmのう
ち光電子増倍管の光電面特性ならびに使用する短波長域
カットフィルタ特性から610〜875nmの光を測定する。
NO + O 3 → NO 2 + O 2 + hν (light) 610 to 875 nm based on the photocathode characteristics of the photomultiplier tube and the short wavelength range cut filter characteristics of 590 to 2500 nm which is the wavelength range of the chemiluminescence of this reaction. Measure the light.

【0009】この三態窒素計について、図11の「三態
窒素計装置構成」により説明する。アンモニアと硝酸及
び亜硝酸を含有する試料溶液(試料水)を定量ポンプ
(P2)の駆動によって流路用細管1中を流しながら、
複数の反応試薬(試薬1、試薬2、試薬3)を注入ポン
プ(P3、P4又はP5)を駆動してインジェクション
ポート2により流路切換を行い選択的に注入する。ま
た、ポンプ(P2)による試料水通水とともにエアーポ
ンプ(P1)の駆動によりクリーンエアーを細管1に供
給する。コイルにより形成される混合器3で試料水と反
応試薬を混合し、反応を促進させて、反応溶液の液相に
溶け込んでいる気体を気相側へ分離させる気化分離器4
と液相から分離したガス成分を一酸化窒素へ転換する加
熱酸化炉5を通して、試料水中の亜硝酸、硝酸、アンモ
ニアを一酸化窒素(NO)ガスとする。この一酸化窒素
(NO)ガスとオゾン発生器から発生するオゾンガスと
により生じる化学発光強度を減圧タイプの化学発光検出
器7により検出し、注入した反応試薬とそのときの化学
発光強度との関係から3態窒素を分別定量する方法であ
る。
The three-state nitrogen meter will be described with reference to FIG. While flowing a sample solution (sample water) containing ammonia, nitric acid and nitrous acid through the flow channel thin tube 1 by driving a metering pump (P2),
A plurality of reaction reagents (reagent 1, reagent 2, and reagent 3) are selectively injected by driving the injection pump (P3, P4 or P5) and switching the flow path by the injection port 2. In addition, clean air is supplied to the thin tube 1 by driving the air pump (P1) together with the water flow of the sample water by the pump (P2). A vaporizer 4 for mixing a sample water and a reaction reagent in a mixer 3 formed by a coil to promote a reaction and to separate a gas dissolved in a liquid phase of a reaction solution into a gas phase.
The nitric acid, nitric acid, and ammonia in the sample water are converted into nitric oxide (NO) gas through a heating oxidation furnace 5 that converts gas components separated from the liquid phase into nitric oxide. The chemiluminescence intensity generated by the nitric oxide (NO) gas and the ozone gas generated from the ozone generator is detected by a decompression type chemiluminescence detector 7, and the relationship between the injected reagent and the chemiluminescence intensity at that time is detected. This is a method for separating and quantifying tri-state nitrogen.

【0010】ただし、気化分離器4により分離される気
相中に存在する水分は、化学発光測定の妨害となるた
め、あらかじめ乾燥器8で除湿しておく。気化分離器4
で反応液は廃液ポンプ(P6)によりドレンから強制排
出させる、また、化学発光検出器7からのガスの引抜き
と化学発光検出器7内を減圧する目的で排気ポンプ(P
7)でガスの排気を行う。使用する反応試薬は、アンモ
ニア測定には次亜塩素酸もしくは次亜塩素酸ソーダ、亜
硝酸測定にはヨウ化カリウム、硝酸測定には三塩化チタ
ンの各溶液を使用する。化学発光検出器7による計測信
号は演算制御部9で演算処理されて濃度換算されて、表
示・記録部10で濃度の表示およびプリンターや記録計
などにより記録される。また、演算制御部9は、加熱酸
化炉5の温度調節制御信号(温調制御信号)、オゾン発
生器6の運転/停止制御信号、試薬(1,2,3)注入
時のインジェクションポート2の流路切換制御およびポ
ンプ(P1)から(P7)の運転/停止制御信号を送出
する機能を有している。
However, moisture present in the gaseous phase separated by the vaporization separator 4 interferes with the measurement of chemiluminescence, and is therefore dehumidified in the drier 8 in advance. Vaporization separator 4
The reaction liquid is forcibly discharged from the drain by a waste liquid pump (P6), and an exhaust pump (P6) is used for extracting gas from the chemiluminescence detector 7 and depressurizing the inside of the chemiluminescence detector 7.
In step 7), gas is exhausted. The reaction reagent used is hypochlorous acid or sodium hypochlorite for ammonia measurement, potassium iodide for nitrite measurement, and titanium trichloride solution for nitric acid measurement. The measurement signal from the chemiluminescence detector 7 is subjected to arithmetic processing by the arithmetic and control unit 9 to be converted into a density, which is then displayed on the display / recording unit 10 and recorded by a printer or recorder. In addition, the arithmetic and control unit 9 controls the temperature control signal (temperature control signal) of the heating oxidation furnace 5, the operation / stop control signal of the ozone generator 6, and the control of the injection port 2 at the time of injecting the reagent (1, 2, 3). It has a function of controlling the flow path switching and transmitting the operation / stop control signal of (P7) from the pump (P1).

【0011】この装置の特長は、応答性が極めて速
く、測定時間の大幅な短縮を図れる上、検量線の直線範
囲が大きいことから測定レンジは低濃度から高濃度まで
極めて広く、高精度でかつ繰り返し再現性が高い。液
相から分離した気相系での測定であるため・試料水中に
検濁物質の不純物が含まれている場合であっても、検出
器に汚れ等の悪影響を及ぼすことが無く、また、単にろ
過などの前処理を実施することにより気化分離器4前段
での配管系の汚れを防止する事ができる。
The features of this apparatus are that the response is extremely fast, the measurement time can be greatly reduced, and the measurement range is extremely wide from low to high concentration due to the large linear range of the calibration curve, and high accuracy and High repeatability. Because the measurement is performed in a gas phase system separated from the liquid phase.Even if the sample water contains impurities of turbid substances, it does not adversely affect the detector, such as contamination, By performing a pretreatment such as filtration, it is possible to prevent contamination of a piping system in a stage preceding the vaporization separator 4.

【0012】したがって、上述した三態窒素計は、下水
処理や河川水、湖沼水等のほか、これらよりも汚れの多
い試料でも検出器本体に影響を及ぼすことなく迅速に三
態窒素を自動的かつ連続的に測定することができる優れ
た装置である。
[0012] Therefore, the above-mentioned tri-state nitrogen meter automatically converts tri-state nitrogen into sewage treatment, river water, lake water, etc., without affecting the detector main body even for samples with much more contamination. It is an excellent device that can measure continuously.

