JP3039231B2 - Method and apparatus for rapid analysis of steel components - Google Patents

Method and apparatus for rapid analysis of steel components

Info

Publication number
JP3039231B2
JP3039231B2 JP5274590A JP27459093A JP3039231B2 JP 3039231 B2 JP3039231 B2 JP 3039231B2 JP 5274590 A JP5274590 A JP 5274590A JP 27459093 A JP27459093 A JP 27459093A JP 3039231 B2 JP3039231 B2 JP 3039231B2
Authority
JP
Japan
Prior art keywords
sample
analysis
fine particles
carrier gas
massive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5274590A
Other languages
Japanese (ja)
Other versions
JPH07128237A (en
Inventor
孝則 秋吉
正 望月
明子 坂下
洋一 丹村
弘明 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP5274590A priority Critical patent/JP3039231B2/en
Priority to US08/331,792 priority patent/US5537206A/en
Priority to KR1019940028544A priority patent/KR0178558B1/en
Priority to CN94118324A priority patent/CN1089164C/en
Publication of JPH07128237A publication Critical patent/JPH07128237A/en
Application granted granted Critical
Publication of JP3039231B2 publication Critical patent/JP3039231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、鉄鋼の精錬時に精錬
状況を把握するため迅速に溶鋼の化学組成を測定する技
術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for quickly measuring the chemical composition of molten steel in order to grasp the state of refining during the refining of steel.

【0002】[0002]

【従来の技術】鋼の成分組成は鋼の性質に大きく影響す
るので、その組成分析は品質管理上不可欠である。特
に、製鋼の酸素吹錬においては吹錬時間が15分程度と
短く、その末期において分析を行いデータをフィードバ
ックして鋼組成や溶鋼温度が予定範囲に収まるよう操業
管理するため、分析時間には秒単位での迅速さが要求さ
れている。
2. Description of the Related Art Since the composition of steel greatly affects the properties of steel, its composition analysis is indispensable for quality control. In particular, in oxygen blowing of steelmaking, the blowing time is as short as about 15 minutes, and the analysis is performed at the end of the period to feed back the data and control the operation so that the steel composition and the molten steel temperature fall within the planned range. Speed in seconds is required.

【0003】従来の鋼片の分析法としては、JIS−G
−1253等にも規定されているスパークやアークの放
電励起による発光分析法が主流である。この方法では、
塊状試料を適切に調製し、適切に分析することによっ
て、鋼組成の中でも特に重要な炭素の分析が比較的迅速
に行えることに特徴がある。
[0003] As a conventional method for analyzing a billet, JIS-G
The mainstream is an emission analysis method by spark or arc discharge excitation specified in -1253 and the like. in this way,
It is characterized in that, by appropriately preparing and appropriately analyzing a massive sample, the analysis of carbon, which is particularly important in the steel composition, can be performed relatively quickly.

【0004】この適切な調整、適切な条件として、次の
点が挙げられる。放電点の選択性を避けるため、試料の
分析部を平滑にし且つ表面粗度を一定にすること、試料
温度の測定値への影響が大きく、試料温度を一定領域内
に制御すること、分析部にピンホール等の欠陥があると
異常放電を生じて正しい結果が得られないので、繰り返
し測定により異常放電を識別しその結果を排除すること
である。
[0004] The appropriate adjustment and appropriate conditions include the following. In order to avoid the selectivity of the discharge point, the analysis part of the sample should be smooth and the surface roughness should be constant, the influence of the sample temperature on the measured value should be large, and the sample temperature should be controlled within a certain range. If there is a defect such as a pinhole, abnormal discharge occurs and a correct result cannot be obtained. Therefore, it is necessary to identify abnormal discharge by repeated measurement and eliminate the result.

【0005】このような、条件を維持するために分析の
迅速さが制約されていた。即ち、溶鋼試料を採取後から
分析装置にセットするまでの間に、採取試料の搬送、冷
却、切断、切断面の粗研磨、仕上げ研磨による表面粗度
調整等の調製が必要であり、更に、複数箇所を分析しな
ければならない。
In order to maintain such conditions, the speed of analysis has been limited. That is, before the molten steel sample is collected and before it is set in the analyzer, transport of the collected sample, cooling, cutting, rough polishing of the cut surface, preparation of surface roughness adjustment by finish polishing, etc., are necessary. Multiple locations must be analyzed.

【0006】これらの制約に対し、その対策が提案され
ている。例えば、特開平3−261843号公報には、
粗研磨と仕上げ研磨とを砥石回転速度と接触圧を制御す
ることにより使い分け、同一装置で連続して行うことに
より試料の装置への取付け取り外し時間を節約する方法
が開示されている。又、特開昭62−220835号公
報には、温度の影響を除くために塊状試料の温度を測定
し分析値を補正することによって、室温まで冷却するの
を待たずに、高温試料を分析する技術が示されている。
更に、特開昭62−245946号公報には、ピンホー
ル等の欠陥対策として、画像処理装置を設けて不良位置
を避けて放電位置を設定する技術が開示されている。
[0006] Measures have been proposed for these restrictions. For example, in Japanese Patent Application Laid-Open No. 3-261842,
A method is disclosed in which rough polishing and finish polishing are selectively used by controlling the rotation speed and contact pressure of a grindstone, and the same device is continuously used to save time for mounting and removing a sample to and from a device. Japanese Patent Application Laid-Open No. 62-220835 discloses a method for analyzing a high-temperature sample without waiting for cooling to room temperature by measuring the temperature of a massive sample and correcting the analysis value. The technology is shown.
Further, Japanese Patent Application Laid-Open No. 62-245946 discloses a technique for setting a discharge position avoiding a defective position by providing an image processing device as a measure against a defect such as a pinhole.

