JPH10281952A - Rapid analysis by laser of molten steel component and laser analyzing device - Google Patents

Rapid analysis by laser of molten steel component and laser analyzing device

Info

Publication number
JPH10281952A
JPH10281952A JP9102492A JP10249297A JPH10281952A JP H10281952 A JPH10281952 A JP H10281952A JP 9102492 A JP9102492 A JP 9102492A JP 10249297 A JP10249297 A JP 10249297A JP H10281952 A JPH10281952 A JP H10281952A
Authority
JP
Japan
Prior art keywords
gas
molten steel
laser
fine particles
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9102492A
Other languages
Japanese (ja)
Inventor
Takanori Akiyoshi
孝則 秋吉
Akiko Sakashita
明子 坂下
Yoichi Ishibashi
耀一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9102492A priority Critical patent/JPH10281952A/en
Publication of JPH10281952A publication Critical patent/JPH10281952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an adverse effect of CO gas by irradiating laser to molten steel, vaporizing a part of it for particulates, carrying it to a cell with inert gas, separating carrier gas including particulates and CO gas, and analyzing the particulates. SOLUTION: A probe 3 fitted on a water-cooled sub-lance 11 is brought near the surface of molten steel 4. The laser beam of a laser 1 for generating particulates is irradiated to the molten steel 4 through a condensing lens 2 to shut off inside and outside gas with the quartz glass 21 of the probe 3. Inert gas is put in the probe 3 from a gas inflow tube 5, and the particulates of steel generated with laser irradiation is carried to a cell 8 from a gas discharging tube 6 together with CO gas diffused from the molten steel 4. After gas including particulates is passed through a filter 82 fitted on the cell 8 for a fixed time, it is converted into gas not including CO gas to separate and remove CO gas near the particulates deposited on the filter 82. Ar gas is then sprayed over the filter 82 to float the particulates and carry it to a plasma analyzing device 9 for C-analysis of the particulates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、転炉等における
製鋼作業等において、溶鋼中の成分、例えば炭素、マン
ガン、燐、硫黄等の含有率を迅速に分析する技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for rapidly analyzing the content of components in molten steel, for example, carbon, manganese, phosphorus, sulfur, etc., in steelmaking work in a converter or the like.

【0002】[0002]

【従来の技術】最近の製鋼方法、特に転炉による鋼の精
錬方法は、その高生産性・迅速さから世界的に製鋼法の
主流となっている。この転炉製鋼方法は、転炉内に収容
した溶銑に酸素を吹き込んで溶銑中の炭素(以下Cと記
す)、マンガン(以下Mnと記す)、燐(以下Pと記
す)、硫黄(以下Sと記す)等を精錬して鋼を製造する
方法であり、10分程度の酸素の吹き込みにより、吹錬
前の溶銑中の4wt%以上あるC含有量を、その鋼の用
途に合わせたおよそ0.01〜1wt%の範囲のC含有
量とするものである。
2. Description of the Related Art Recent steelmaking methods, particularly steel refining methods using a converter, have become the mainstream of steelmaking methods worldwide due to their high productivity and speed. In this converter steelmaking method, oxygen is blown into hot metal housed in a converter, and carbon (hereinafter referred to as C), manganese (hereinafter referred to as Mn), phosphorus (hereinafter referred to as P), sulfur (hereinafter referred to as S) Etc.) to produce steel, and by blowing oxygen for about 10 minutes, the C content of 4 wt% or more in the hot metal before blowing is reduced to about 0 in accordance with the use of the steel. The C content is in the range of 0.01 to 1 wt%.

【0003】鋼の強度等の性質はC含有量に大きく依存
するため、C含有量の許容幅は±0.01wt%以下の
ものもあるほど厳しいものである。このため、吹錬時に
迅速に溶鋼の成分組成、例えばC含有量を求めることが
強く要請されている。
[0003] Since properties such as strength of steel greatly depend on the C content, the allowable range of the C content is as severe as ± 0.01 wt% or less. For this reason, it is strongly demanded to quickly obtain the component composition of molten steel, for example, the C content during blowing.