【0013】三態窒素計において、アンモニア、硝酸、
亜硝酸の3種の形態を順次測定を繰り返し実施する場合
の手順を図12で説明する。
In a three-state nitrogen meter, ammonia, nitric acid,
FIG. 12 shows a procedure for repeatedly performing the measurement of three types of nitrous acid in order.

【0014】測定手順は、「アンモニア測定」→「亜硝
酸測定」→「硝酸測定」で繰り返し実施する場合につい
て説明する。ただし、この他の測定手順でも同様であ
る。
The measurement procedure will be described in the case of repeatedly performing “ammonia measurement” → “nitrite measurement” → “nitric acid measurement”. However, the same applies to other measurement procedures.

【0015】各形態の窒素濃度を測定する場合に使用す
る試薬は、アンモニア濃度・亜硝酸濃度・硝酸濃度に対
して、各々、次亜塩素酸ナトリウム溶液、ヨウ化カリウ
ム溶液、三塩化チタン溶液を使用する。各試薬ともパル
ス的に試料水中に複数回注入し、検出器出力が安定した
波形が得られる部分を「演算採用波形」として演算制御
部9に取込み、演算濃度操作として、予め演算制御部9
内に設定してある検量線により測定対象の出力値として
濃度出力を行う。アンモニア濃度、亜硝酸濃度とも「演
算採用波形」出力から検量線により濃度演算出力が可能
である。
The reagents used for measuring the nitrogen concentration in each form include sodium hypochlorite solution, potassium iodide solution and titanium trichloride solution with respect to ammonia concentration, nitrite concentration and nitric acid concentration, respectively. use. Each of the reagents is injected into the sample water in a pulsed manner a plurality of times, and a portion where a waveform with a stable detector output is obtained is taken into the arithmetic control unit 9 as a “calculation adopted waveform”.
The concentration output is performed as the output value of the object to be measured by the calibration curve set in. For both the ammonia concentration and the nitrite concentration, the concentration calculation output can be obtained from the output of the “calculation adopted waveform” by using a calibration curve.

【0016】ただし、試薬として三塩化チタン溶液を使
用する場合には、反応対象が硝酸だけではなく亜硝酸も
関与するため、「亜硝酸測定」モードで測定された亜硝
酸濃度に相当する出力分を三塩化チタン溶液による「演
算採用波形」出力から差し引き補正する。その後、他の
測定項目と同様な濃度演算操作を実施し、硝酸濃度を出
力する。(特願平10−317074号参照) 次に、全窒素分析計について図12で説明するに、図1
1と同一部分には同一符号を付して述べる。図12にお
いて、試料水は試料水導入ポンプ(P1)により、一定
量、酸化触媒を充填した加熱酸化炉5へ注入される。加
熱酸化炉5ではクリーンエアーをキャリアガスとして、
高温(600℃〜800℃)状態に維持されているため、試料
水中の窒素化合物は、クリーンエアー中の酸素により酸
化されて一酸化窒素(NO)に変化する。このNOを三
態窒素計と同様に化学発光法により測定するものであ
る。
However, when a titanium trichloride solution is used as a reagent, since the reaction target involves not only nitric acid but also nitrous acid, the output component corresponding to the nitrous acid concentration measured in the “nitrite measurement” mode is used. Is subtracted from the output of the “calculation adopted” by the titanium trichloride solution. After that, the same concentration calculation operation as in the other measurement items is performed, and the nitric acid concentration is output. (Refer to Japanese Patent Application No. 10-317074.) Next, the total nitrogen analyzer will be described with reference to FIG.
The same parts as in FIG. In FIG. 12, a sample water is injected by a sample water introduction pump (P1) into a heating and oxidizing furnace 5 filled with a certain amount of an oxidation catalyst. In the heating oxidation furnace 5, clean air is used as a carrier gas.
Since the temperature is maintained at a high temperature (600 ° C. to 800 ° C.), the nitrogen compound in the sample water is oxidized by oxygen in the clean air and changes to nitric oxide (NO). This NO is measured by a chemiluminescence method in the same manner as the three-state nitrogen meter.

【0017】[0017]

【発明が解決しようとする課題】化学発光式の一酸化窒
素検出器とフローインジェクション分析法を利用した三
態窒素計(図11)は、上述したようなとの特長が
ある。したがって、測定対象とする試料水が下水処理や
河川水、湖沼水等のほか、これらよりも汚れの多い試料
でも迅速に三態窒素を自動的かつ連続的に測定すること
ができる優れた装置である。
The three-state nitrogen meter (FIG. 11) using a chemiluminescent nitric oxide detector and a flow injection analysis method has the features as described above. Therefore, in addition to sewage treatment, river water, lake water, etc., the sample water to be measured is an excellent device that can quickly and automatically measure the three-state nitrogen even in samples with much more contamination than these. is there.

【0018】上記の三態窒素計において、アンモニア、
硝酸、亜硝酸を選択的、連続的に測定するために必要な
要件は、測定対象とする窒素形態に対する試薬注入時
に、互いに試薬が混合することなく試料水中に各試薬が
パルス状に注入出来ることである。これにより、精度良
く迅速に三態窒素を自動的かつ連続的な測定が達成され
る。
In the above three-state nitrogen meter, ammonia,
The requirement for selective and continuous measurement of nitric acid and nitrous acid is that when reagents are injected into the nitrogen form to be measured, the reagents can be pulsed into the sample water without mixing with each other. It is. Thereby, the automatic and continuous measurement of the tri-state nitrogen is quickly and accurately achieved.

【0019】また、全窒素計は、試料水一定量、酸化触
媒を充填した加熱酸化炉へ注入し、加熱酸化炉で一酸化
窒素(NO)に変化させ、クリーンエアをキャリアガス
として、化学発光検出部へ導き三態窒素計と同様に化学
発光法により測定するものである。この窒素計の特徴
は、三態窒素計と同様に高感度、かつ簡単な操作で迅速
な結果が得られる装置である。これらの、三態窒素計お
よび全窒素計は、河川・湖沼などの富栄養化の原因の一
因である様々な窒素成分、すなわち、アンモニウムイオ
ン、亜硝酸イオン、硝酸イオンの無機体窒素と全窒素を
個々に測定できるものである。しかしながら、三態窒素
計だけの単独測定又は全窒素計だけの単独測定では、生
物処理に伴った様々な窒素形態の増減変化を把握するこ
とは出来ないのが現状であり、また、それぞれの単独測
定では有機体窒素測定も不可能である。
The total nitrogen meter is prepared by injecting a fixed amount of sample water into a heating and oxidizing furnace filled with an oxidation catalyst, changing it into nitrogen monoxide (NO) in the heating and oxidizing furnace, and using clean air as a carrier gas to perform chemiluminescence. The measurement is conducted by a chemiluminescence method in the same manner as the three-state nitrogen meter to the detection section. The feature of this nitrogen meter is that it has high sensitivity and can obtain a quick result by a simple operation like the three-state nitrogen meter. These three-state nitrogen meters and total nitrogen meters are based on various nitrogen components that contribute to the eutrophication of rivers and lakes, namely, inorganic nitrogen such as ammonium ion, nitrite ion, and nitrate ion. Nitrogen can be measured individually. However, at present, it is not possible to grasp the increase / decrease of various nitrogen forms due to biological treatment by single measurement using only the three-state nitrogen meter or single measurement using only the total nitrogen meter. Measurement of organic nitrogen is not possible in the measurement.