【0007】一方、塊状試料を直接に発光させず、これ
に不活性ガス雰囲気の試料室でレーザーを照射しその一
部を気化して微粒子化し、この微粒子をICP(高周波
誘導結合プラズマ)分析装置等に導いて発光させ或いは
イオン化して分析する方法(レーザー/ICP分析と称
す)がある。この方法では、炭素の分析精度に疑問があ
り、鋼成分分析では実用されていないが、操作時間の短
縮化は試みられている。例えば、特開平3−16744
6号公報には、試料室の下半部を摺動可能とすることに
よって、試料室への塊状試料の脱着及び位置の調製を容
易にする試料交換装置が開示されている。
On the other hand, a massive sample is not directly emitted, but is irradiated with a laser in a sample chamber in an inert gas atmosphere, and a part of the sample is vaporized into fine particles. The fine particles are analyzed by an ICP (High Frequency Inductively Coupled Plasma) analyzer. There is a method (referred to as laser / ICP analysis) in which light is emitted or ionized for analysis. In this method, the accuracy of carbon analysis is questionable and is not practical in steel composition analysis, but attempts have been made to shorten the operation time. For example, Japanese Unexamined Patent Publication No. Hei.
No. 6 discloses a sample exchange device which makes the lower half of the sample chamber slidable, thereby facilitating attachment and detachment of the massive sample to the sample chamber and adjustment of the position.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
3−261843号公報、特開昭62−245946号
公報及び特開平3−167446号公報による技術は何
れも試料の切断調製が不可避との前提に立っての改良で
あり、若干の時間短縮を可能とするが大幅な迅速性向上
には至っていない。又、特開昭62−220835号公
報による技術は試料温度の影響を大きく受けるという発
光分析が持つ欠点を本質的に解消するものではないの
で、開示された方法での補正は制約された温度範囲内で
有効なものである。開示されている検討範囲は200℃
までで、赤熱状態の1000℃程度の高温試料について
の効果、信頼性は疑問である。
However, any of the techniques disclosed in Japanese Patent Application Laid-Open Nos. 3-261843, 62-245946 and 3-167446 is based on the premise that cutting preparation of a sample is inevitable. This is a stand-alone improvement that allows a slight reduction in time, but has not significantly improved the speed. Also, the technique disclosed in Japanese Patent Application Laid-Open No. 62-220835 does not essentially eliminate the drawback of emission spectroscopy, which is greatly affected by the sample temperature, so that the correction by the disclosed method is restricted to a limited temperature range. Is valid within. The disclosed study range is 200 ° C
Up to this point, the effect and reliability of a hot sample of about 1000 ° C. in a red-hot state are questionable.

【0009】このように、従来の迅速分析技術では、発
光分析においては平滑で表面粗度が一定で欠陥の無い分
析面を得るための試料調製を必要とし、且つ試料温度の
影響が大きく高温試料に対する分析値の保証が得られな
いので、分析の迅速化に限界があり、又、従来のレーザ
ー/ICP分析でも試料調製を前提とするので同じよう
に迅速化に限界があるとともに、炭素成分の分析値に対
する疑問が残されたままであった。
As described above, the conventional rapid analysis technique requires a sample preparation for obtaining an analysis surface that is smooth, has a constant surface roughness, and has no defect in emission spectrometry, and has a large influence of the sample temperature, and has a large influence on a high-temperature sample. Since the analysis value cannot be guaranteed, there is a limit to the speed of analysis, and the conventional laser / ICP analysis also has a limit to the speedup because sample preparation is premised. Questions about the analytical values remained.

【0010】この発明は、この問題を解決するためにな
されたもので、塊状試料の試料調製及び冷却を不要とし
て従来の迅速化の限界を打ち破るとともに炭素成分分析
の対策も含めて、より迅速な鋼成分の分析技術を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve this problem, and it does not require the preparation and cooling of a massive sample, which overcomes the conventional limitation of speeding up, and includes a more rapid measure including a measure for carbon component analysis. An object of the present invention is to provide a technique for analyzing steel components.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
の手段は、溶鋼の一部を採取し凝固させた塊状試料につ
いてレーザー/ICP分析によりその溶鋼の成分組成を
測定する迅速分析において、塊状試料を赤熱状態のまま
で分析装置の不活性ガス雰囲気の試料室内の試料保持部
に投入し、前記塊状試料の表面にパルスレーザー光を照
射して発生する微粒子をICP分析器に不活性ガスで搬
送し、表面下25μm以上の深さから発生した微粒子の
みを検出対象として、成分を分析することを特徴とする
鋼成分迅速分析方法である。また、この方法を実行する
ための装置の1つとしては、所定形状の塊状試料を収納
する試料室と、この塊状試料にパルスレーザー光を照射
し微粒子を発生させるためのレーザー発振器と、発生し
た微粒子を搬送してその成分を分析するためのICP分
析器と、搬送ガスを前記試料室に送り更に試料室と前記
ICP分析器を連絡する搬送ガス配管系とを備えてお
り、前記試料室が分析セル部とこれに露出孔で連通する
試料保持部とからなり、この分析セル部が、前記露出口
を介して試料へレーザー光が照射されるように内部にレ
ーザー光を通すとともに、生じた微粒子を不活性な搬送
ガスを流通させて前記ICP分析器に搬送するよう構成
されており、かつ、この試料保持部が前記所定形状の塊
状試料と同一曲面を有することを特徴とする鋼成分迅速
分析装置である。
Means for achieving the above object is to provide a rapid analysis for measuring the component composition of molten steel by laser / ICP analysis on a massive sample obtained by collecting a part of molten steel and solidifying it. The sample is put into a sample holding section in a sample chamber in an inert gas atmosphere of an analyzer in a red-hot state, and fine particles generated by irradiating the surface of the massive sample with a pulse laser beam are supplied to an ICP analyzer with an inert gas. This is a steel component rapid analysis method characterized in that the component is analyzed by analyzing only the fine particles that have been conveyed and generated from a depth of 25 μm or more below the surface. In addition, as one of the apparatuses for performing this method, a sample chamber for storing a massive sample having a predetermined shape, a laser oscillator for irradiating the massive sample with pulsed laser light to generate fine particles, An ICP analyzer for transporting the fine particles and analyzing their components, and a carrier gas piping system for sending a carrier gas to the sample chamber and further connecting the sample chamber and the ICP analyzer, wherein the sample chamber is An analysis cell portion and a sample holding portion communicating with the analysis hole portion through an exposure hole are provided.
The laser is irradiated inside the sample through the
Pass the laser light and inactive transport the generated fine particles
Configured to circulate gas and transport it to the ICP analyzer
And the sample holding part has the same curved surface as the bulk sample of the predetermined shape.

【0012】更に、上記の鋼成分迅速分析方法及び装置
の各々の好ましい態様である方法と装置であって、搬送
ガス配管系の管材料が金属又は硝子であって搬送ガスを
試料室に送る配管系に搬送ガス中の炭素成分を除去する
ガス精製装置を備え、且つ、試料室が搬送ガスの流出入
口を除き密閉され、保持される試料の酸化を防止する機
構を試料保持部が有している前記の鋼成分迅速分析装
置、及び、不活性ガスとしてArガスを用いこれを高度
に精製して含まれる炭素量を1μg/L以下として使用す
るとともに、塊状試料を不活性ガス雰囲気の試料保持部
に投入した後その酸化を防止し、且つ、100Hz 以上
の周波数で発振するパルスレーザーを用いて、レーザー
光の照射点密度を108 W/cm2 以上1011W/cm2 以下と
し照射点位置を移動させながらレーザー光の照射を行う
前記の鋼成分迅速分析方法である。
Further, in the method and the apparatus, which are preferred embodiments of the above-described method and apparatus for rapid analysis of steel components, the pipe material of the carrier gas piping system is metal or glass, and the pipe for sending the carrier gas to the sample chamber. The system is equipped with a gas purification device for removing carbon components in the carrier gas, and the sample chamber has a mechanism for preventing the sample from being oxidized by keeping the sample chamber closed except for the inlet and outlet of the carrier gas. The above-mentioned steel component rapid analyzer and the use of Ar gas as an inert gas, which is highly refined to use a carbon content of 1 μg / L or less, and retains a massive sample in an inert gas atmosphere Using a pulsed laser that oscillates at a frequency of 100 Hz or more, the irradiation spot density of the laser light is set to 10 8 W / cm 2 or more and 10 11 W / cm 2 or less, and the oxidation is prevented. Do not move the position This is a method for rapid analysis of steel components in which laser beam irradiation is performed.

