JP2982602B2 - Method and apparatus for laser vaporization analysis of molten metal - Google Patents

Method and apparatus for laser vaporization analysis of molten metal

Info

Publication number
JP2982602B2
JP2982602B2 JP5355433A JP35543393A JP2982602B2 JP 2982602 B2 JP2982602 B2 JP 2982602B2 JP 5355433 A JP5355433 A JP 5355433A JP 35543393 A JP35543393 A JP 35543393A JP 2982602 B2 JP2982602 B2 JP 2982602B2
Authority
JP
Japan
Prior art keywords
molten metal
probe
sample
analysis
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5355433A
Other languages
Japanese (ja)
Other versions
JPH07198708A (en
Inventor
正 望月
耀一 石橋
孝則 秋吉
明子 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP5355433A priority Critical patent/JP2982602B2/en
Publication of JPH07198708A publication Critical patent/JPH07198708A/en
Application granted granted Critical
Publication of JP2982602B2 publication Critical patent/JP2982602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • G01N1/125Dippers; Dredgers adapted for sampling molten metals

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、溶解精錬中の金属や
溶融亜鉛めっき浴等溶融状態の金属を凝固することなく
溶融した状態のまま迅速に分析する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for quickly analyzing a molten metal such as a hot-dip galvanizing bath or a metal being melted and refined without being solidified.

【0002】[0002]

【従来の技術】金属材料の製造工程において、近年、よ
り高度の管理を行うためにリアルタイムに高頻度或いは
連続的に溶融した状態の金属を分析する技術が嘱望され
ている。これに応えようとする分析技術に、センサー
法、直接発光分光法、気化搬送法などがあるが、センサ
ー法では分析成分が限定され又微量元素の定量が困難で
ある。直接発光法は溶融金属に放電やレーザー光照射或
いは火点により元素を励起し励起発光を分光し分析する
が、溶融金属表面の変動による発光点の位置的変動及び
紫外域の光が光ファイバーに吸収される等発光光を分光
器まで導く技術に問題があり、実用するに至っていな
い。この問題を回避したのが気化搬送法であり、気化の
方法に溶融金属中に不活性ガスや反応性ガスを吹き込む
方法や高密度エネルギーを投入する方法がある。ガス吹
き込み法では、不活性ガスの場合蒸気圧の相違による気
化成分選択性の問題があり、反応ガスの場合反応する成
分種が限定される問題がある。
2. Description of the Related Art In the production process of metal materials, in recent years, there has been a demand for a technique for analyzing metal in a frequently or continuously molten state in real time in order to perform higher-level management. Analytical techniques for responding to this include a sensor method, a direct emission spectroscopy method, and a vaporization transfer method. However, in the sensor method, analytical components are limited and it is difficult to quantify trace elements. In the direct light emission method, the molten metal is excited by discharging, irradiating a laser beam, or exothermic element to excite and emit light, and the excitation light is spectrally analyzed and analyzed. There is a problem with the technique for guiding the emitted light to the spectroscope, and it has not been put to practical use. This problem has been avoided by the vaporization transfer method, which includes a method of blowing an inert gas or a reactive gas into the molten metal and a method of applying high-density energy to the molten metal. In the gas injection method, there is a problem of gaseous component selectivity due to a difference in vapor pressure in the case of an inert gas, and there is a problem that the type of reacting component is limited in the case of a reactive gas.

【0003】高密度エネルギー投入法の中に、従来、レ
ーザー光を照射するレーザー気化分析法がある。例え
ば、特開昭60−61657号公報には、溶融金属にプ
ローブを接触させてパルスレーザー光を照射して気化す
る試料を採取し、この試料をプローブから遠隔に位置す
る分析計器に搬送して成分を分析する方法が開示されて
いる。
[0003] Among the high-density energy input methods, there is a laser vaporization analysis method of irradiating a laser beam. For example, Japanese Patent Application Laid-Open No. 60-61657 discloses that a probe is brought into contact with a molten metal, a pulsed laser beam is irradiated to collect a sample to be vaporized, and the sample is conveyed to an analytical instrument located remotely from the probe. A method for analyzing a component is disclosed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、パルス
レーザ光を照射して気化させる場合にも、気化する率が
成分によってかなり異なり気化し易い成分を選択的に採
取してしまうことや採取量が不足する成分等があり、満
足な分析精度が得られないとの問題が残されていた。
However, even in the case of vaporizing by irradiating a pulsed laser beam, the rate of vaporization varies considerably depending on the components, and the components that are easily vaporized are selectively collected or the amount of collection is insufficient. However, there remains a problem that there are components and the like, and satisfactory analysis accuracy cannot be obtained.