【0020】この発明は上記の事情に鑑みてなされたも
ので、化学発光式の一酸化窒素検出器とフローインジェ
クション分析法を利用して、様々な窒素形態の濃度の増
減を測定し、モニタリングできる窒素濃度測定装置を提
供することを課題とする。
The present invention has been made in view of the above circumstances, and it is possible to measure and monitor the increase and decrease in the concentration of various nitrogen forms using a chemiluminescent nitric oxide detector and a flow injection analysis method. It is an object to provide a nitrogen concentration measuring device.

【0021】[0021]

【課題を解決するための手段】この発明は、上記の課題
を達成するために、第1発明は、アンモニウム、硝酸及
び亜硝酸を含有する試料溶液をポンプの駆動によって流
路用細管中を流下させながら、複数の反応試薬を演算制
御部からの制御信号により選択的に切り換えて試料溶液
中に注入混合し、その混合液を気化分離器に供給し、そ
の気化分離器によって液相から分離したガス成分を加熱
酸化炉で一酸化窒素に転換して、化学発光検出器に供給
し、この検出器により化学発光強度を検出して気相中の
アンモニウム、硝酸及び亜硝酸濃度をフローインジェク
ション分析法と化学発光法を用いて測定する窒素濃度測
定装置において、前記加熱酸化炉を少なくとも2つ設
け、一方の加熱酸化炉には前記気化分離器によって液相
から分離したガス成分を供給し、他方の加熱酸化炉には
前記試料溶液を供給し、窒素濃度測定に応じて両加熱酸
化炉の出力流路を前記演算制御部からの制御信号により
切り換えるようにしたことを特徴とするものである。
According to a first aspect of the present invention, a sample solution containing ammonium, nitric acid, and nitrous acid is caused to flow down through a capillary for a channel by driving a pump. While a plurality of reaction reagents were selectively switched by the control signal from the arithmetic and control unit and injected and mixed into the sample solution, the mixed solution was supplied to the vaporizer and separated from the liquid phase by the vaporizer. The gas component is converted to nitric oxide in a heating oxidation furnace and supplied to a chemiluminescence detector, which detects the chemiluminescence intensity and determines the concentrations of ammonium, nitric acid and nitrous acid in the gas phase by flow injection analysis. And a nitrogen concentration measuring apparatus for measuring using a chemiluminescence method, wherein at least two heating oxidation furnaces are provided, and one of the heating oxidation furnaces has a gas component separated from a liquid phase by the vaporization separator. Is supplied, and the sample solution is supplied to the other heating oxidation furnace, and the output channels of both heating oxidation furnaces are switched according to a control signal from the arithmetic control unit in accordance with the measurement of the nitrogen concentration. Is what you do.

【0022】第2発明は、前記加熱酸化炉に前記気化分
離器によって液相から分離したガス成分を供給するか、
前記試料溶液を供給するかを前記演算制御部からの制御
信号により切り換えて窒素濃度測定を行うようにしたこ
とを特徴とするものである。
In a second aspect of the present invention, a gas component separated from a liquid phase by the vaporization separator is supplied to the heating oxidation furnace.
The apparatus is characterized in that whether to supply the sample solution is switched by a control signal from the arithmetic and control unit to perform nitrogen concentration measurement.

【0023】[0023]

【発明の実施の形態】以下この発明の実施の形態を図面
に基づいて説明するに、図11と同一部分には同一符号
を付して述べる。 (第1形態:アンモニア、亜硝酸、硝酸、全窒素を測定
する窒素計)図1はこの発明の実施の第1形態を示す構
成説明図で、図1に示す窒素計において、アンモニア、
硝酸、亜硝酸、全窒素の4種の形態における窒素濃度
を、順次測定を繰り返し実施する場合の手順を説明す
る。測定手順は、「亜硝酸測定」→「硝酸測定」→「ア
ンモニア測定」→「全窒素」で繰り返し実施する場合に
ついてである。ただし、この他の組合せの測定でも同様
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. (First Embodiment: Nitrogen Meter for Measuring Ammonia, Nitrous Acid, Nitric Acid, and Total Nitrogen) FIG. 1 is a configuration explanatory view showing a first embodiment of the present invention. In the nitrogen meter shown in FIG.
A procedure for repeatedly measuring nitrogen concentrations in four forms of nitric acid, nitrous acid, and total nitrogen will be described. The measurement procedure is a case where the measurement is repeatedly performed with “nitrite measurement” → “nitric acid measurement” → “ammonia measurement” → “total nitrogen”. However, the same applies to the measurement of other combinations.

【0024】各形態の窒素濃度を測定する場合に使用す
る試薬溶液(以下試薬と称する)は、アンモニア濃度・
亜硝酸濃度・硝酸濃度に対して、各々、次亜塩素酸ナト
リウム溶液、ヨウ化カリウム溶液、三塩化チタン溶液を
使用する。また、全窒素の測定には、試薬は必要としな
い。各試薬は、パルス的に試料水中に演算制御部9から
の制御信号により複数回注入し、これに対する出力安定
後の検出器出力を演算制御部9に取込み、演算濃度操作
として、予め演算制御部9内に設定してある検量線によ
り測定対象の出力値として濃度出力を行う。アンモニア
濃度、亜硝酸濃度とも検出器出力から検量線により濃度
演算出力が可能である。
A reagent solution (hereinafter referred to as a reagent) used for measuring the nitrogen concentration of each form is composed of an ammonia concentration,
A sodium hypochlorite solution, a potassium iodide solution, and a titanium trichloride solution are used for the nitrite concentration and the nitric acid concentration, respectively. No reagent is required for measuring total nitrogen. Each reagent is injected into the sample water in a pulsed manner a plurality of times by the control signal from the arithmetic and control unit 9, and the detector output after the output is stabilized is taken into the arithmetic and control unit 9. Concentration output is performed as an output value of the measurement object by the calibration curve set in 9. Both the ammonia concentration and the nitrite concentration can be calculated and output from the detector output using a calibration curve.