【0004】従来、図5に示すように、転炉40におけ
る吹錬中において酸素ランス43の先端から高エネルギ
ー・高純度の酸素ガスを供給し、この酸素ガスによって
溶鋼4及びスラグ41を攪拌し、急速な反応を生じさせ
る。溶銑の脱炭反応はガス−溶鋼反応の一種であり、こ
の急速な反応により溶鋼4の成分組成、特にC含有量が
吹錬中に変化する。そこで、変化するC含有量を求める
ために、サブランス11に各種の計測装置を設置して、
転炉40の炉内に挿入して溶鋼4の組成を求めるなどの
工夫がなされている(例えば、鉄鋼便覧、第3版、第2
巻、製銑・製鋼、p.490(1979年、日本鉄鋼協
会編))。
Conventionally, as shown in FIG. 5, high-energy and high-purity oxygen gas is supplied from the tip of an oxygen lance 43 during blowing in a converter 40, and the molten steel 4 and the slag 41 are stirred by the oxygen gas. , Causing a rapid reaction. The decarburization reaction of the molten iron is a kind of gas-molten steel reaction, and the rapid reaction changes the component composition of the molten steel 4, particularly, the C content during blowing. Therefore, in order to obtain the changing C content, various measuring devices are installed on the sublance 11,
Some measures have been taken such as inserting it into the furnace of the converter 40 to obtain the composition of the molten steel 4 (for example, Iron and Steel Handbook, 3rd edition, 2nd edition).
Winding, iron and steel making, p. 490 (1979, edited by the Iron and Steel Institute of Japan).

【0005】この吹錬中における従来の鋼の迅速分析に
おいては、鋼の凝固温度からC含有量を推定する方法が
あるが、誤差が生じやすい。また、サブランス11先端
のプローブから溶鋼4をサンプリングし、これを冷却
後、切断・研磨し、該研磨面に対し発光分析を行い、溶
鋼4の成分組成を測定する方法がある。
In the conventional rapid analysis of steel during blowing, there is a method of estimating the C content from the solidification temperature of the steel, but errors tend to occur. Further, there is a method in which the molten steel 4 is sampled from a probe at the tip of the sub-lance 11, cooled, cut and polished, and the polished surface is subjected to emission analysis to measure the component composition of the molten steel 4.

【0006】しかし、この方法ではサンプリング開始か
ら分析結果が出るまでに、約3分程度、時間がかかる。
24時間(1日)に約40回の吹錬を行う転炉操業にお
いては、1回当たりの平均吹錬時間は約36分である。
吹錬終了後、分析結果が出るまでの約3分という時間が
無くなれば、生産性は約8%(=(3分/36分)×1
00)向上することになる。
However, in this method, it takes about three minutes from the start of sampling until the analysis result is obtained.
In a converter operation in which blowing is performed about 40 times in 24 hours (one day), the average blowing time per blow is about 36 minutes.
If the time of about 3 minutes until the analysis result comes out after the end of blowing, the productivity is about 8% (= (3 minutes / 36 minutes) × 1).
00) will be improved.

【0007】また、吹錬終了の約3分前に溶鋼4をサン
プリングし、これを冷却後、切断・研磨し、該研磨面に
対し発光分析を行うことによって、分析結果が出るまで
約3分かかる分析作業を吹錬時間中に済ませる方法もあ
る。
[0007] Further, about 3 minutes before the end of the blowing, the molten steel 4 is sampled, cooled, cut and polished, and the polished surface is subjected to luminescence analysis to obtain an analysis result for about 3 minutes. There is a method of completing such an analysis operation during the blowing time.

【0008】しかし、この方法では、分析作業の行われ
る約3分間に、吹錬は継続され溶鋼4の組成は変化す
る。また、この溶鋼組成の変化を分析値から推定して得
られる推定溶鋼組成の精度も低い。場合によっては、吹
錬終了後、分析結果の誤差修正のために、やむを得ず
「後吹き吹錬」の工程が必要となる。
However, in this method, the blowing is continued and the composition of the molten steel 4 changes during about 3 minutes when the analysis operation is performed. Further, the accuracy of the estimated molten steel composition obtained by estimating the change of the molten steel composition from the analysis value is low. In some cases, after the blowing, a process of “post-blowing” must be performed to correct errors in the analysis results.