【0005】この問題を解決するためにこの発明は行わ
れたもので、試料の採取条件を吟味することによって、
採取試料の試料代表性を高めるとともに検出に必要な量
を確保して溶融金属に対する精度の高い分析技術を提供
することを目的とする。
[0005] The present invention has been made to solve this problem, and by examining the sampling conditions,
An object of the present invention is to provide a highly accurate analysis technique for molten metal by increasing the sample representativeness of a collected sample and securing an amount necessary for detection.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
の手段は、不活性な搬送ガスをプローブに送りこのプロ
ーブ内で溶融金属にパルスレーザー光を照射し発生する
微粒子試料を検出器に搬送して元素分析を行うレーザー
気化分析方法において、溶融金属表層の異物を除いて分
析試料を不活性ガス雰囲気のプローブ内に導入し、この
分析試料に、パルス半値幅50nsec以上500nsec以下
のパルスレーザー光をエネルギー密度0.5GW/cm2
上50GW/cm2 以下、発振周波数100Hz 以上で照射
して試料を採取する溶融金属のレーザー気化分析方法
と、この方法の実施態様及びこれらの方法を実施するの
に適した装置であり、実施態様は、プローブ内に搬送ガ
スを送り込み先端の試料導入口から排気しながら、この
試料導入口を溶融金属表面に接触させてプローブ内を加
圧状態にして溶融金属中に挿入し、分析試料を導入後加
圧状態を解除することによって、溶融金属表層の異物を
除いて分析試料を導入する前記溶融金属のレーザー気化
分析方法であり、装置は、パルスレーザ光の照射装置、
レーザー光透過窓と試料導入口と搬送ガスの導入出口を
有するプローブ、及びプローブと搬送管で接続された検
出器とからなるレーザー気化分析装置において、プロー
ブが内筒と外筒を有する二重構造であって、内筒の上面
に透過窓を下部に溶融金属が導出入される開口部を有
し、搬送ガスの導入口が透過窓側に設けられ且つ外筒に
通じる搬送ガスの導出部が開口部側に設けられて搬送ガ
スが透過窓から分析試料に向かって流れる流路を形成
し、外筒に設けられた搬送管への流出口に搬送ガスの流
れを抑制する機構を有する溶融金属のレーザー気化分析
装置である。
Means for achieving the object are to send an inert carrier gas to a probe, irradiate the molten metal with a pulsed laser beam in the probe, and transport the generated fine particle sample to a detector. In the laser vaporization analysis method in which the elemental analysis is performed, a foreign substance on the surface of the molten metal is removed, and the analytical sample is introduced into a probe in an inert gas atmosphere. the energy density of 0.5GW / cm 2 or more 50GW / cm 2 or less, to implement a laser vaporization analytical method of molten metal taking a sample by irradiating the oscillation frequency 100Hz or more, the embodiments and the methods of the method In the embodiment, the carrier gas is fed into the probe and exhausted from the sample inlet at the tip, and the sample inlet is connected to the molten metal surface. The laser of the molten metal to introduce the analysis sample by removing the foreign material on the surface layer of the molten metal by bringing the probe into a pressurized state and inserting it into the molten metal by bringing it into contact with the probe and releasing the pressurized state after introducing the analysis sample. It is a vaporization analysis method, the apparatus is a pulse laser light irradiation apparatus,
In a laser vaporization analyzer consisting of a probe having a laser light transmission window, a sample inlet, and a carrier gas inlet / outlet, and a detector connected to the probe and a carrier pipe, a double structure in which the probe has an inner cylinder and an outer cylinder An upper portion of the inner cylinder has an opening through which the molten metal is led out of the lower portion of the transmission window, an inlet for the carrier gas is provided on the transmission window side, and an outlet for the carrier gas leading to the outer cylinder has an opening. Of the molten metal having a mechanism provided on the side of the section for forming a flow path through which the carrier gas flows from the transmission window toward the analysis sample, and having a mechanism for suppressing the flow of the carrier gas at the outlet to the carrier pipe provided in the outer cylinder. It is a laser vaporization analyzer.