【0025】ただし、試薬として三塩化チタン溶液を使
用する場合には、反応対象が硝酸だけではなく亜硝酸も
関与するため、「亜硝酸測定」モードで測定された亜硝
酸濃度に相当する出力分を、三塩化チタン溶液による検
出器出力から差し引き補正する。
However, when a titanium trichloride solution is used as a reagent, since the reaction target involves not only nitric acid but also nitrous acid, the output component corresponding to the nitrous acid concentration measured in the “nitrite measurement” mode is used. Is corrected by subtraction from the detector output by the titanium trichloride solution.

【0026】その後、他の測定項目と同様な濃度演算操
作を実施し、硝酸濃度を出力する。また、全窒素濃度測
定の場合には、試薬の代わりに試料水を正確に一定量注
入し、これに対する検出器出力を演算制御部9に取込
み、演算濃度操作として、予め演算制御部9内に設定し
てある検量線により全窒素濃度として濃度出力を行う。
Thereafter, the same concentration calculation operation as in the other measurement items is performed, and the nitric acid concentration is output. In the case of measuring the total nitrogen concentration, a certain amount of sample water is accurately injected instead of the reagent, the detector output corresponding thereto is taken into the arithmetic control unit 9, and the calculated concentration operation is previously stored in the arithmetic control unit 9. The concentration is output as the total nitrogen concentration according to the set calibration curve.

【0027】以下、測定操作と動作について具体的に説
明する。
Hereinafter, the measurement operation and operation will be specifically described.

【0028】[亜硝酸測定モード]ポンプ(P1,P
2,P6,P7)の連続運転状態において、インジェク
ションポート2とポンプ(P3)の制御により試薬1
(ヨウ化カリウム溶液)を一定量、パルス的に試料水中
に注入する。試料水中の亜硝酸とヨウ化カリウム溶液と
の反応系で、亜硝酸を一酸化窒素(NO)ガスとする。
この一酸化窒素(NO)ガスとオゾン発生器6から発生
するオゾンガスとにより生じる化学発光強度を減圧タイ
プの化学発光検出器7により検出する。そのときの化学
発光強度と亜硝酸標準液とで事前に設定した検量線の関
係から試料水中の亜硝酸濃度を測定する。
[Nitrite measurement mode] Pumps (P1, P
2, P6, P7), the reagent 1 is controlled by controlling the injection port 2 and the pump (P3).
A certain amount of (potassium iodide solution) is pulsedly injected into the sample water. In a reaction system between nitrous acid and a potassium iodide solution in sample water, nitrous acid is used as nitric oxide (NO) gas.
The chemiluminescence intensity generated by the nitric oxide (NO) gas and the ozone gas generated from the ozone generator 6 is detected by a decompression type chemiluminescence detector 7. The nitrite concentration in the sample water is measured from the relationship between the chemiluminescence intensity at that time and the calibration curve preset in advance with the nitrite standard solution.

【0029】このようにして、化学発光検出器7による
計測信号は演算制御部9で演算処理されて濃度換算さ
れ、表示・記録部10で濃度の表示およびプリンターや
記録計などにより記録される。また、演算制御部9の機
能は、加熱酸化炉5aの温調制御信号、オゾン発生器6
の運転/停止制御信号、試薬注入時のインジェクション
ポート2の流路切換制御信号、測定経路切換弁(SV)
およびポンプ(P1〜8)の運転/停止制御信号であ
る。[亜硝酸測定モード]終了後、[硝酸測定モード]
を実施する。
As described above, the measurement signal from the chemiluminescence detector 7 is subjected to arithmetic processing by the arithmetic and control unit 9 to be converted into a density, and the display and recording unit 10 displays the density and records it by a printer or a recorder. The functions of the arithmetic and control unit 9 are: a temperature control signal for the heating oxidation furnace 5a;
Operation / stop control signal, flow path switching control signal for injection port 2 during reagent injection, measurement path switching valve (SV)
And operation / stop control signals for the pumps (P1 to P8). After [Nitrite measurement mode] is completed, [Nitric acid measurement mode]
Is carried out.

【0030】[硝酸測定モード] [亜硝酸測定モード]と異なる点は、使用試薬にヨウ化
カリウム溶液の代わりに三塩化チタン溶液を使用し、演
算制御部9の制御信号でポンプ(P4)とインジェクシ
ョンポート2を制御して、試薬2(三塩化チタン溶液)
を一定量、パルス的に試料水中に注入することである。
[Nitric acid measurement mode] The difference from the [nitrite measurement mode] is that a titanium trichloride solution is used instead of a potassium iodide solution as a reagent to be used, and a pump (P4) is operated by a control signal of an arithmetic control unit 9. Control injection port 2 to reagent 2 (titanium trichloride solution)
Is injected into the sample water in a pulsed manner.

【0031】試料水中の硝酸と三塩化チタン溶液との反
応系で、硝酸を一酸化窒素(NO)ガスとする。この一
酸化窒素(NO)ガスとオゾン発生器6から発生するオ
ゾンガスとにより生じる化学発光強度を減圧タイプの化
学発光検出器7により検出する。そのときの化学発光強
度と亜硝酸標準液とで事前に設定した検量線の関係から
試料水中の硝酸濃度を測定する。ただし、試薬として三
塩化チタン溶液を使用する場合には、反応対象が硝酸だ
けではなく亜硝酸も関与するため、「亜硝酸測定モー
ド」で測定された亜硝酸濃度に相当する出力分を三塩化
チタン溶液による検出器出力から差し引き補正する。
In the reaction system between the nitric acid in the sample water and the titanium trichloride solution, the nitric acid is nitric oxide (NO) gas. The chemiluminescence intensity generated by the nitric oxide (NO) gas and the ozone gas generated from the ozone generator 6 is detected by a decompression type chemiluminescence detector 7. The nitric acid concentration in the sample water is measured from the relationship between the chemiluminescence intensity at that time and a calibration curve preset with the nitrite standard solution. However, when a titanium trichloride solution is used as a reagent, since the reaction target involves not only nitric acid but also nitrous acid, the output component corresponding to the nitrous acid concentration measured in the `` nitrite measuring mode '' is Correction is made by subtracting from the detector output by the titanium solution.

【0032】[アンモニア測定モード] [硝酸測定モード]と異なる点は、使用試薬に三塩化チ
タン溶液の代わりに次亜塩素酸ナトリウム溶液を使用
し、演算制御部9の制御信号でポンプ(P5)とインジ
ェクションポート2を制御して、試薬3(次亜塩素酸ナ
トリウム溶液)を一定量、パルス的に試料水中に注入す
ることである。
[Ammonia measurement mode] The difference from the [nitric acid measurement mode] is that instead of the titanium trichloride solution, a sodium hypochlorite solution is used as the reagent to be used, and the pump (P5) is controlled by the control signal of the arithmetic and control unit 9. And the injection port 2 are controlled to inject a predetermined amount of the reagent 3 (sodium hypochlorite solution) into the sample water in a pulsed manner.