【0009】この「後吹き吹錬」を行うことは、溶鋼4
から得られる鋼材の材質の面からは決して望ましいこと
ではないため、溶鋼組成を高い精度で迅速に得ることは
大変重要な技術である。
[0009] This "post-blowing" is performed by using molten steel 4
However, it is very important to obtain molten steel composition quickly and with high precision, since this is not desirable in terms of the quality of the steel material obtained from the steel.

【0010】ところで、未だ実用化がなされていない
が、利用可能性のある公開されている技術としてレーザ
発光法がある。レーザ発光法は溶鋼4にレーザを照射
し、溶鋼表面に発生したプラズマ光を光ファイバを介し
て分光器に伝送し、プラズマ光のスペクトル解析により
溶鋼4の成分を分析する技術である。
Incidentally, there is a laser emission method as a publicly available technology that has not yet been put to practical use but can be used. The laser emission method is a technique of irradiating a laser beam to the molten steel 4, transmitting plasma light generated on the surface of the molten steel to a spectroscope via an optical fiber, and analyzing the components of the molten steel 4 by spectral analysis of the plasma light.

【0011】しかし、Cの発光線が193nmという短
波長のため、光ファイバ中の透過率が現状では極めて小
さく、測定値のS/N比が悪くなり、その結果として実
用レベルの分析精度を得られないという問題がある。
However, since the C emission line has a short wavelength of 193 nm, the transmittance in the optical fiber is extremely small at present, and the S / N ratio of the measured value is deteriorated. As a result, a practical level of analysis accuracy is obtained. There is a problem that can not be.

【0012】また、微粒子搬送分析法としては特開平1
−227949には不活性ガスの噴出により溶融金属を
微粒子として発生させ、その微粒子をプラズマ発光分析
装置に搬送して分析する技術が記載されている。また特
開昭60−122355号公報にはスパーク放電により
微粒子を生成させて搬送する技術が記載されている。
As a method for transporting and analyzing fine particles, Japanese Patent Laid-Open No.
No. 227949 describes a technique in which molten metal is generated as fine particles by blowing out an inert gas, and the fine particles are transported to a plasma emission analyzer for analysis. Japanese Patent Application Laid-Open No. 60-122355 describes a technique for generating and transporting fine particles by spark discharge.

【0013】[0013]

【発明が解決しようとする課題】吹錬中の溶鋼には溶鋼
中のCと吹き込まれる酸素とが過飽和状態で含まれてお
り、溶鋼面から一酸化炭素ガス(以下COガスと記す)
が放出される。すなわち、溶鋼表面近傍の気相にはかな
りのCOガスが常に含まれている。よって、特開昭60
−122355号公報に開示された微粒子搬送方法で
は、溶鋼近傍のCOガスが微粒子とともに搬送される。
The molten steel being blown contains C in the molten steel and oxygen to be blown in a supersaturated state, and carbon monoxide gas (hereinafter, referred to as CO gas) from the molten steel surface.
Is released. That is, the gas phase near the molten steel surface always contains a considerable amount of CO gas. Therefore, JP
In the fine particle transport method disclosed in JP-A-122355, the CO gas near the molten steel is transported together with the fine particles.

【0014】また、特開平1−227949号公報に開
示された微粒子搬送分析法では、不活性ガスの噴出時に
溶鋼から発生するCOガスも一部不活性ガスに混合さ
れ、微粒子とともに搬送される。そのような雰囲気でレ
ーザ発光を起こさせると、溶鋼だけでなく溶鋼表面近傍
の気体も一緒に励起発光するため、溶鋼中のCの発光と
COガスからのCの発光とが合わせて測定される。
In the method of analyzing and transporting fine particles disclosed in Japanese Patent Application Laid-Open No. 1-227949, a part of the CO gas generated from molten steel when the inert gas is jetted is also mixed with the inert gas and transported together with the fine particles. When laser emission is caused in such an atmosphere, not only the molten steel but also the gas near the molten steel surface is excited and emitted together, so that the emission of C in the molten steel and the emission of C from the CO gas are measured together. .

【0015】このように、従来の分析法では、溶鋼から
放出されるCOガスの影響を受けて溶鋼中のCの正確な
測定ができないため、いかにしてCOガスの影響を無く
し、溶鋼の成分、特にC含有量を正確に測定するかとい
う課題がある。そこで、本発明は、COガスの影響を排
除した状態で溶鋼のC含有量を正確に且つ迅速に分析す
る分析方法を提供するものである。
As described above, the conventional analysis method cannot accurately measure C in the molten steel due to the influence of the CO gas released from the molten steel. In particular, there is a problem of accurately measuring the C content. Therefore, the present invention provides an analysis method for accurately and quickly analyzing the C content of molten steel in a state where the influence of CO gas is excluded.

【0016】[0016]

【課題を解決するための手段】本発明は、溶鋼にレーザ
を照射してその一部を気化して微粒子とし、不活性ガス
でセルへ搬送し、セル内にて微粒子とCOガスを含む搬
送ガスとを分離した後に、該微粒子を分析装置へ搬送
し、この微粒子にレーザ光を照射して溶鋼成分を分析す
ることを特徴とする方法である。上記分析方法は溶鋼成
分のうち、特にCに対して有効に適用できる。
SUMMARY OF THE INVENTION The present invention provides a method for irradiating a molten steel with a laser to vaporize a part of the molten steel into fine particles, transport the fine particles to a cell with an inert gas, and transport the fine particles and a CO gas in the cell. After separating the gas from the gas, the fine particles are conveyed to an analyzer, and the fine particles are irradiated with a laser beam to analyze a molten steel component. The above-described analysis method can be effectively applied particularly to C among molten steel components.

【0017】また、本発明の装置は、溶鋼表面に照射す
る微粒子発生用レーザと、該レーザを集光し溶鋼表面に
照射する集光レンズと、該レーザ照射により生じた溶鋼
微粒子の搬送のためのガスを流入させるガス流入管およ
び該溶鋼微粒子を含有する採取ガスをセルに搬出するガ
ス排出管に接続されたプローブと、を備えたことを特徴
とする溶鋼分析用レーザ分析装置である。
Further, the apparatus of the present invention comprises a laser for generating fine particles for irradiating the surface of molten steel, a condensing lens for condensing the laser and irradiating the surface of the molten steel, and a device for transporting the fine particles of molten steel generated by the laser irradiation. And a probe connected to a gas exhaust pipe for carrying out the sampled gas containing the molten steel particles to a cell.

【0018】上記微粒子発生用レーザと、上記集光レン
ズと、上記ガス流入管およびガス排出管に接続されたプ
ローブと、を転炉炉内へ挿入することができるように、
上記の溶鋼分析用レーザ分析装置は、サブランスの内側
の先端に装着することができる。
The laser for generating fine particles, the condensing lens, and the probes connected to the gas inflow pipe and the gas discharge pipe can be inserted into the converter furnace.
The laser analyzer for analyzing molten steel described above can be mounted on the tip inside the sublance.

【0019】上記セルは、レーザで照射された溶鋼から
採取された上記採取ガスを導入するための搬送管と、A
rガスを導入する給気管と、該採取ガスを吸引するため
の吸引用配管と、に接続された略円筒状であって、該採
取ガス中の微粒子を捕捉するために該セル内に該セルの
軸方向に略直角方向に配設されたフィルタと、該フィル
タに捕捉された該微粒子近傍からCOガスを除去し該微
粒子を浮遊させるためのArガス吹きつけ用のAr噴出
ノズルと、浮遊させた該微粒子をプラズマ分析装置に搬
送するための分析装置への搬送管と、を有する。
The above-mentioned cell is provided with a transfer pipe for introducing the above-mentioned gas collected from molten steel irradiated by the laser,
a gas supply pipe for introducing the r gas, and a suction pipe for sucking the sampled gas, which is substantially cylindrical and connected to the cell for capturing fine particles in the sampled gas. A filter disposed substantially perpendicular to the axial direction of the filter, an Ar ejection nozzle for blowing Ar gas to remove CO gas from the vicinity of the fine particles captured by the filter and float the fine particles, And a transfer pipe to the analyzer for transferring the fine particles to the plasma analyzer.

【0020】[0020]

【発明の実施の形態】図1に本発明の構成の概要を示
す。また、図2に微粒子とCOガス分離用セルの構成を
示す。水冷されたサブランス11に装着したプローブ3
を、図示しない炉口から炉内に挿入し、サブランス11
の先端を溶鋼表面に接近させ、微粒子発生用レーザ1か
ら発進させたレーザ光を集光レンズ2およびプローブ3
を通して溶鋼面に照射する。
FIG. 1 shows an outline of the configuration of the present invention. FIG. 2 shows the configuration of a cell for separating fine particles and CO gas. Probe 3 mounted on water-cooled sublance 11
Into the furnace through a furnace port (not shown),
The laser beam emitted from the fine particle generation laser 1 is brought close to the surface of the molten steel by the
To irradiate the molten steel surface.

【0021】プローブ3には石英ガラス21が取付けら
れ、レーザ光を通しつつ内外気を遮断する。プローブ3
にはガス流入管5とガス排出管6が取り付けられてい
る。不活性ガスがガス流入管5からプローブ3に入り、
レーザ照射により生じた鋼の微粒子を溶鋼4からプロー
ブ空間部へ拡散してきたCOガスとともにガス排出管6
からセル8へ搬送する。
A quartz glass 21 is attached to the probe 3 to block the inside and outside air while passing the laser beam. Probe 3
Is provided with a gas inlet pipe 5 and a gas outlet pipe 6. Inert gas enters the probe 3 through the gas inlet pipe 5,
Gas exhaust pipe 6 together with the CO gas diffused from the molten steel 4 into the probe space from the molten steel 4 by the laser irradiation.
To the cell 8.

【0022】セル8には無機性のフィルタ82が取付け
られ、一定時間微粒子を含むガスを流した後、清浄化作
業としてCOガスを含まないガスに切り換えて流し、フ
ィルタ82に堆積した微粒子近傍からCOガスを分離除
去する。この分離除去するための清浄化作業の後、フィ
ルタ82にArガスを吹きつけあるいは逆流させて微粒
子を浮遊させ、プラズマ分析装置9に搬送して微粒子の
C分析を行う。
An inorganic filter 82 is attached to the cell 8. After a gas containing fine particles flows for a certain period of time, the gas is switched to a gas containing no CO gas as a cleaning operation, and the gas is passed from the vicinity of the fine particles deposited on the filter 82. CO gas is separated and removed. After the cleaning operation for separating and removing the particles, Ar particles are blown or flowed back to the filter 82 to suspend the particles, and the particles are conveyed to the plasma analyzer 9 for C analysis of the particles.

【0023】[0023]

【実施例】1600℃の溶鋼4に半導体励起固体レーザ
の単一モード光を平均パルスエネルギー0.2mJ、パ
ルス幅20nsec、パルス頻度50kHzの条件で、
ビームエキスパンダ10倍、集光レンズ200mmの光
学系を通して照射した。プローブは窒化ボロン製であ
り、Arガスを2l/minの流量で流し、内径4mm
φのステンレス製搬送管で、微粒子を約10m搬送し、
セルに導いた。
EXAMPLE A single mode light of a semiconductor-pumped solid-state laser was applied to molten steel 4 at 1600 ° C. under the conditions of an average pulse energy of 0.2 mJ, a pulse width of 20 nsec, and a pulse frequency of 50 kHz.
Irradiation was performed through an optical system having a beam expander of 10 times and a condenser lens of 200 mm. The probe is made of boron nitride, flows Ar gas at a flow rate of 2 l / min, and has an inner diameter of 4 mm.
With a φ stainless steel transfer tube, the fine particles are transferred about 10 m,
Led to the cell.

【0024】微粒子は、セル8内の孔径0.1μmのア
ルミナ製のフィルタ82により5秒間捕集され、セル8
内はその後5秒間、5l/minのArガス流により置
換された後、先端を絞ったAr噴出ノズル87から1l
/minの流量でArガスをフィルタ82に吹き付け、
フィルタ82に付着した微粒子を剥離浮遊させて誘導結
合プラズマ分析装置9のプラズマへ搬送し励起発光し
た。
The fine particles are collected by an alumina filter 82 having a pore diameter of 0.1 μm in the cell 8 for 5 seconds.
After being replaced by an Ar gas flow of 5 l / min for 5 seconds thereafter, 1 l of the air was discharged from the Ar ejection nozzle 87 having a narrowed tip.
Ar gas is blown onto the filter 82 at a flow rate of / min,
The fine particles adhered to the filter 82 were separated and floated, and were conveyed to the plasma of the inductively coupled plasma analyzer 9 to emit and emit light.

【0025】励起された光を分光器にて、C及び鉄のス
ペクトル等に分散して、光検出器によりその強度を測定
した。測定波長Cは193nm、鉄は271nmとし
た。また、同時に、同じく重要元素であるMnを293
nmで、Pを178nmで、Sを183nmの波長で特
定した。
The excited light was dispersed into a spectrum of C and iron by a spectroscope, and the intensity was measured by a photodetector. The measurement wavelength C was 193 nm, and iron was 271 nm. At the same time, Mn, which is also an important element, was changed to 293.
nm, P at 178 nm and S at 183 nm.

【0026】スペクトル強度を濃度に換算するための検
量線は、含有量既知の鋼標準試料にレーザを照射して微
粒子を生成させ、その微粒子を捕集・発光させて作成し
た。微粒子の組成は生成前の形態によらないので検量線
が正確である点は、本発明の長所の一つである。
A calibration curve for converting the spectral intensity into a concentration was prepared by irradiating a laser to a steel standard sample having a known content to generate fine particles, and collecting and emitting the fine particles. One of the advantages of the present invention is that the calibration curve is accurate because the composition of the fine particles does not depend on the form before generation.

【0027】図3に本発明による溶鋼中C含有量と生成
微粒子のC発光強度の関係を、また、図4に従来の微粒
子搬送法であるCOガス未分離時の、溶鋼中C含有量と
生成微粒子のC発光強度の関係を示す。COガス未分離
時では、溶鋼中C含有量とC発光強度の相関は全くとれ
なかったが、本発明では高い相関が得られ、溶鋼中C含
有量が微粒子のCの発光強度から求められる。
FIG. 3 shows the relationship between the C content in the molten steel according to the present invention and the C emission intensity of the produced fine particles, and FIG. 4 shows the C content in the molten steel when the CO gas is not separated by the conventional fine particle transport method. The relationship of the C emission intensity of the produced fine particles is shown. When the CO gas was not separated, there was no correlation between the C content in the molten steel and the C emission intensity, but a high correlation was obtained in the present invention, and the C content in the molten steel was determined from the C emission intensity of the fine particles.

【0028】[0028]

【発明の効果】本発明により、転炉等における吹錬中の
溶鋼のC含有量が迅速かつ正確に測定できるようにな
り、分析待ち時間が不要となった。また、吹錬終了後、
分析結果の誤差修正のためにする「後吹き吹錬」の工程
が必要なくなること等による製鋼効率の向上、炉壁等の
耐火物損傷の低減等による製鋼コストの削減、生産計画
通りの製造によるロスの低減等が達成され、製鋼操業に
与える本発明の効果は極めて大きい。
According to the present invention, the C content of molten steel during blowing in a converter or the like can be measured quickly and accurately, and the analysis waiting time is not required. Also, after blowing,
Improve steelmaking efficiency by eliminating the need for a “post-blowing” process to correct errors in analysis results, reduce steelmaking costs by reducing damage to refractories such as furnace walls, and manufacture according to production plans. The reduction of the loss is achieved, and the effect of the present invention on the steelmaking operation is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成の概要を示す図である。FIG. 1 is a diagram showing an outline of a configuration of the present invention.

【図2】微粒子とCOガス分離用セルの構成を示す図で
ある。
FIG. 2 is a diagram showing a configuration of a cell for separating fine particles and CO gas.

【図3】本発明による溶鋼中のC含有量と生成微粒子の
C発光強度の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the C content in molten steel and the C emission intensity of produced fine particles according to the present invention.

【図4】従来の微粒子搬送法であるCOガス未分離時
の、溶鋼中C含有量と生成微粒子のC発光強度の関係を
示す図である。
FIG. 4 is a diagram showing the relationship between the C content in molten steel and the C emission intensity of generated fine particles when CO gas is not separated according to a conventional fine particle transport method.

【図5】従来の転炉における溶鋼分析手法を説明する図
である。
FIG. 5 is a diagram illustrating a method of analyzing molten steel in a conventional converter.

【符号の説明】[Explanation of symbols]

1 微粒子発生用レーザ 2 集光レンズ 3 プローブ 4 溶鋼 5 ガス流入管 6 ガス排出管 7 搬送管 8 セル 9 プラズマ分析装置 11 サブランス 21 石英ガラス 40 転炉 41 スラグ 43 酸素ラン
ス 82 フィルタ 84 Ar給気
管 85 吸引用配管 86 分析装置
への搬送管 87 Ar噴出ノズル 88 電磁バル
DESCRIPTION OF SYMBOLS 1 Particle generation laser 2 Condensing lens 3 Probe 4 Molten steel 5 Gas inflow pipe 6 Gas exhaust pipe 7 Carrier pipe 8 Cell 9 Plasma analyzer 11 Sublance 21 Quartz glass 40 Converter 41 Slag 43 Oxygen lance 82 Filter 84 Ar air supply pipe 85 Suction pipe 86 Transport pipe to analyzer 87 Ar jet nozzle 88 Electromagnetic valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼にレーザを照射してその一部を気化
して微粒子とし、不活性ガスでセルへ搬送し、セル内に
て微粒子とCOガスを含む搬送ガスとを分離した後に、
微粒子を分析装置へ搬送して分析する溶鋼迅速分析方
法。
1. A method for irradiating a laser beam on molten steel to vaporize a part of the molten steel to form fine particles, transport the fine particles to a cell with an inert gas, and separate the fine particles from a carrier gas containing a CO gas in the cell.
A rapid analysis method for molten steel that transports and analyzes fine particles to an analyzer.
【請求項2】 前記溶鋼の成分組成が炭素であることを
特徴とする請求項1記載の溶鋼成分の分析方法。
2. The method according to claim 1, wherein the composition of the molten steel is carbon.
【請求項3】 溶鋼表面に照射する微粒子発生用レーザ
と、該レーザを集光し溶鋼表面に照射する集光レンズ
と、該レーザ照射により生じた溶鋼微粒子の搬送のため
のガスを流入させるガス流入管および該溶鋼微粒子を含
有する採取ガスをセルに搬出するガス排出管に接続され
たプローブと、を備えたことを特徴とする溶鋼分析用レ
ーザ分析装置。
3. A laser for generating fine particles for irradiating the surface of molten steel, a condenser lens for condensing the laser and irradiating the surface of the molten steel, and a gas for flowing a gas for conveying the fine particles of molten steel generated by the laser irradiation. A laser analyzer for analyzing molten steel, comprising: an inflow pipe and a probe connected to a gas exhaust pipe for carrying out a sampled gas containing the molten steel particles to a cell.
【請求項4】 前記微粒子発生用レーザと、前記集光レ
ンズと、前記ガス流入管およびガス排出管に接続された
プローブと、を転炉炉内へ挿入することができるよう
に、サブランスの内側の先端に装着してあることを特徴
とする、請求項3記載の溶鋼分析用レーザ分析装置。
4. A sub-lance inside a sub-lance so that the laser for generating fine particles, the condenser lens, and a probe connected to the gas inlet pipe and the gas outlet pipe can be inserted into the converter furnace. The laser analyzer for molten steel analysis according to claim 3, wherein the laser analyzer is attached to a tip of the steel plate.
【請求項5】 レーザで照射された溶鋼から採取された
前記採取ガスを導入するための搬送管と、Arガスを導
入する給気管と、該採取ガスを吸引するための吸引用配
管と、に接続された略円筒状の前記セルであって、該採
取ガス中の微粒子を捕捉するために該セル内に該セルの
軸方向に略直角方向に配設されたフィルタと、該フィル
タに捕捉された該微粒子近傍からCOガスを除去し該微
粒子を浮遊させるためのArガス吹きつけ用のAr噴出
ノズルと、浮遊させた該微粒子をプラズマ分析装置に搬
送するための分析装置への搬送管と、を有することを特
徴とするセル。
5. A transport pipe for introducing the sampled gas collected from the molten steel irradiated by the laser, an air supply pipe for introducing an Ar gas, and a suction pipe for sucking the sampled gas. A connected substantially cylindrical cell, wherein a filter disposed in the cell in a direction substantially perpendicular to the axial direction of the cell for capturing fine particles in the collected gas; An Ar ejection nozzle for blowing Ar gas for removing CO gas from the vicinity of the fine particles and suspending the fine particles, and a transport pipe to an analyzer for transporting the suspended fine particles to a plasma analyzer, A cell comprising:
JP9102492A 1997-04-04 1997-04-04 Rapid analysis by laser of molten steel component and laser analyzing device Pending JPH10281952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9102492A JPH10281952A (en) 1997-04-04 1997-04-04 Rapid analysis by laser of molten steel component and laser analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9102492A JPH10281952A (en) 1997-04-04 1997-04-04 Rapid analysis by laser of molten steel component and laser analyzing device

Publications (1)

Publication Number Publication Date
JPH10281952A true JPH10281952A (en) 1998-10-23

Family

ID=14328929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9102492A Pending JPH10281952A (en) 1997-04-04 1997-04-04 Rapid analysis by laser of molten steel component and laser analyzing device

Country Status (1)

Country Link
JP (1) JPH10281952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751449A (en) * 2021-09-16 2021-12-07 南京康测自动化设备有限公司 Rapid and efficient cooling and purging system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751449A (en) * 2021-09-16 2021-12-07 南京康测自动化设备有限公司 Rapid and efficient cooling and purging system and method

Similar Documents

Publication Publication Date Title
KR100225775B1 (en) Method for analyzing solid specimen and apparatus therefor
US4730925A (en) Method of spectroscopically determining the composition of molten iron
JPH10281952A (en) Rapid analysis by laser of molten steel component and laser analyzing device
JPS6146773B2 (en)
JPH10281999A (en) Method and device for laser analysis of molten steel element
JP3039231B2 (en) Method and apparatus for rapid analysis of steel components
JPH0151939B2 (en)
JPS61181946A (en) Direct laser emission spectrochemical analyzer for molten metal
JP4788089B2 (en) Molten metal component measuring device
JP3058043B2 (en) Probe and method for laser emission spectroscopy of molten metal
JP3962362B2 (en) Method and apparatus for monitoring molten metal in refining furnace
JPH07234211A (en) Probe for molten metal laser emission spectral analysis and its analyzing method
JP3198841B2 (en) Method and apparatus for atomic absorption analysis of suspended particles in gas
JP2001234230A (en) Method for deciding end point of decarburization refining
JPS63243872A (en) Method and instrument for direct analysis of molten metal by formation of fine particle by ultrasonic oscillation
JPH02254345A (en) Laser emission spectral analysis method and apparatus for molten metal
JPS58143266A (en) Method for continuously analyzing silicon content in molten pig iron
JPH06323969A (en) Method and apparatus for quickly analyzing steel piece
JP2982602B2 (en) Method and apparatus for laser vaporization analysis of molten metal
JPS60162943A (en) Method and device for recovering evaporating fine particles and analyzing molten metal
JP2003028851A (en) Measuring method for sulfur compound in exhaust gas
JPS60162945A (en) Method and device for recovering evaporating fine particles and analyzing molten metal
JPH0149891B2 (en)
JPH07280797A (en) Speedy analysis method and device of molten steel
JPS6267430A (en) Spectral analysis of components in molten iron