【0013】[0013]

【作用】この発明では、溶鋼から採取した分析用の塊状
試料を、赤熱状態のままで試料室内の試料保持部に投入
して分析するので、試料の冷却を待つことなく迅速に分
析を開始することができる。また、後述のように試料を
切断することなく分析できるが、よく知られているよう
に常温では硬い鋼でも赤熱状態では非常に軟質であり、
試料切断も容易に実施できる。試料保持部として塊状試
料と同一曲面を有するものを用いた場合は、後述のよう
に、塊状試料は試料保持部にこの同一曲面で密接して収
納される。このように、塊状試料を試料保持部に投入す
るだけで試料が収納されることになり、試料保持部への
試料の設置作業が容易となる。ところで、この発明で
は、赤熱状態の塊状試料を常温の試料室内で扱うので、
試料温度は分析中に刻々と変化する。この温度が変化し
ている塊状試料にパルスレーザー光を照射して微粒子を
発生させた場合、分析値がどのような影響を受けるかが
極めて重要な問題である。
According to the present invention, a lump for analysis obtained from molten steel is used.
Put the sample into the sample holder in the sample chamber while keeping it hot
Analysis without having to wait for sample cooling.
The analysis can be started. Also, as described later,
Can be analyzed without cutting, but as is well known
Even at room temperature, even hard steel is very soft in the glowing state,
Sample cutting can also be easily performed. Lump test as sample holder
If a material with the same curved surface is used,
At the same time, the lump sample is stored on the sample holder close to this same curved surface.
Will be delivered. In this way, the massive sample is put into the sample holder.
The sample is stored just by
Installation work of the sample becomes easy. By the way, in this invention
Since dealing with a bulk sample of the red-hot state at room temperature in the sample chamber,
The sample temperature changes every moment during the analysis . When irradiating a pulsed laser beam to the massive sample whose temperature is changing to generate fine particles, it is extremely important how the analytical value is affected.

【0014】パルスレーザーの照射では、高密度のエネ
ルギーが投入されるので、照射点では非常に高温にな
る。又、微粒子化過程では発光分析のように元素の励起
状態を問うのではなく、塊状試料の一部を忠実に微粒子
化すればよい。このため、塊状試料の温度の影響は極め
て小さいと考えられる。これを確認するため、1000
℃以上に赤熱した塊状試料について、その冷却過程でパ
ルスレーザー光を用いてレーザー/ICP分析を行って
この影響を調べた。
In the irradiation of the pulse laser, high-density energy is applied, so that the temperature at the irradiation point becomes extremely high. Also, in the process of atomization, a part of the massive sample may be faithfully atomized instead of asking the excited state of the element as in emission analysis. Therefore, it is considered that the influence of the temperature of the massive sample is extremely small. To confirm this, 1000
A laser / ICP analysis was performed on the massive sample heated to a temperature of ℃ or more using a pulsed laser beam during the cooling process to examine the effect.

【0015】その結果を図3に示す。図で、縦軸は分析
値で横軸は試料温度である。(a)図はMnについて、
(b)図はPについての結果である。何れの成分につい
ても、温度が変わっても分析値は殆ど変わらず、温度の
影響を受けていない。
FIG. 3 shows the result. In the figure, the vertical axis represents the analysis value and the horizontal axis represents the sample temperature. (A) FIG.
(B) The result of P is shown in FIG. Regarding any component, even if the temperature changes, the analytical value hardly changes and is not affected by the temperature.

【0016】赤熱状態で試料温度が変化する塊状試料で
あっても、パルスレーザー光を照射して微粒子試料を得
るレーザー/ICP分析では、分析値が塊状試料の温度
の影響を本質的に受けないので、信頼できる分析値を得
ることが出来る。冷却された試料では温度変化がより少
ないので、同様に信頼できることは言うまでもない。
In a laser / ICP analysis in which a fine particle sample is obtained by irradiating a pulsed laser beam, even if the sample temperature changes in the red heat state, the analysis value is essentially not affected by the temperature of the block sample. Therefore, a reliable analysis value can be obtained. It goes without saying that the cooled sample undergoes less temperature change and is therefore equally reliable.

【0017】溶鋼を凝固させた塊状試料では、多かれ少
なかれ表面が大気中酸素の作用を受け表層部は試料の成
分組成を代表していない。この状況を調べた結果を図4
に示す。小径30mm、大径33mmの円錐台の塊状試料を
切断した断面について、SIMSとXMAを用いて側面
から内部へ線分析を行った結果で、測定成分はP、M
n、Sである。図で、縦軸は各成分の測定強度、横軸は
表面からの距離である。
In the case of a massive sample obtained by solidifying molten steel, the surface is more or less affected by oxygen in the atmosphere, and the surface layer does not represent the component composition of the sample. Fig. 4 shows the result of examining this situation.
Shown in The cross-section of a cut sample of a truncated cone with a small diameter of 30 mm and a large diameter of 33 mm was subjected to line analysis from side to inside using SIMS and XMA. The measurement components were P and M.
n and S. In the figure, the vertical axis represents the measured intensity of each component, and the horizontal axis represents the distance from the surface.

【0018】何れの成分も10数μmまでは、測定値が
変動しているが、その変動も20μmまでには見られな
くなり、25μm以上では塊状試料の内部と変わら
大気中酸素の作用は受けていないことが判る。なお、M
nとSに見られる小さなピークは、位置が同じことから
MnS介在物の偏と考えられる。以上の知見に基づ
き、この発明では、試料の表面下25μm以上の深さの
部分について分析を行う。
The measured values of any of the components fluctuated up to a few tens of μm , but the fluctuations were not observed by 20 μm.
When it is 25 μm or more, it does not change from the inside of the massive sample.
It turns out that the effect of atmospheric oxygen is not received. Note that M
small peaks seen in n and S, the position is considered to segregation of MnS inclusions from the same thing. Based on the above knowledge
According to the present invention, in the case of a depth of 25 μm or more below the surface of the sample,
Perform analysis on the part.