【0033】以上3種類の窒素形態の測定では、試料水
通水とともにエアーポンプ(P1)の駆動によりクリー
ンエアーを供給し、コイルにより形成される混合器3で
試料水と反応試薬を混合し、反応を促進させて、反応溶
液の液相に溶け込んでいる気体を気相側へ分離させる気
化分離器4と液相から分離したガス成分を一酸化窒素へ
転換する第1加熱酸化炉5aを通して、試料水中の亜硝
酸、硝酸、アンモニアを一酸化窒素(NO)ガスとす
る。
In the measurement of the above three types of nitrogen, clean air is supplied by driving the air pump (P1) together with the flow of the sample water, and the sample water and the reaction reagent are mixed by the mixer 3 formed by the coil. Through a vaporization separator 4 for accelerating the reaction and separating the gas dissolved in the liquid phase of the reaction solution to the gas phase side, and a first heating oxidation furnace 5a for converting the gas component separated from the liquid phase to nitric oxide, Nitrite, nitric acid, and ammonia in the sample water are used as nitric oxide (NO) gas.

【0034】この一酸化窒素(NO)ガスとオゾン発生
器6から発生するオゾンガスとにより生じる化学発光強
度を減圧タイプの化学発光検出器7により検出し、その
ときの化学発光強度とアンモニア標準液とで事前に設定
した検量線の関係から試料水中のアンモニア濃度を測定
する。ただし、気化分離器4により分離される気相中に
存在する水分は、化学発光測定の妨害となるため、予め
乾燥器8で除湿しておく。気化分離器4で反応液は、廃
液ポンプ(P6)によりドレンから強制排出させる。ま
た、化学発光検出器7からのガスの引抜きと、化学発光
検出器7内を減圧する目的で排気ポンプ(P7)でガス
の排気を行う。
The chemiluminescence intensity generated by the nitric oxide (NO) gas and the ozone gas generated from the ozone generator 6 is detected by a decompression type chemiluminescence detector 7, and the chemiluminescence intensity at that time is compared with the ammonia standard solution. The ammonia concentration in the sample water is measured from the relation of the calibration curve set in advance. However, the moisture present in the gas phase separated by the vaporization separator 4 interferes with the chemiluminescence measurement, and is therefore dehumidified in the dryer 8 in advance. The reaction liquid is forcibly discharged from the drain by the waste liquid pump (P6) in the vaporization separator 4. Further, the gas is extracted from the chemiluminescence detector 7 and the gas is exhausted by an exhaust pump (P7) for the purpose of reducing the pressure in the chemiluminescence detector 7.

【0035】[全窒素測定モード]ポンプ(P3,P
4,P5)は停止する。また、ポンプ(P1),(P
2)は運転/停止どちらでもよいが、運転時にはポンプ
(P6)を運転する。流路切換電磁弁(SV)を第2加
熱酸化炉5bからガスが通過可能な経路へ切換えて、第
2加熱酸化炉5bにポンプ(P8)で試料水を一定量、
正確に注入する。この第2加熱酸化炉5bに注入された
少量の試料水は気化・加熱されて酸化分解されてNOに
変換され、以降、他の測定モードと同様にして全窒素濃
度が測定される。[全窒素測定モード]終了の後、再び
[亜硝酸測定モード]から4種の測定モードを順次繰り
返し実行する。
[Total nitrogen measurement mode] Pump (P3, P
4, P5) stops. Also, the pumps (P1), (P
The operation 2) may be either operation / stop, but during operation, the pump (P6) is operated. The flow path switching solenoid valve (SV) is switched to a path through which gas can pass from the second heating oxidation furnace 5b, and a fixed amount of sample water is supplied to the second heating oxidation furnace 5b by a pump (P8).
Inject exactly. The small amount of sample water injected into the second heating and oxidizing furnace 5b is vaporized, heated, oxidatively decomposed and converted into NO, and thereafter the total nitrogen concentration is measured in the same manner as in other measurement modes. After the end of the [total nitrogen measurement mode], the four types of measurement modes are sequentially and repeatedly executed again from the [nitrite measurement mode].