【0007】[0007]

【作用】溶融金属からレーザー光照射により採取された
試料(以下、採取試料と称す)が、その成分比が元の溶
融金属と同じであることが理想であるが、蒸発温度の相
違等により実際には成分比が相違して来る。この相違
は、検量線を用いることによって補正されるので、この
相違が一定の関係にあれば問題はない。分析毎に起こる
この一定の関係からの変動が分析精度を低下させる原因
の一つである。
[Function] Ideally, a sample collected from a molten metal by laser irradiation (hereinafter referred to as a "collected sample") has the same component ratio as the original molten metal. Has a different component ratio. Since this difference is corrected by using the calibration curve, there is no problem if the difference has a certain relationship. Variations from this fixed relationship that occur with each analysis are one of the causes of a decrease in analysis accuracy.

【0008】上記の変動の原因となるものに異物の混入
とレーザー光照射条件がある。異物の混入については、
器具の清浄度や搬送ガスの純度以外に溶融金属の表層の
影響が大きい。溶融金属では表層に大気中の酸素によっ
て酸化された酸化物の他に未溶解の化合物が浮上してい
る。鋼中の介在物やめっき浴中のドロスなどである。こ
れらの異物は、先ず溶融金属の表層を除いてから分析試
料を採取することによってその混入を避けることができ
る。
[0008] The factors causing the above fluctuations include the mixing of foreign matter and the conditions of laser beam irradiation. As for foreign matter,
In addition to the cleanliness of the equipment and the purity of the carrier gas, the influence of the surface layer of the molten metal is significant. In the molten metal, undissolved compounds as well as oxides oxidized by oxygen in the atmosphere float on the surface layer. Inclusions in steel and dross in plating baths. These contaminants can be avoided by first removing the surface layer of the molten metal and then collecting an analysis sample.

【0009】表層を除く方法として、温度測定用などの
一般のプローブではその開口部を蓋や栓で塞いだ状態で
表層を通過させてプローブを挿入し、溶融金属によって
この蓋や栓が溶けて侵入してきた金属を分析対象とする
方法がよく知られている。しかし、レーザー気化分析で
は、蓋や栓で溶融金属が汚染されては困るし、又プロー
ブ内は常に不活性な搬送ガスで満たされているので、開
口部が溶融金属表面に接した状態ではこのガスの搬送流
路を狭めたり止めたりしてプローブ内を加圧状態にする
ことができる。こうしてプローブを溶融金属中に挿入す
れば、表層はプローブ内に侵入して来ない。異物を含む
表層を開口部が通過した後に加圧状態を解除すれば、表
層が除かれた溶融金属のみが分析試料としてプローブ内
に導入される。
As a method for removing the surface layer, in the case of a general probe for temperature measurement or the like, the probe is inserted through the surface layer while the opening is closed with a lid or plug, and the lid or plug is melted by molten metal. Methods for analyzing invading metals are well known. However, in the laser vaporization analysis, it is not necessary to contaminate the molten metal with a lid or stopper, and since the inside of the probe is always filled with an inert carrier gas, the probe may be contaminated when the opening is in contact with the molten metal surface. The inside of the probe can be pressurized by narrowing or stopping the gas flow path. Thus, when the probe is inserted into the molten metal, the surface layer does not enter the probe. If the pressurized state is released after the opening has passed through the surface layer containing foreign matter, only the molten metal from which the surface layer has been removed is introduced into the probe as an analysis sample.