【0019】レーザー光照射では表面から25μm程度
掘り下げるのは容易なので、照射開始後初期の微粒子は
測定対象とせずに、表面下25μm以上の深さから発生
した微粒子のみを分析対象とする。これによって、塊状
試料を切断あるいは研磨するなどの調製を行わなくて
も、試料を充分に代表する微粒子が得られる。
Since it is easy to dig down about 25 μm from the surface by laser light irradiation, the fine particles generated from a depth of 25 μm or more below the surface are not analyzed, but the initial fine particles after the start of irradiation. Thus, fine particles sufficiently representing the sample can be obtained without preparation such as cutting or polishing the massive sample.

【0020】次に、微粒子の試料代表性を損なうものに
汚染の問題と選択蒸発の問題があり、ICP分析の精度
低下に関しては微粒子の生成速度と大きさ及び搬送量の
変動とがある。ICP分析では、搬送される微粒子をA
rプラズマ焔で励起するので、搬送ガスに高純度のAr
ガスを用いると、妨害元素を含まないので都合がよい。
Next, the problem of impairing the sample representativeness of the fine particles is a problem of contamination and a problem of selective evaporation. Regarding a decrease in the accuracy of ICP analysis, there are fluctuations in the generation speed and size of the fine particles and variations in the transport amount. In the ICP analysis, the transported fine particles
r Excited by plasma flame, high purity Ar
The use of gas is convenient because it does not contain any interfering elements.

【0021】しかし、市販の高純度Arガスでは、炭化
水素等の状態で数μg/Lの炭素を含む。この不純物炭素
を1μg/L以下として使用することによって鋼中の微量
炭素も精度良く分析することが出来る。
However, commercially available high-purity Ar gas contains several μg / L of carbon in the form of hydrocarbon or the like. By using this impurity carbon at 1 μg / L or less, trace carbon in steel can be analyzed with high accuracy.

【0022】不純物炭素を除くには、金属ゲッター方式
の精製装置を用いることができ、この精製装置を搬送ガ
スを試料室に送る配管系に備えてやればよい。そして、
搬送中の再汚染を防ぐために配管材料として、清浄な面
が得られ易い金属或いは硝子を用いる。選択蒸発、微粒
子の生成速度及び微粒子の大きさについては、レーザー
光の照射条件が影響する。
In order to remove the impurity carbon, a metal getter type purifying apparatus can be used, and the purifying apparatus may be provided in a piping system for sending the carrier gas to the sample chamber. And
In order to prevent re-contamination during transportation, a metal or glass from which a clean surface is easily obtained is used as a piping material. The selective evaporation, the generation speed of the fine particles, and the size of the fine particles are affected by the laser light irradiation conditions.

【0023】パルスレーザーを用いるのは、レーザー光
の照射点密度を大きくすることと蒸発の選択性を小さく
するためである。レーザー光の照射点密度が小さいと微
粒子の生成速度が低くICP分析感度の不足を招き且つ
蒸発の選択性が大きくなる。又、大き過ぎるとArガス
を電離しプラズマを発生させる。これは、ブレークダウ
ン現象と呼ばれているが、この現象が発生するとレーザ
ー光のエネルギーは微粒子発生に寄与しない。レーザー
光の照射点密度の許容範囲は108 W/cm2 以上1011W/
cm2 以下である。又、この条件であれば、得られる微粒
子の径は0.1μm以下であり、ICP焔内で均一とみ
なされる。
The reason for using the pulse laser is to increase the irradiation point density of the laser beam and to reduce the selectivity of evaporation. When the irradiation point density of the laser beam is low, the generation speed of the fine particles is low, resulting in insufficient ICP analysis sensitivity and high selectivity of evaporation. If it is too large, Ar gas is ionized to generate plasma. This is called a breakdown phenomenon. When this phenomenon occurs, the energy of the laser beam does not contribute to the generation of fine particles. The allowable range of laser beam irradiation point density is 10 8 W / cm 2 or more and 10 11 W / cm
cm 2 or less. In addition, under these conditions, the diameter of the obtained fine particles is 0.1 μm or less, and is regarded as uniform in the ICP flame.

【0024】パルス周波数が20Hz の場合での分析精
度は、100Hz 以上の場合のそれと有意差が生じて劣
化する。これは周波数が低いとICP焔への微粒子の供
給が安定しないものと考えられる。100Hz 以上では
差がなく良好である。
The analysis accuracy when the pulse frequency is 20 Hz is significantly different from that when the pulse frequency is 100 Hz or more, and deteriorates. It is considered that the supply of the fine particles to the ICP flame is not stable when the frequency is low. Above 100 Hz, there is no difference and it is good.

【0025】又、同一点への高周波パルスでの連続照射
は選択蒸発を助長し且つ照射回数とともに照射面と焦点
との間にずれが生じ微粒子発生量が減少する。照射点を
移動させることによってこの二点が解消し、更に、偏拆
部の分析値への極端な影響を避けることができる。
In addition, continuous irradiation of the same point with a high-frequency pulse promotes selective evaporation and shifts between the irradiation surface and the focus with the number of irradiations, thereby reducing the amount of generated fine particles. By moving the irradiation point, these two points are eliminated, and furthermore, it is possible to avoid an extreme influence on the analysis value of the decontamination unit.

【0026】次に、装置について、図1を用いてその作
用を説明する。図で、1は分析セル部、2は試料保持
部、3は塊状試料、4はレーザー発振器、7は搬送ガス
配管、8はICP分析器、10はレーザー光、21は露
出孔である。
Next, the operation of the apparatus will be described with reference to FIG. In the figure, 1 is an analysis cell section, 2 is a sample holding section, 3 is a bulk sample, 4 is a laser oscillator, 7 is a carrier gas pipe, 8 is an ICP analyzer, 10 is a laser beam, and 21 is an exposure hole.

【0027】試料室は分析セル部1とこれに露出孔21
によって連接している試料保持部2とからなり、塊状試
料3は試料保持部2に収納される。レーザー光10は、
レザー発振器4から発し、分析セル1及び露出孔21を
通過して塊状試料3の表面に照射される。分析セル部1
と試料保持部2は試料の酸化を防ぐため不活性ガス雰囲
気となっており、分析セル部1には不活性な搬送ガスが
送られている。レーザー光照射により生じる微粒子は、
この搬送ガスによって分析セル部1から搬送ガス配管7
を通って、ICP分析器8に導かれここで分析される。
The sample chamber is composed of an analysis cell section 1 and an exposure hole 21 therein.
The mass sample 3 is accommodated in the sample holding unit 2. The laser light 10
The laser beam is emitted from the laser oscillator 4, passes through the analysis cell 1 and the exposure hole 21, and is irradiated on the surface of the massive sample 3. Analysis cell part 1
The sample holding unit 2 has an inert gas atmosphere to prevent oxidation of the sample, and an inert carrier gas is sent to the analysis cell unit 1. Fine particles generated by laser light irradiation
With this carrier gas, the carrier gas pipe 7
Through the ICP analyzer 8 where it is analyzed.