【0036】上記のようにして、一連の[亜硝酸測定モ
ード]、[硝酸測定モード]、[アンモニア測定モー
ド]、[全窒素測定モード]を実行することにより、試
料水中の亜硝酸濃度、硝酸濃度、アンモニア濃度、全窒
素濃度が求まるが、さらに、演算制御部9に於いて、全
窒素濃度から(亜硝酸濃度+硝酸濃度+アンモニア濃
度)を差し引くことにより、有機体窒素濃度を求めるこ
とが可能となる。 (第2形態:亜硝酸、硝酸、全窒素を測定する窒素計)
図2は、この発明の実施の第2形態を示す構成説明図
で、この第2形態は第1形態からアンモニア測定用の配
管・制御機器(ポンプP5など)を取り除いたものであ
り、測定結果から、全窒素濃度、亜硝酸濃度、硝酸濃度
と、演算制御部9に於いて、全窒素濃度から(亜硝酸濃
度+硝酸濃度)を差し引くことにより(有機体窒素濃度
+アンモニア濃度)を求めることが可能となる。 (第3形態:亜硝酸、全窒素を測定する窒素計)図3
は、この発明の実施の第3形態を示す構成説明図で、こ
の第3形態は第1形態からアンモニアおよび硝酸測定用
の配管・制御機器(ポンプP4,P5など)を取り除い
たものであり、測定結果から、全窒素濃度、亜硝酸濃度
と、演算制御部9に於いて、全窒素濃度から亜硝酸濃度
を差し引くことにより(有機体窒素濃度+アンモニア濃
度+硝酸濃度)を求めることが可能となる。 (第4形態:アンモニア、亜硝酸、全窒素を測定する窒
素計)図4は、この発明の実施の第4形態を示す構成説
明図で、この第4形態は第1形態から硝酸測定用の配管
・制御機器(ポンプP4など)を取り除いたものであ
り、測定結果から、全窒素濃度、アンモニア濃度、亜硝
酸濃度と、演算制御部9に於いて、全窒素濃度から(ア
ンモニア濃度+亜硝酸濃度)を差し引くことにより(有
機体窒素濃度+硝酸濃度)を求めることが可能となる。 (第5形態:アンモニア、全窒素を測定する窒素計)図
5は、この発明の実施の第5形態を示す構成説明図で、
この第5形態は第1形態から、亜硝酸、硝酸測定用の配
管・制御機器(ポンプP3,P4など)を取り除いたも
のであり、測定結果から、全窒素濃度、アンモニア濃度
と、演算制御部9に於いて、全窒素濃度からアンモニア
濃度を差し引くことにより(有機体窒素濃度+硝酸濃度
+亜硝酸濃度)を求めることが可能となる。 (第6形態:アンモニア、亜硝酸、硝酸、全窒素を測定
する窒素計)図6は、この発明の実施の第6形態を示す
構成説明図で、この第6形態は第1形態において、第2
加熱酸化炉5bと流路切換電磁弁SVを取り外し、ポン
プ(P8)の配管出口を第1加熱酸化炉5aの内部に挿
入取り付けたものである。これ以外についての動作は
(第1形態)と同様である。 (第7形態:亜硝酸、硝酸、全窒素を測定する窒素計)
図7は、この発明の実施の第7形態を示す構成説明図
で、この第7形態は第2形態において、第2加熱酸化炉
5bと流路切換電磁弁SVを取り外し、ポンプ(P8)
の配管出口を第1加熱酸化炉5aの内部に挿入取り付け
たものである。これ以外についての動作は(第2形態)
と同様である。 (第8形態:亜硝酸、全窒素を測定する窒素計)図8
は、この発明の実施の第8形態を示す構成説明図で、こ
の第8形態は第3形態において、第2加熱酸化炉5bと
流路切換電磁弁SVを取り外し、ポンプ(P8)の配管
出口を第1加熱酸化炉5aの内部に挿入取り付けたもの
である。これ以外についての動作は(第3形態)と同様
である。 (第9形態:アンモニア、亜硝酸、全窒素を測定する窒
素計)図9は、この発明の実施の第9形態を示す構成説
明図で、この第9形態は第4形態において、第2加熱酸
化炉5bと流路切換電磁弁SVを取り外し、ポンプ(P
8)の配管出口を第1加熱酸化炉5aの内部に挿入取り
付けたものである。これ以外についての動作は(第4形
態)と同様である。 (第10形態:アンモニア、全窒素を測定する窒素計)
図10は、この発明の実施の第10形態を示す構成説明
図で、この第10形態は第5形態において、第2加熱酸
化炉5bと流路切換電磁弁SVを取り外し、ポンプ(P
8)の配管出口を第1加熱酸化炉5aの内部に挿入取り
付けたものである。これ以外についての動作は(第5形
態)と同様である。
As described above, by executing a series of [nitrite measuring mode], [nitric acid measuring mode], [ammonia measuring mode], and [total nitrogen measuring mode], the nitrite concentration in the sample water and the nitric acid concentration are measured. The concentration, the ammonia concentration, and the total nitrogen concentration are obtained. Further, in the arithmetic and control unit 9, the organic nitrogen concentration can be obtained by subtracting (nitrite concentration + nitrate concentration + ammonia concentration) from the total nitrogen concentration. It becomes possible. (2nd form: Nitrogen meter to measure nitrous acid, nitric acid, total nitrogen)
FIG. 2 is a structural explanatory view showing a second embodiment of the present invention. This second embodiment is obtained by removing piping and control equipment (such as a pump P5) for measuring ammonia from the first embodiment, and shows the measurement results. To obtain (organic nitrogen concentration + ammonia concentration) by subtracting (nitrite concentration + nitric acid concentration) from the total nitrogen concentration in the arithmetic and control unit 9 from the total nitrogen concentration, nitrite concentration and nitric acid concentration. Becomes possible. (Third form: Nitrogen meter for measuring nitrous acid and total nitrogen) Figure 3
Is a configuration explanatory view showing a third embodiment of the present invention. This third embodiment is obtained by removing piping and control equipment (such as pumps P4 and P5) for measuring ammonia and nitric acid from the first embodiment. From the measurement results, it is possible to calculate (organic nitrogen concentration + ammonia concentration + nitric acid concentration) by subtracting the nitrite concentration from the total nitrogen concentration in the arithmetic and control unit 9 from the total nitrogen concentration and nitrite concentration. Become. (Fourth Embodiment: Nitrogen Meter for Measuring Ammonia, Nitrite, and Total Nitrogen) FIG. 4 is a structural explanatory view showing a fourth embodiment of the present invention. The piping and control equipment (pump P4, etc.) are removed, and the total nitrogen concentration, ammonia concentration, and nitrite concentration are obtained from the measurement results. By subtracting (concentration), (organic nitrogen concentration + nitric acid concentration) can be obtained. (Fifth Embodiment: Nitrogen Meter for Measuring Ammonia and Total Nitrogen) FIG. 5 is a structural explanatory view showing a fifth embodiment of the present invention.
This fifth embodiment is obtained by removing piping and control equipment (pumps P3, P4, etc.) for measuring nitrous acid and nitric acid from the first embodiment. From the measurement results, the total nitrogen concentration, the ammonia concentration, the arithmetic control unit In step 9, by subtracting the ammonia concentration from the total nitrogen concentration, it becomes possible to obtain (organic nitrogen concentration + nitric acid concentration + nitrite concentration). (Sixth Embodiment: Nitrogen Meter for Measuring Ammonia, Nitrous Acid, Nitric Acid, and Total Nitrogen) FIG. 6 is a structural explanatory view showing a sixth embodiment of the present invention. 2
The heating oxidation furnace 5b and the flow path switching electromagnetic valve SV are removed, and the pipe outlet of the pump (P8) is inserted and mounted inside the first heating oxidation furnace 5a. The other operations are the same as in the first embodiment. (Seventh form: Nitrogen meter to measure nitrous acid, nitric acid and total nitrogen)
FIG. 7 is a structural explanatory view showing a seventh embodiment of the present invention. This seventh embodiment is different from the second embodiment in that the second heating oxidation furnace 5b and the flow path switching solenoid valve SV are removed, and the pump (P8)
Is inserted into the inside of the first heating oxidation furnace 5a. Operations other than the above (second embodiment)
Is the same as (Eighth embodiment: Nitrogen meter for measuring nitrous acid and total nitrogen) FIG.
Is a configuration explanatory view showing an eighth embodiment of the present invention. This eighth embodiment is different from the third embodiment in that the second heating oxidizing furnace 5b and the passage switching solenoid valve SV are removed, and the pipe outlet of the pump (P8) is removed. Is inserted and mounted inside the first heating oxidation furnace 5a. The other operations are the same as those in the third embodiment. (Ninth Embodiment: Nitrogen Meter for Measuring Ammonia, Nitrite and Total Nitrogen) FIG. 9 is a structural explanatory view showing a ninth embodiment of the present invention. Remove the oxidation furnace 5b and the passage switching solenoid valve SV, and set the pump (P
The pipe outlet of 8) is inserted and mounted inside the first heating oxidation furnace 5a. The other operations are the same as in the fourth embodiment. (Tenth form: nitrogen meter for measuring ammonia and total nitrogen)
FIG. 10 is a structural explanatory view showing a tenth embodiment of the present invention. This tenth embodiment is different from the fifth embodiment in that the second heating oxidation furnace 5b and the flow path switching solenoid valve SV are removed, and the pump (P
The pipe outlet of 8) is inserted and mounted inside the first heating oxidation furnace 5a. The other operations are the same as in the fifth embodiment.