【0010】次に、導入された溶融金属にパルスレーザ
ーを照射して試料を採取する。レーザー光照射条件につ
いては、先に発明者らは固体試料について調べ、特願昭
平5−159416号にて、パルス半値幅、エネルギー
密度、発振周波数、及び照射点移動速度等の分析精度へ
の影響を明らかにした。即ち、分析精度を高めるために
は、蒸気圧の小さい成分でもその気化量を確保し、且つ
母試料中の濃度と採取試料中の濃度との比(以下、選択
採取率と称す)を1に近づけることが効果をもたらす。
その後、溶融試料について詳細に検討した結果この発明
に至ったものである。
Next, a sample is collected by irradiating the introduced molten metal with a pulse laser. Regarding the conditions of laser beam irradiation, the inventors first examined solid samples, and in Japanese Patent Application No. 5-159416, the influence of pulse half-width, energy density, oscillation frequency, irradiation point moving speed, etc. on analysis accuracy was examined. Revealed. That is, in order to enhance the analysis accuracy, the vaporization amount is ensured even for the component having a small vapor pressure, and the ratio between the concentration in the mother sample and the concentration in the collected sample (hereinafter, referred to as a selective collection rate) is set to 1. Bringing it closer has an effect.
After that, the inventors of the present invention have studied the molten sample in detail, and have reached the present invention.

【0011】溶融金属においても、気化速度の分析精度
への影響は大きい。溶融亜鉛めっき浴にパルスレーザー
光を照射し、エネルギー密度を変えることにより気化速
度を変えて分析精度を調べた結果を図2に示す。
[0011] Even in the case of molten metal, the vaporization rate has a large effect on the analysis accuracy. FIG. 2 shows the results obtained by irradiating the hot dip galvanizing bath with a pulsed laser beam and changing the energy density to change the vaporization rate and the analysis accuracy.

【0012】Znに混入しているAlとFeについて、
10回繰り返し測定した場合の分析値の相対標準偏差を
気化速度に対して示したものである。
Regarding Al and Fe mixed in Zn,
It shows the relative standard deviation of the analysis value when the measurement is repeated 10 times with respect to the vaporization rate.

【0013】Al、Fe共に、気化速度が大きくなると
相対標準偏差は小さくなり分析精度が高くなる。又、溶
融金属においても、選択採取率の分析精度への影響は大
きい。溶鋼にパルスレーザー光を照射し、パルス半値幅
を変えることにより選択採取率を変えて分析精度を調べ
た結果を図3に示す。鋼中のC、Si、Mnについて、
繰り返し測定した場合の分析の相対標準偏差を選択採取
率に対して示したものである。
When the vaporization rate of both Al and Fe increases, the relative standard deviation decreases and the analysis accuracy increases. Also, in the case of molten metal, the influence of the selective sampling rate on the analysis accuracy is large. FIG. 3 shows the results obtained by irradiating the molten steel with a pulsed laser beam and changing the half-width of the pulse to change the selective sampling rate and the analysis accuracy. About C, Si, Mn in steel,
The relative standard deviation of the analysis when the measurement is repeated is shown with respect to the selective collection rate.

【0014】選択採取率が1に近づく程相対標準偏差は
小さくなり分析精度が高くなる。溶融金属では、固体金
属と異なりレーザーを照射せずとも蒸気圧の大きい成分
は少なからぬ量が気化している。この状態は、最も選択
採取率が1から隔たった状態である。パルス半値幅を小
さくすることによって、気化速度は減ずるが、選択蒸発
が防がれ選択蒸発率は1に近づく。溶融金属の場合は、
適切なパルス半値幅の範囲は固体の場合よりも狭くな
る。
As the selective sampling rate approaches 1, the relative standard deviation decreases and the analysis accuracy increases. In a molten metal, unlike a solid metal, a considerable amount of a component having a high vapor pressure is vaporized without irradiating a laser. This state is a state where the selective collection rate is most apart from one. By reducing the pulse half width, the vaporization rate is reduced, but selective evaporation is prevented, and the selective evaporation rate approaches 1. For molten metal,
The range of the appropriate half width of the pulse is narrower than that of the solid.

【0015】パルス半値幅が50nsecより小さいと気化
速度が小さく、微量成分や蒸気圧の小さい成分の採取量
が不十分となり、分析精度が低下する。又、500nsec
より大きいと選択蒸発の傾向が大きくなり、これも分析
精度の低下を来たす。
If the half width of the pulse is less than 50 nsec, the vaporization rate is low, and the amount of trace components and components having a low vapor pressure is insufficient, resulting in a decrease in analysis accuracy. Also, 500nsec
If it is larger, the tendency of selective evaporation increases, which also lowers the analysis accuracy.