【0028】生じる微粒子を一定の速さでICP分析器
8に送り込むことは、分析精度を確保する点で重要なこ
とであるが、試料保持部2が塊状試料3と同一曲面を有
しているとこれらの面が密接し露出孔21が塊状試料3
の側面によって塞がれ、微粒子を含んだ搬送ガスが試料
保持部2へ逃げることがないので、微粒子を安定してI
CP分析器8に送り込むことができる。更に、塊状試料
3の側面が露出孔21に密接して収納されると、レーザ
ー光10の焦点を固定しておくことができ制御時間が短
縮される。
It is important to send the generated fine particles to the ICP analyzer 8 at a constant speed, in order to ensure the analysis accuracy, but the sample holder 2 has the same curved surface as the massive sample 3. And these surfaces are in close contact and the exposed hole 21 is
And the carrier gas containing the fine particles does not escape to the sample holding unit 2, so that the fine particles are stably
It can be sent to the CP analyzer 8. Further, when the side surface of the massive sample 3 is housed in close contact with the exposure hole 21, the focus of the laser beam 10 can be fixed and the control time can be reduced.

【0029】塊状試料1の納出に際しては、試料室が分
析セル部1と試料保持部2とに分かれているので、試料
の収納時に分析セル部1を直接大気に曝す必要がない。
このため、分析セル部1の大気を不活性ガスで置換する
操作が省かれる。
When the mass sample 1 is delivered, the sample chamber is divided into the analysis cell section 1 and the sample holding section 2, so that it is not necessary to directly expose the analysis cell section 1 to the atmosphere when storing the sample.
Therefore, the operation of replacing the atmosphere in the analysis cell unit 1 with the inert gas is omitted.

【0030】試料保持部2は試料の収納時に大気に曝さ
れるので、塊状試料収納後不活性ガスで置換しなければ
ならないが、このガス置換に際して、試料保持部2が塊
状試料3と同一曲面を有すると、試料保持部2と塊状試
料3と隙間が少なく置換ガス量が少なく置換に要する時
間が短縮される。
Since the sample holder 2 is exposed to the atmosphere when the sample is stored, it must be replaced with an inert gas after storing the massive sample. In this gas replacement, the sample holder 2 has the same curved surface as the massive sample 3. In this case, the gap between the sample holder 2 and the massive sample 3 is small, the amount of replacement gas is small, and the time required for replacement is reduced.

【0031】塊状試料自体の組成変化は赤熱試料特有の
問題で、表層では酸素による脱炭が炭素分析値に影響す
る。試料保持部に試料の酸化を防止する機構を持たせる
のはこのためであって、塊状試料を試料保持部に収納し
不活性ガス雰囲気にするだけでなく、可及的に速やかに
冷却する機構が望まれる。
The change in the composition of the massive sample itself is a problem peculiar to the red-hot sample, and decarburization by oxygen on the surface layer affects the carbon analysis value. This is why the sample holder is provided with a mechanism to prevent oxidation of the sample. This mechanism not only accommodates massive samples in the sample holder and creates an inert gas atmosphere, but also cools the sample as quickly as possible. Is desired.

【0032】[0032]

【実施例】図2に示す試料室を使って、転炉から汲み取
り凝固した塊状試料を分析した。試料は、底部の径30
mm、上部の径33mm、高さ70mmの円錐台状であ
る。試料保持部2の内部は、底部の径30.5mm、高
さ120mmで、塊状試料3と曲面が同一の円錐台状の
空間である。試料保持部2の上側部に吸気口24を、下
部に排気口25を設けて吸引ポンプ(図示せず)に接続
し、塊状試料投入後のガス置換を短時間で行い試料酸化
を防げるようにした。
EXAMPLE Using the sample chamber shown in FIG. 2, a lump sample solidified by pumping from a converter was analyzed. The sample had a diameter of 30 at the bottom.
mm, an upper diameter of 33 mm, and a height of 70 mm. The inside of the sample holding unit 2 is a truncated cone-shaped space having a bottom diameter of 30.5 mm and a height of 120 mm and the same curved surface as the massive sample 3. An intake port 24 is provided at an upper portion of the sample holding section 2 and an exhaust port 25 is provided at a lower portion thereof, which is connected to a suction pump (not shown). did.

【0033】周壁は銅製の二重壁とし、壁の間26に給
排水口27から冷却水を流して壁の保護を図るととも
に、塊状試料3を速やかに冷却しその酸化を極力防止し
た。即ち、ガスの短時間置換と試料の高速冷却機構が酸
化防止機構となる。露出孔21は4mm×8mmの長方
形である。又、塊状試料3の側面を露出孔21によく密
接させるため、試料保持部2が鉛直に対して45°傾く
ように試料室を設定した。
The peripheral wall was a double wall made of copper. Cooling water was supplied from a water supply / drain port 27 between the walls to protect the wall, and the massive sample 3 was quickly cooled to prevent its oxidation as much as possible. That is, the gas short-time replacement mechanism and the high-speed cooling mechanism of the sample serve as an oxidation prevention mechanism. The exposure hole 21 is a rectangle of 4 mm × 8 mm. The sample chamber was set so that the sample holder 2 was inclined 45 ° with respect to the vertical in order to make the side surface of the massive sample 3 closely contact the exposure hole 21.

【0034】分析セル部1も円錐台状で、露出孔21に
対向する面は石英ガラス製のレーザー透過窓12であ
る。この透過窓の近くに搬送ガスの導入口13を設け、
露出孔21の近くに搬出口14を設けた。搬送ガスには
Arを用い、その精製にはZrゲッタ方式精製装置を用
い、配管材料には表面を浄化したSUS管を使用した。
The analysis cell section 1 also has a truncated cone shape, and a surface facing the exposure hole 21 is a laser transmission window 12 made of quartz glass. A carrier gas inlet 13 is provided near the transmission window,
The carry-out port 14 was provided near the exposure hole 21. Ar was used as a carrier gas, a Zr getter type purification device was used for purification, and a SUS pipe whose surface was purified was used as a pipe material.