【0037】[0037]

【発明の効果】以上述べたように、この発明によれば、
利用目的に応じて水中の全窒素および他の窒素成分をも
測定できるもので、その効果を以下に示す。 (1)水中の全窒素、アンモニア、硝酸、亜硝酸、有機
体窒素の各窒素濃度を選択的、連続的に測定できるこ
と、(2)測定モードの測定組み合わせによっては、従
来測定不可能であった有機体窒素を三態窒素計または全
窒素計の単独演算による算出も可能であること、(3)
測定モードを組み合わせることによって、全窒素、アン
モニア、硝酸、亜硝酸、有機体窒素あるいはこれらの任
意の組み合わせにより測定が可能となること、(4)迅
速測定を損なわずに、各種測定濃度のモニタリングのみ
ならず、水質処理工程での制御指標としても利用が可能
である。
As described above, according to the present invention,
It can also measure total nitrogen and other nitrogen components in water according to the purpose of use, and the effects are shown below. (1) The ability to selectively and continuously measure each nitrogen concentration of total nitrogen, ammonia, nitric acid, nitrous acid, and organic nitrogen in water. (2) Conventionally, it was impossible to measure depending on the combination of measurement modes. (3) that organic nitrogen can be calculated by a single operation of a tri-state nitrogen meter or a total nitrogen meter.
By combining measurement modes, measurement can be performed with total nitrogen, ammonia, nitric acid, nitrous acid, organic nitrogen or any combination thereof. (4) Only monitoring of various measured concentrations without impairing rapid measurement Instead, it can be used as a control index in the water quality treatment process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の第1形態を示す構成説明図。FIG. 1 is a configuration explanatory view showing a first embodiment of the present invention.

【図2】この発明の実施の第2形態を示す構成説明図。FIG. 2 is a configuration explanatory view showing a second embodiment of the present invention.

【図3】この発明の実施の第3形態を示す構成説明図。FIG. 3 is a configuration explanatory view showing a third embodiment of the present invention.

【図4】この発明の実施の第4形態を示す構成説明図。FIG. 4 is a configuration explanatory view showing a fourth embodiment of the present invention.

【図5】この発明の実施の第5形態を示す構成説明図。FIG. 5 is a configuration explanatory view showing a fifth embodiment of the present invention.

【図6】この発明の実施の第6形態を示す構成説明図。FIG. 6 is a configuration explanatory view showing a sixth embodiment of the present invention.

【図7】この発明の実施の第7形態を示す構成説明図。FIG. 7 is a configuration explanatory view showing a seventh embodiment of the present invention.

【図8】この発明の実施の第8形態を示す構成説明図。FIG. 8 is a configuration explanatory view showing an eighth embodiment of the present invention.

【図9】この発明の実施の第9形態を示す構成説明図。FIG. 9 is a configuration explanatory view showing a ninth embodiment of the present invention.

【図10】この発明の実施の第10形態を示す構成説明
図。
FIG. 10 is a configuration explanatory view showing a tenth embodiment of the present invention.

【図11】従来の三態窒素計装置の構成説明図。FIG. 11 is a configuration explanatory view of a conventional three-state nitrogen meter device.

【図12】従来の全窒素計装置の構成説明図。FIG. 12 is a configuration explanatory view of a conventional total nitrogen meter device.

【符号の説明】[Explanation of symbols]

1…細管 2…インジェクションポート 3…混合器 4…気化分離器 5…加熱酸化炉 5a…第1加熱酸化炉 5b…第2加熱酸化炉 6…オゾン発生器 7…化学発光検出器 8…乾燥器 9…演算制御部 10…表示・記録部 P1〜P8…ポンプ DESCRIPTION OF SYMBOLS 1 ... Capillary tube 2 ... Injection port 3 ... Mixer 4 ... Vaporization separator 5 ... Heat oxidation furnace 5a ... First heat oxidation furnace 5b ... Second heat oxidation furnace 6 ... Ozone generator 7 ... Chemiluminescence detector 8 ... Dryer 9: arithmetic control unit 10: display / recording unit P1 to P8: pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アンモニウム、硝酸及び亜硝酸を含有す
る試料溶液をポンプの駆動によって流路用細管中を流下
させながら、複数の反応試薬を演算制御部からの制御信
号により選択的に切り換えて試料溶液中に注入混合し、
その混合液を気化分離器に供給し、その気化分離器によ
って液相から分離したガス成分を加熱酸化炉で一酸化窒
素に転換して、化学発光検出器に供給し、この検出器に
より化学発光強度を検出して気相中のアンモニウム、硝
酸及び亜硝酸濃度をフローインジェクション分析法と化
学発光法を用いて測定する窒素濃度測定装置において、 前記加熱酸化炉を少なくとも2つ設け、一方の加熱酸化
炉には前記気化分離器によって液相から分離したガス成
分を供給し、他方の加熱酸化炉には前記試料溶液を供給
し、窒素濃度測定に応じて両加熱酸化炉の出力流路を前
記演算制御部からの制御信号により切り換えるようにし
たことを特徴とする窒素濃度測定装置。
1. A method in which a plurality of reaction reagents are selectively switched by a control signal from an arithmetic and control unit while a sample solution containing ammonium, nitric acid, and nitrous acid is caused to flow down a flow tube by driving a pump. Inject and mix into the solution,
The mixed solution is supplied to a vaporization separator, and the gas component separated from the liquid phase by the vaporization separator is converted to nitric oxide in a heating oxidation furnace and supplied to a chemiluminescence detector, which then emits chemiluminescence. In a nitrogen concentration measuring device for detecting the intensity and measuring the concentrations of ammonium, nitric acid and nitrous acid in the gas phase by using a flow injection analysis method and a chemiluminescence method, at least two heating oxidation furnaces are provided, and one of the heating oxidation furnaces is provided. The gas component separated from the liquid phase by the vaporizer is supplied to the furnace, the sample solution is supplied to the other heating oxidizing furnace, and the output channels of both heating oxidizing furnaces are subjected to the arithmetic operation according to the nitrogen concentration measurement. A nitrogen concentration measuring device, wherein the switching is performed by a control signal from a control unit.
【請求項2】 アンモニウム、硝酸及び亜硝酸を含有す
る試料溶液をポンプの駆動によって流路用細管中を流下
させながら、複数の反応試薬を演算制御部からの制御信
号により選択的に切り換えて試料溶液中に注入混合し、
その混合液を気化分離器に供給し、その気化分離器によ
って液相から分離したガス成分を加熱酸化炉で一酸化窒
素に転換して、化学発光検出器に供給し、この検出器に
より化学発光強度を検出して気相中のアンモニウム、硝
酸及び亜硝酸濃度をフローインジェクション分析法と化
学発光法を用いて測定する窒素濃度測定装置において、 前記加熱酸化炉に前記気化分離器によって液相から分離
したガス成分を供給するか、前記試料溶液を供給するか
を前記演算制御部からの制御信号により切り換えて窒素
濃度測定を行うようにしたことを特徴とする窒素濃度測
定装置。
2. A method in which a plurality of reaction reagents are selectively switched by a control signal from an arithmetic and control unit while a sample solution containing ammonium, nitric acid, and nitrous acid is caused to flow down in a flow tube by driving a pump. Inject and mix into the solution,
The mixed solution is supplied to a vaporization separator, and the gas component separated from the liquid phase by the vaporization separator is converted to nitric oxide in a heating oxidation furnace and supplied to a chemiluminescence detector, which then emits chemiluminescence. In a nitrogen concentration measuring device for detecting the intensity and measuring the concentrations of ammonium, nitric acid and nitrous acid in the gas phase by using a flow injection analysis method and a chemiluminescence method, separated from the liquid phase by the vaporization separator in the heating oxidation furnace A nitrogen concentration measurement device that switches between supplying a gas component and supplying the sample solution according to a control signal from the arithmetic control unit.
JP36020999A 1999-12-20 1999-12-20 Nitrogen concentration measuring apparatus Pending JP2001174448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36020999A JP2001174448A (en) 1999-12-20 1999-12-20 Nitrogen concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36020999A JP2001174448A (en) 1999-12-20 1999-12-20 Nitrogen concentration measuring apparatus