【0016】パルス半値幅が50nsec以上であっても、
パルスのエネルギー密度が0.5GW/cm2 に満たないと
気化量が不足し高い分析精度は得られない。エネルギー
密度は大きいほど気化量は多く又選択採取率も1に近づ
き分析精度には相乗的に作用する。但し、エネルギー密
度には上限があり、50GW/cm2 を超えるとレーザー光
の電磁気的或いは熱的作用により雰囲気気体がプラズマ
化する現象が現れ、これにエネルギーが消耗され気化量
は極度に減ずる。
Even if the half width of the pulse is 50 nsec or more,
If the energy density of the pulse is less than 0.5 GW / cm 2 , the amount of vaporization is insufficient and high analysis accuracy cannot be obtained. The larger the energy density is, the larger the amount of vaporization is, and the selective sampling rate approaches 1, which has a synergistic effect on the analysis accuracy. However, there is an upper limit to the energy density. If the energy density exceeds 50 GW / cm 2 , a phenomenon occurs in which the atmospheric gas is turned into plasma by the electromagnetic or thermal action of the laser light, and the energy is consumed and the amount of vaporization is extremely reduced.

【0017】発振周波数が小さ過ぎると、気化速度が劣
るとともに検出器に導入される試料量も一定と見なせな
くなり分析精度は低下する。この低下を防ぐには、発振
周波数は100Hz以上であれば十分である。
If the oscillation frequency is too low, the vaporization rate is inferior, and the amount of the sample introduced into the detector cannot be regarded as being constant, so that the analysis accuracy decreases. To prevent this decrease, it is sufficient that the oscillation frequency is 100 Hz or more.

【0018】この分析法を実行するためには、プローブ
が溶融金属により損傷を受けないもので、プローブ内を
簡単に加圧或いは減圧することができ、且つ、レーザー
光が変動なく溶融金属面に照射される装置が適してい
る。
In order to carry out this analysis method, the probe is not damaged by the molten metal, the inside of the probe can be easily pressurized or depressurized, and the laser beam does not fluctuate on the molten metal surface. Irradiated devices are suitable.

【0019】レーザー光の照射に変動をもたらす因子に
溶融金属からの蒸気がある。これが、レーザー光透過窓
に付着すると光の透過量を減ずるばかりでなく、エネル
ギー密度を低下させることもある。
Factors that cause fluctuations in laser light irradiation include vapor from molten metal. When this adheres to the laser light transmission window, not only does the amount of transmitted light decrease, but also the energy density may decrease.

【0020】溶融金属の表面は水平面となっているの
で、上からレーザー光を照射したときエネルギー密度は
最大となる。このため、プローブの上面に透過窓を設け
下部に溶融金属が導出入される開口部を設ける。そし
て、搬送ガスの導入部を透過窓側に設け導出部を開口部
側に設けて搬送ガスが透過窓から分析試料に向かって流
れる流路を形成すると、溶融金属面からの気化物は透過
窓に達する前に搬送ガスによって導出部に運び去られ、
透過窓に付着することが避けられる。
Since the surface of the molten metal is a horizontal plane, the energy density becomes maximum when a laser beam is irradiated from above. For this purpose, a transmission window is provided on the upper surface of the probe, and an opening through which the molten metal is guided is provided below the probe. When the introduction part of the carrier gas is provided on the transmission window side and the outlet part is provided on the opening side to form a flow path in which the carrier gas flows from the transmission window toward the analysis sample, vaporized substances from the molten metal surface pass through the transmission window. Before it reaches the outlet by the carrier gas,
Adherence to the transmission window is avoided.

【0021】更に、プローブを内筒と外筒を有する二重
構造とすると、溶融金属の周囲を取り巻いて導出部を設
けることが出来、この導出部では流路抵抗が小さく又気
化物が内筒内を漂うことなく、これを導出することがで
きる。
Further, if the probe has a double structure having an inner tube and an outer tube, a lead-out portion can be provided around the periphery of the molten metal. This can be derived without drifting inside.

【0022】外筒に設けられた搬送管への流出口に搬送
ガスの流れを抑止する機構を備えるのは、プローブ内の
圧力を簡単に増圧し或いは定圧に戻すためである。
The reason why the mechanism for suppressing the flow of the carrier gas is provided at the outlet to the carrier pipe provided in the outer cylinder is to easily increase the pressure in the probe or return it to a constant pressure.