【0035】レーザー発振器には超音波Qスイッチ付き
のNd/YAGレーザー(波長1.06μm)を用い、
反射鏡30と集光レンズ40とで照射点及び焦点を制御
した。照射点の移動は、反射鏡の回転や集光レンズの平
行移動によって行うことができる。即ち、焦点は集光レ
ンズで定まり、照射点は反射鏡30を回転させることに
より一軸方向に移動する。一方、集光レンズ40を有効
径範囲内で平行移動させると、同方向に同量だけ照射点
は移動する。この二つの動作を組み合わせることによっ
て、照射点を二次元に移動させて走査照射を行った。
As the laser oscillator, an Nd / YAG laser (wavelength 1.06 μm) with an ultrasonic Q switch was used.
The irradiation point and the focal point were controlled by the reflecting mirror 30 and the condenser lens 40. The irradiation point can be moved by rotating the reflecting mirror or moving the condenser lens in parallel. That is, the focal point is determined by the condenser lens, and the irradiation point moves in one axis direction by rotating the reflecting mirror 30. On the other hand, when the condenser lens 40 is moved in parallel within the effective diameter range, the irradiation point moves by the same amount in the same direction. By combining these two operations, scanning irradiation was performed by moving the irradiation point two-dimensionally.

【0036】分析は以下のように行った。不活性ガスと
して市販の高純度Arガスを用い、これを精製すること
によってC濃度は4〜5μg/Lであったものが0.2μ
g/Lにまで低下した。分析に供する直前の塊状試料3の
表面温度は1100℃であった。この塊状試料を、Ar
ガスを10L/分で流し続ける試料保持部に収納し排気
量50L/分の吸引ポンプで1気圧になるまで排気し、
その後吸気口、排気口とも密閉した。この間約5秒であ
った。冷却水は流し続けた。
The analysis was performed as follows. A commercially available high-purity Ar gas was used as an inert gas, and by purifying the same, the C concentration was from 4 to 5 μg / L to 0.2 μm.
g / L. The surface temperature of the massive sample 3 immediately before being subjected to the analysis was 1100 ° C. This massive sample is called Ar
The gas is stored in the sample holding unit that keeps flowing the gas at 10 L / min, and the gas is exhausted to 1 atm by a suction pump of 50 L / min.
After that, both the intake and exhaust ports were sealed. It took about 5 seconds during this time. Cooling water continued to flow.

【0037】反射鏡を30Hz の周期で集光位置の振れ
幅が2mmになるように回転させるとともに、集光レン
ズを5mm/分の速さで平行移動し照射点を移動させ
た。移動速度は300mm/分であり、集光点のスポッ
ト径は100μmであった。移動は1mm四方以上にた
わって走査するのが好ましいが、移動速度はビーム径と
パルス周波数の積を目安にするとよい。
The reflecting mirror was rotated at a cycle of 30 Hz so that the deflection width of the focusing position was 2 mm, and the focusing lens was moved in parallel at a speed of 5 mm / minute to move the irradiation point. The moving speed was 300 mm / min, and the spot diameter at the focal point was 100 μm. It is preferable that the scanning be performed while scanning over 1 mm square, but the moving speed should be based on the product of the beam diameter and the pulse frequency.

【0038】予備処理として、10秒間の走査照射を行
って、表層200μmを除去した後、測定を行った。搬
送ガスの流量は1L/分である。レーザー光はパルス頻
度50Hz 又は1kHz 、平均出力10Wで照射した。
As a preliminary treatment, scanning irradiation for 10 seconds was performed to remove 200 μm of the surface layer, and then measurement was performed. The flow rate of the carrier gas is 1 L / min. The laser beam was irradiated at a pulse frequency of 50 Hz or 1 kHz and an average output of 10 W.

【0039】ICP分析器としては、ICP発光分光分
析装置を用いた。プラズマ焔の発生条件については、高
周波出力は1.5kW,周波数27.12MHz ,プラ
ズマガス流量15L/分、補助ガス流量1L/分であ
る。搬送される微粒子を直接励起発光させた。
An ICP emission spectrometer was used as the ICP analyzer. Regarding the conditions for generating the plasma flame, the high frequency output was 1.5 kW, the frequency was 27.12 MHz, the plasma gas flow rate was 15 L / min, and the auxiliary gas flow rate was 1 L / min. The transported fine particles were directly excited to emit light.

【0040】分光器は、パッセンルンゲ型分光器、分光
器内を真空にし200nm以下の波長も測定できるよう
にした。分析線は、C193nm、P178nm、S1
81nm、Si212nm、Mn252nm、Al39
6nm、Ni232nm、Cr268nm、Mo202
nm、Cu325nm、Fe271nm及び170nm
で、多元素同時測定システムを採った。
The spectroscope was a Passen-Runge type spectrometer, and the inside of the spectrometer was evacuated so that wavelengths of 200 nm or less could be measured. The analysis lines are C193 nm, P178 nm, S1
81 nm, Si 212 nm, Mn 252 nm, Al39
6 nm, Ni 232 nm, Cr 268 nm, Mo202
nm, Cu 325 nm, Fe 271 nm and 170 nm
Therefore, a multi-element simultaneous measurement system was adopted.

【0041】光強度は光電子倍増管により電流に変換し
更にこれを電圧に変換して10秒間の光強度積算値を測
定光強度とした。解析にあたってはFe強度との比を測
定値とする内標準強度比法を採用した。測定値の分析値
換算は、標準試料を測定して検量線を作成し、この検量
線を用いて行った。
The light intensity was converted into a current by a photomultiplier, which was further converted into a voltage, and the integrated light intensity for 10 seconds was defined as the measured light intensity. In the analysis, an internal standard intensity ratio method using a ratio with the Fe intensity as a measured value was adopted. The conversion of the measured value to an analytical value was performed by measuring a standard sample to prepare a calibration curve and using the calibration curve.

【0042】分析の結果及び前処理も含めた分析所要時
間を、従来実用されていたスパーク発光法と比較して、
表1に示す。実施例1はパルス頻度50Hz で、実施例
2は1kHz でレーザー光を照射した。又、各例とも同
一溶鋼から汲み取り凝固した試料について測定したもの
である。
The results of the analysis and the time required for the analysis, including the pretreatment, are compared with those of the conventionally used spark emission method.
It is shown in Table 1. Example 1 irradiated the laser beam at a pulse frequency of 50 Hz, and Example 2 irradiated the laser beam at 1 kHz. Further, in each case, the measurement was performed on a sample that was drawn from the same molten steel and solidified.

【0043】[0043]

【表1】 [Table 1]

【0044】この発明の実施例では試料間で分析値の差
が小さいが、従来例では、例えばCの分析値に見られる
ように0.00〜0.36%とその差が大きい。スパー
ク発光では一回の分析での放電範囲が6mmφ程度であ
るが、この範囲にピンホール等凹凸存在すると、凸部に
放電し易く異常放電が避けられない。これが、試料間の
分析値に大きな差を与えていると考えられる。
In the embodiment of the present invention, the difference in the analysis value between the samples is small, but in the conventional example, the difference is large, for example, 0.00 to 0.36% as seen in the analysis value of C. In the case of spark emission, the discharge range in one analysis is about 6 mmφ. However, if there are irregularities such as pinholes in this range, discharge is likely to occur in the convex parts and abnormal discharge cannot be avoided. This is considered to give a large difference in the analysis value between the samples.