Publications (1)

Publication Number Publication Date
JP2001174448A true JP2001174448A (en) 2001-06-29

Family

ID=18468386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36020999A Pending JP2001174448A (en) 1999-12-20 1999-12-20 Nitrogen concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JP2001174448A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371523A (en) * 2000-11-10 2002-07-31 Hewlett Packard Co Image forming device and method of facilitating ordering of an imaging consumable
CN102374989A (en) * 2010-08-20 2012-03-14 北京吉天仪器有限公司 Automatic analyzer for determining ammonia nitrogen in water and automatic analytic method thereof
CN101598719B (en) * 2009-06-30 2013-10-02 烟台大学 Waste flow quantity, ammonia nitrogen concentration and ammonia nitrogen total content water quality on-line combined tester
CN103439258A (en) * 2013-09-09 2013-12-11 山东省科学院海洋仪器仪表研究所 Water body nutritive salt in-situ detection instrument and method based on integrated valve island apparatus
CN111693514A (en) * 2020-05-07 2020-09-22 四川轻化工大学 Online detection device and method utilizing online liquid-gas conversion
CN111982847A (en) * 2020-09-07 2020-11-24 江门新财富环境管家技术有限公司 Method for testing total nitrogen by using flow injection analyzer and application thereof
CN112525575A (en) * 2020-11-23 2021-03-19 厦门安信优环保科技有限公司 Test system for detecting performance of water purification equipment and control method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2371523A (en) * 2000-11-10 2002-07-31 Hewlett Packard Co Image forming device and method of facilitating ordering of an imaging consumable
GB2371523B (en) * 2000-11-10 2003-08-13 Hewlett Packard Co An image forming device an image forming system and a method of facilitating ordering of an imaging consumable
CN101598719B (en) * 2009-06-30 2013-10-02 烟台大学 Waste flow quantity, ammonia nitrogen concentration and ammonia nitrogen total content water quality on-line combined tester
CN102374989A (en) * 2010-08-20 2012-03-14 北京吉天仪器有限公司 Automatic analyzer for determining ammonia nitrogen in water and automatic analytic method thereof
CN103439258A (en) * 2013-09-09 2013-12-11 山东省科学院海洋仪器仪表研究所 Water body nutritive salt in-situ detection instrument and method based on integrated valve island apparatus
CN103439258B (en) * 2013-09-09 2016-03-30 山东省科学院海洋仪器仪表研究所 A kind of water nutrition in situ detection instrument based on integrated valve terminal device and detection method
CN111693514A (en) * 2020-05-07 2020-09-22 四川轻化工大学 Online detection device and method utilizing online liquid-gas conversion
CN111982847A (en) * 2020-09-07 2020-11-24 江门新财富环境管家技术有限公司 Method for testing total nitrogen by using flow injection analyzer and application thereof
CN112525575A (en) * 2020-11-23 2021-03-19 厦门安信优环保科技有限公司 Test system for detecting performance of water purification equipment and control method thereof

Similar Documents

Publication Publication Date Title
US6516654B2 (en) Apparatus and method for analyzing particulate matter in gas and apparatus and method for carbon differentiating
JP2009519443A (en) Method and apparatus for measurement of nitrite and nitric oxide
JP3265830B2 (en) Total organic carbon meter
JP2001174448A (en) Nitrogen concentration measuring apparatus
JP3896795B2 (en) Nitrogen concentration measuring device
JP2694595B2 (en) Method for determining gas concentration in molten metal
KR100879009B1 (en) A system and method for monitoring metals and metal compounds in air and gases
JP2001318089A (en) Total organic carbon meter
US6797237B2 (en) Oxidation decomposition type element analyzer
KR102414181B1 (en) Total organic carbon analyzer
US20050129578A1 (en) Fast system for detecting detectible combustion products and method for making and using same
JP3911820B2 (en) Ion concentration measuring device
JP2000146942A (en) Device for measuring concentration of nitrogen in water
JP3911821B2 (en) Ion concentration measuring device
JP2001124757A (en) Self diagnosis method of system in trimorphic nitrogen- analyzing system
JP3211462B2 (en) Carbon measuring device
JP3329071B2 (en) Method and apparatus for analyzing nitrate and nitrite ions
JP3853978B2 (en) Water quality analyzer
JPH0552837A (en) Carbon measuring device
JPH11304711A (en) Automatic calibration method and apparatus in three-phase nitrogen analysis in water
JP4424347B2 (en) Ammonia meter
JPH06288923A (en) Analyzer for silica content in water
SU1713882A1 (en) Method of measuring hydrogen concentration
JP2023514006A (en) Carbon determination of aqueous samples using oxidation at high temperature and pressure generated by resistive heating
JPH07318553A (en) Inorganic carbon measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403