【0023】[0023]

【実施例】溶鋼、亜鉛めっき浴、アルミニウムめっき浴
等の溶融金属を分析し、分析精度を調べた。
EXAMPLE A molten metal such as a molten steel, a galvanizing bath, and an aluminum plating bath was analyzed, and the analysis accuracy was examined.

【0024】用いた装置の概要を図1に示す。プローブ
1は内筒2と外筒3とからなる二重構造となっており、
透過窓4の近くに搬送ガスの導入口5を又下方に導出部
6を設けた。透過窓4は石英製である。プローブ1の最
下端は開口部7となり溶融金属8が出入する。流出口9
と搬送管10との間にコック11を設けプローブ内の圧
力を調整出来るようにした。搬送管10は検出器12に
接続する。レーザー光13はレーザー光照射装置14か
ら発射され透過窓4を通ってプローブ1に導入された分
析試料に照射される。
FIG. 1 shows an outline of the apparatus used. The probe 1 has a double structure consisting of an inner cylinder 2 and an outer cylinder 3,
An inlet 5 for the carrier gas was provided near the transmission window 4, and an outlet 6 was provided below. The transmission window 4 is made of quartz. The lowermost end of the probe 1 becomes an opening 7 and the molten metal 8 enters and exits. Outlet 9
A cock 11 is provided between the probe and the transfer pipe 10 so that the pressure in the probe can be adjusted. The transfer pipe 10 is connected to the detector 12. The laser light 13 is emitted from the laser light irradiation device 14 and passes through the transmission window 4 to irradiate the analysis sample introduced into the probe 1.

【0025】レーザー光照射装置14は、レーザー発振
器からのレーザー光を反射鏡で光路を調整し集光レンズ
で分析試料表面に集光させるもので、レーザー発振器に
は超音波Qスイッチ付きNd:YAGレーザーを用い
た。検出器12には高周波誘導結合プラズマ発光分光分
析機を用いた。
The laser beam irradiator 14 adjusts the optical path of the laser beam from the laser oscillator with a reflecting mirror and focuses the laser beam on the surface of the sample to be analyzed with a condenser lens. The laser oscillator has an Nd: YAG with an ultrasonic Q switch. A laser was used. A high frequency inductively coupled plasma emission spectrometer was used as the detector 12.

【0026】搬送ガスには高純度Arを用い、搬送ガス
を分析系内に流し内部を浄化後、コック11を閉じて開
口部7から排気しながらプローブ1を溶融金属中にゆっ
くり浸漬した。約20mmの深さに浸漬後コックを開き
溶融金属のみを導入した。
The probe 1 was slowly immersed in the molten metal while the cock 11 was closed and exhausted from the opening 7 after the carrier gas was flown into the analysis system to purify the inside. After immersion to a depth of about 20 mm, the cock was opened and only the molten metal was introduced.

【0027】レーザーの照射条件及び分析精度を表1に
示す。分析精度は、同一条件で10回繰り返し測定した
分析値の相対標準偏差で評価した。
Table 1 shows laser irradiation conditions and analysis accuracy. The analysis accuracy was evaluated based on the relative standard deviation of the analysis values repeatedly measured 10 times under the same conditions.

【0028】[0028]

【表1】 [Table 1]

【0029】この発明の実施例では、溶鋼、Zn浴、A
l浴とも、全ての成分で相対標準偏差は3%以下であっ
たが、比較例では何れの溶融金属にも相対標準偏差4%
以上の成分が見られた。
In the embodiment of the present invention, molten steel, Zn bath, A
The relative standard deviation was 3% or less for all the components in each of the 1 baths. However, in the comparative example, the relative standard deviation was 4% for all the molten metals.
The above components were found.

【0030】[0030]

【発明の効果】この発明によれば、パルスレーザー光の
照射条件を整理して選択採取率を1に近づけるととに採
取量を充分に確保し、更に異物の混入防止対策が講ぜら
れているので、溶融金属を高い分析精度で直接分析する
ことが出来る。この結果、厳密な製造工程の管理が可能
となり、高品質材料の高効率生産に寄与したこの発明の
効果は大きい。
According to the present invention, the conditions for irradiating the pulsed laser beam are arranged so that the selective sampling rate is close to 1, a sufficient amount of sampling is ensured, and measures are taken to prevent foreign matter from being mixed. Therefore, the molten metal can be directly analyzed with high analysis accuracy. As a result, strict control of the manufacturing process becomes possible, and the effect of the present invention which contributes to the efficient production of high quality materials is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の実施例に用いたレーザー気化分析装置の
概念図である。
FIG. 1 is a conceptual diagram of a laser vaporization analyzer used in an embodiment of the present invention.

【図2】気化速度と相対標準偏差との関係を示す図であ
る。
FIG. 2 is a diagram showing a relationship between a vaporization rate and a relative standard deviation.

【図3】選択採取率と相対標準偏差との関係を示す図で
ある。
FIG. 3 is a diagram showing a relationship between a selective sampling rate and a relative standard deviation.

【符号の説明】[Explanation of symbols]

1 プローブ 2 内筒 3 外筒 4 透過窓 5 導入口 6 導出部 7 開口部 8 溶融金属 9 流出口 10 搬送管 11 コック 12 検出器 13 レーザー光 14 レーザー照射装置。 DESCRIPTION OF SYMBOLS 1 Probe 2 Inner cylinder 3 Outer cylinder 4 Transmission window 5 Inlet 6 Outlet 7 Opening 8 Molten metal 9 Outflow port 10 Conveyance pipe 11 Cock 12 Detector 13 Laser beam 14 Laser irradiation device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂下 明子 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭58−102137(JP,A) 特開 昭63−30746(JP,A) 特開 平5−99916(JP,A) 特開 昭60−122354(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 1/28 G01N 21/73 G01N 33/20 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Akiko Sakashita 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-58-102137 (JP, A) JP-A-63 -30746 (JP, A) JP-A-5-99916 (JP, A) JP-A-60-122354 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 1/28 G01N 21/73 G01N 33/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】不活性な搬送ガスをプローブに送りこのプ
ローブ内で溶融金属にパルスレーザー光を照射し発生す
る微粒子試料を検出器に搬送して元素分析を行うレーザ
ー気化分析方法において、溶融金属表層の異物を除いて
分析試料を不活性ガス雰囲気のプローブ内に導入し、こ
の分析試料に、パルス半値幅50nsec以上500nsec以
下のパルスレーザー光をエネルギー密度0.5GW/cm2
以上50GW/cm2 、発振周波数100Hz 以上で照射し
て微粒子試料を採取することを特徴とする溶融金属のレ
ーザー気化分析方法。
1. A laser vaporization analysis method for sending an inert carrier gas to a probe, irradiating the molten metal with a pulse laser beam in the probe, and transporting a generated fine particle sample to a detector for elemental analysis. An analysis sample is introduced into the probe in an inert gas atmosphere except for foreign substances on the surface layer, and a pulse laser beam having a half width at half maximum of 50 nsec to 500 nsec is applied to the analysis sample at an energy density of 0.5 GW / cm 2.
A laser vaporization analysis method for molten metal, comprising irradiating at a rate of 50 GW / cm 2 or more at an oscillation frequency of 100 Hz or more and collecting a fine particle sample.
【請求項2】プローブ内に搬送ガスを送り込み先端の試
料導入口から排気しながら、この試料導入口を溶融金属
表面に接触させてプローブ内を加圧状態にして溶融金属
中に挿入し、分析試料を導入後加圧状態を解除すること
によって、溶融金属表層の異物を除いて分析試料を導入
する請求項1記載の溶融金属のレーザー気化分析方法。
2. A sample carrier is fed into the probe and exhausted from the sample inlet at the tip of the probe. The sample inlet is brought into contact with the surface of the molten metal to pressurize the inside of the probe and insert the sample into the molten metal. 2. The method for laser vaporization analysis of molten metal according to claim 1, wherein the pressurized state is released after introducing the sample to remove the foreign matter on the surface layer of the molten metal to introduce the analysis sample.
【請求項3】パルスレーザ光の照射装置、レーザー光透
過窓と試料導入口と搬送ガスの導入出口を有するプロー
ブ、及びプローブと搬送管で接続された検出器とからな
るレーザー気化分析装置において、プローブが内筒と外
筒を有する二重構造であり、内筒の上面に透過窓を下部
に溶融金属が導出入される開口部を有し、搬送ガスの導
入口が透過窓側に設けられ且つ外筒に通じる搬送ガスの
導出部が開口部側に設けられて搬送ガスが透過窓から分
析試料に向かって流れる流路を形成し、外筒に設けられ
た搬送管への流出口に搬送ガスの流れを抑制する機構を
有することを特徴とする溶融金属のレーザー気化分析装
置。
3. A laser vaporization analyzer comprising: a pulse laser beam irradiation device; a probe having a laser beam transmission window, a sample inlet, and a carrier gas inlet / outlet; and a probe and a detector connected by a carrier tube. The probe has a double structure having an inner cylinder and an outer cylinder, and has an opening through which a molten metal is led into and out of the upper surface of the inner cylinder at a lower portion of the transmission window, and an introduction port for the carrier gas is provided on the transmission window side; An outlet for the carrier gas leading to the outer cylinder is provided on the opening side to form a flow path for the carrier gas to flow from the transmission window toward the analysis sample, and the carrier gas is provided to an outlet to a carrier pipe provided in the outer cylinder. A laser vaporization analyzer for molten metal, comprising a mechanism for suppressing the flow of gas.
JP5355433A 1993-12-30 1993-12-30 Method and apparatus for laser vaporization analysis of molten metal Expired - Fee Related JP2982602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5355433A JP2982602B2 (en) 1993-12-30 1993-12-30 Method and apparatus for laser vaporization analysis of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5355433A JP2982602B2 (en) 1993-12-30 1993-12-30 Method and apparatus for laser vaporization analysis of molten metal

Publications (2)

Publication Number Publication Date
JPH07198708A JPH07198708A (en) 1995-08-01
JP2982602B2 true JP2982602B2 (en) 1999-11-29

Family

ID=18443928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5355433A Expired - Fee Related JP2982602B2 (en) 1993-12-30 1993-12-30 Method and apparatus for laser vaporization analysis of molten metal

Country Status (1)

Country Link
JP (1) JP2982602B2 (en)

Also Published As

Publication number Publication date
JPH07198708A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
Aragon et al. Determination of carbon content in molten steel using laser-induced breakdown spectroscopy
CA2490420C (en) Method and apparatus for molten material analysis by laser induced breakdown spectroscopy
CA1272391A (en) Method of spectroscopically determining the composition of molten iron
JP2982602B2 (en) Method and apparatus for laser vaporization analysis of molten metal
JPH0772047A (en) Method and apparatus for laser vaporization analysis
JP4449188B2 (en) Method and apparatus for analyzing components in molten metal
Müller et al. Fast steel-cleanness characterization by means of laser-assisted plasma spectrometric methods
JPH0151939B2 (en)
WO2024135276A1 (en) Method of analyzing particle-containing liquid, method of maintaining hot-dip galvanizing bath, method of producing hot-dip galvanized steel sheet, and device for analyzing particle-containing liquid
JP3058043B2 (en) Probe and method for laser emission spectroscopy of molten metal
JP3039231B2 (en) Method and apparatus for rapid analysis of steel components
JP3736427B2 (en) Method and apparatus for analyzing components in molten metal
JPS6220497B2 (en)
JPH07234211A (en) Probe for molten metal laser emission spectral analysis and its analyzing method
Cremers et al. Direct solid metal analysis by laser ablation into the inductively coupled plasma
JPS60219538A (en) Inert gas blow-in type fine particle recovering and molten metal analytical method and apparatus therefor
JPH0149891B2 (en)
JPH0238901B2 (en)
JPH0215816B2 (en)
CN116802464A (en) Quantitative chemical analysis method and device for liquid metal and alloy
JPS59157541A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
JPH01227949A (en) Method and instrument for directly analyzing fine particle producing molten metal
JPH03248046A (en) Spectroscopic analysis method for plasma light emission from minute particle
JPH0215817B2 (en)
JPH07280797A (en) Speedy analysis method and device of molten steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990824

LAPS Cancellation because of no payment of annual fees