【0045】一方、レーザー照射では、照射範囲に突起
が存在しても、そこに照射が集中することはない。レー
ザー照射の問題点はむしろ、選択蒸発や微粒子の一定量
以上の安定生成であり、特にレーザー照射条件を限定し
た実施例2では、偏拆成分であっても非常に優れた繰り
返し精度が得られている。更に、分析時間を比較する
と、凝固試料の冷却等を必要としないこの発明の実施例
では、溶鋼を凝固後60秒程度で分析が終了し、従来の
半分以下に分析時間が短縮されている。
On the other hand, in the case of laser irradiation, even if a projection exists in the irradiation range, the irradiation does not concentrate on the projection. The problem of laser irradiation is rather selective evaporation and stable production of fine particles of a certain amount or more. In particular, in Example 2 in which the laser irradiation conditions are limited, extremely excellent repetition accuracy can be obtained even with a partial component. ing. Furthermore, comparing the analysis times, in the embodiment of the present invention which does not require cooling of the solidified sample, the analysis is completed in about 60 seconds after the solidification of the molten steel, and the analysis time is reduced to less than half the conventional time.

【0046】[0046]

【発明の効果】この発明によれば、レーザー照射により
塊状試料から微粒子試料を採取しこの微粒子試料を励起
するので、従来のスパーク発光法のように異常放電が起
こらず又試料温度変化の影響を受けずに分析値が得られ
る。したがって凝固試料の冷却、切断、研磨等を必要と
せず又試料の分析装置へのセット等にも考慮が払われて
いるので、迅速に溶鋼成分を分析することができる。こ
れに加えて、試料の変化、微粒子試料の汚染、生成時の
生成量、その安定性及び選択蒸発にも考慮が払われてい
るので、精度の高い分析結果が得られる。
According to the present invention, a fine particle sample is collected from a lump sample by laser irradiation and the fine particle sample is excited. Therefore, unlike the conventional spark emission method, abnormal discharge does not occur and the influence of a change in the sample temperature is eliminated. Analytical values can be obtained without receiving. Therefore, cooling, cutting, polishing, and the like of the solidified sample are not required, and consideration is given to the setting of the sample in the analyzer, so that the molten steel component can be analyzed quickly. In addition, changes in the sample, contamination of the fine particle sample, the amount generated at the time of generation, stability, and selective evaporation are taken into account, so that highly accurate analysis results can be obtained.

【0047】このため、製鋼操業制御へのデータフィー
ドバックが早くなり、溶鋼の成分、温度等の制御精度が
向上した。その結果として、成分規格外れが減少すると
ともに、後吹きや冷材の添加等による能率低下を防ぎ且
つ省エネルギが達成された。このように、赤熱試料をそ
のまま分析可能としたこの発明の効果は大きい。
As a result, the data feedback to the steelmaking operation control was quickened, and the control accuracy of the composition, temperature, etc. of the molten steel was improved. As a result, deviations from component specifications are reduced, efficiency is prevented from being lowered by after-blowing or addition of a cooling material, and energy saving is achieved. As described above, the effect of the present invention that the red-hot sample can be analyzed as it is is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の装置を説明するための装置の概念図
である。
FIG. 1 is a conceptual diagram of an apparatus for explaining an apparatus of the present invention.

【図2】この発明の実施例に用いた装置の一部の概念図
である。
FIG. 2 is a conceptual diagram of a part of an apparatus used in an embodiment of the present invention.

【図3】この発明の一つの原理を説明するための塊状試
料温度と分析値との関係を示す図である。
FIG. 3 is a diagram illustrating a relationship between a mass sample temperature and an analysis value for explaining one principle of the present invention.

【図4】この発明のもう一つの原理を説明するための塊
状試料表面からの距離と成分の測定強度との関係を示す
図である。
FIG. 4 is a diagram illustrating a relationship between a distance from the surface of a massive sample and measured intensity of a component for explaining another principle of the present invention.

【符号の説明】[Explanation of symbols]

1 分析セル部 2 試料保持部 3 塊状試料 4 レーザー発振器 5 レーザー光制御装置 6 流量調整器 7 搬送ガス配管 8 ICP分析器 10 レーザー光 12 透過窓 13 導入口 14 搬出口 21 露出孔 24 吸気口 25 排気口 27 給排水口 30 反射鏡 40 集光レンズ DESCRIPTION OF SYMBOLS 1 Analysis cell part 2 Sample holding part 3 Lumped sample 4 Laser oscillator 5 Laser light control device 6 Flow rate controller 7 Carrier gas piping 8 ICP analyzer 10 Laser light 12 Transmission window 13 Inlet 14 Outlet 21 Exposure hole 24 Inlet 25 Exhaust port 27 Water supply / drain port 30 Reflector 40 Condenser lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮原 弘明 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 審査官 鈴木 俊光 (56)参考文献 特開 昭63−208738(JP,A) 特開 平5−107186(JP,A) 特開 平5−78108(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/62 - 21/74 G01N 33/20 G01N 1/02 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Hiroaki Miyahara 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. Examiner Toshimitsu Suzuki (56) References JP-A-63-208738 (JP, A) JP-A-5-107186 (JP, A) JP-A-5-78108 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 21/62-21/74 G01N 33/20 G01N 1/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶鋼の一部を採取し凝固させた塊状試料
についてレーザー/ICP分析によりその溶鋼の成分組
成を測定する迅速分析において、塊状試料を赤熱状態の
ままで分析装置の不活性ガス雰囲気の試料室内の試料保
持部に投入し、前記塊状試料の表面にパルスレーザー光
を照射して発生する微粒子をICP分析器に不活性ガス
で搬送し、表面下25μm以上の深さから発生した微粒
子のみを検出対象として、成分を分析することを特徴と
する鋼成分迅速分析方法。
1. A lump sample obtained by solidifying a part of molten steel and solidifying it
In the rapid analysis of measuring the component composition of the molten steel by laser / ICP analysis , a massive sample is put into a sample holding section in a sample chamber in an inert gas atmosphere of an analyzer while being in a red hot state, and the surface of the massive sample is A steel component characterized in that fine particles generated by irradiating a pulsed laser beam are conveyed to an ICP analyzer by an inert gas, and components are analyzed by detecting only fine particles generated from a depth of 25 μm or more below the surface. Quick analysis method.
【請求項2】 不活性ガスとしてArガスを用いこれを
高度に精製して含まれる炭素量を1μg/L以下として使
用するとともに、塊状試料を不活性ガス雰囲気の試料保
持部に投入した後その酸化を防止し、且つ、100Hz
以上の周波数で発振するパルスレーザーを用いて、レー
ザー光の照射点密度を108 W/cm2 以上1011W/cm2
下とし照射点位置を移動させながらレーザー光の照射を
行う請求項1記載の鋼成分迅速分析方法。
2. An Ar gas is used as an inert gas, which is highly refined to use a carbon content of 1 μg / L or less, and a lump sample is charged into a sample holding section in an inert gas atmosphere and then charged. Prevents oxidation and 100Hz
The laser beam irradiation is performed by using a pulsed laser oscillating at the above frequency, setting the irradiation point density of the laser beam to 10 8 W / cm 2 or more and 10 11 W / cm 2 or less and moving the irradiation point position. The steel composition rapid analysis method described.
【請求項3】 所定形状の塊状試料を収納する試料室
と、この塊状試料にパルスレーザー光を照射し微粒子を
発生させるためのレーザー発振器と、発生した微粒子を
搬送してその成分を分析するためのICP分析器と、搬
送ガスを前記試料室に送り更に試料室と前記ICP分析
器を連絡する搬送ガス配管系とを備えており、前記試料
室が分析セル部とこれに露出孔で連通する試料保持部と
からなり、この分析セル部が、前記露出口を介して試料
へレーザー光が照射されるように内部にレーザー光を通
すとともに、生じた微粒子を不活性な搬送ガスを流通さ
せて前記ICP分析器に搬送するよう構成されており、
かつ、この試料保持部が前記所定形状の塊状試料と同一
曲面を有することを特徴とする鋼成分迅速分析装置。
3. A sample chamber for accommodating a massive sample of a predetermined shape, a laser oscillator for irradiating the massive sample with pulsed laser light to generate fine particles, and for transporting the generated fine particles and analyzing their components. And a carrier gas piping system for sending a carrier gas to the sample chamber and further connecting the sample chamber and the ICP analyzer, and the sample chamber communicates with the analysis cell section through an exposure hole. A sample holding unit, and this analysis cell unit
Laser light inside so that the laser light
The generated fine particles are passed through an inert carrier gas.
And transported to the ICP analyzer,
In addition, the sample holding section has the same curved surface as that of the bulk sample having the predetermined shape.
【請求項4】 搬送ガス配管系の管材料が金属材料又は
硝子であって搬送ガスを試料室に送る配管系に搬送ガス
中の炭素成分を除去するガス精製装置を備え、且つ、試
料室が搬送ガスの流出入口を除き密閉され、保持される
試料の酸化を防止する機構を試料保持部が有している請
求項3記載の鋼成分迅速分析装置。
4. A piping system for transferring a carrier gas to a sample chamber, wherein the pipe material of the carrier gas piping system is a metal material or glass, and a gas purification device for removing a carbon component in the carrier gas is provided. 4. The steel component rapid analyzer according to claim 3, wherein the sample holding unit has a mechanism for preventing oxidation of the sample held and sealed except for the inlet / outlet of the carrier gas.
JP5274590A 1993-11-02 1993-11-02 Method and apparatus for rapid analysis of steel components Expired - Fee Related JP3039231B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5274590A JP3039231B2 (en) 1993-11-02 1993-11-02 Method and apparatus for rapid analysis of steel components
US08/331,792 US5537206A (en) 1993-11-02 1994-10-31 Method for analyzing steel and apparatus therefor
KR1019940028544A KR0178558B1 (en) 1993-11-02 1994-11-01 Method for analyzing steel and apparatus therefor
CN94118324A CN1089164C (en) 1993-11-02 1994-11-02 Method and apparatus for analysing composition of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5274590A JP3039231B2 (en) 1993-11-02 1993-11-02 Method and apparatus for rapid analysis of steel components

Publications (2)

Publication Number Publication Date
JPH07128237A JPH07128237A (en) 1995-05-19
JP3039231B2 true JP3039231B2 (en) 2000-05-08

Family

ID=17543866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5274590A Expired - Fee Related JP3039231B2 (en) 1993-11-02 1993-11-02 Method and apparatus for rapid analysis of steel components

Country Status (1)

Country Link
JP (1) JP3039231B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3166569B2 (en) * 1995-06-12 2001-05-14 日本鋼管株式会社 How to detect the cause of abnormal parts on steel surface
JP3964594B2 (en) * 2000-02-29 2007-08-22 英昭 水渡 Analytical method for non-metallic inclusion composition and / or particle size in metal samples
JP4697429B2 (en) * 2004-12-21 2011-06-08 三菱マテリアル株式会社 Non-ferrous metal quality analysis method and manufacturing method thereof
CN108896495B (en) * 2018-09-14 2024-04-12 贵州电网有限责任公司 Environment-friendly insulating gas and metal compatibility test simulation device and test method

Also Published As

Publication number Publication date
JPH07128237A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
KR100225775B1 (en) Method for analyzing solid specimen and apparatus therefor
US5537206A (en) Method for analyzing steel and apparatus therefor
EP0176625A2 (en) Method of laser emission spectroscopical analysis of steel and apparatus therefor
JP3039231B2 (en) Method and apparatus for rapid analysis of steel components
JP2870364B2 (en) Laser vaporization analysis method and apparatus
JPH09304253A (en) Method and apparatus for concentrating and analyzing impurities
JP4449188B2 (en) Method and apparatus for analyzing components in molten metal
JP3348634B2 (en) Laser vaporization analysis method
JP2921329B2 (en) Steel slab rapid analysis method and apparatus
JPH0151939B2 (en)
JP3149155B2 (en) Method and apparatus for rapid analysis of metal components
JP3736427B2 (en) Method and apparatus for analyzing components in molten metal
JP3058043B2 (en) Probe and method for laser emission spectroscopy of molten metal
JPH07234211A (en) Probe for molten metal laser emission spectral analysis and its analyzing method
JP2982602B2 (en) Method and apparatus for laser vaporization analysis of molten metal
Cremers et al. Direct solid metal analysis by laser ablation into the inductively coupled plasma
JPH0149891B2 (en)
KR0138619B1 (en) Method for analyzing solid sample
JPH07280797A (en) Speedy analysis method and device of molten steel
JPH10281999A (en) Method and device for laser analysis of molten steel element
JPH10281952A (en) Rapid analysis by laser of molten steel component and laser analyzing device
JPH0949799A (en) Laser vaporization analyzer
Asai et al. Investigation for Oxygen Transfer Mechanism During Gas Tungsten Arc Welding with Carbon Dioxide Gas
Belyanin et al. Spectral analysis of melted metal
JPH08184538A (en) Rapid analyzer for metallic material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees