JPH0649890B2 - Method for estimating end point components in converter blowing - Google Patents

Method for estimating end point components in converter blowing

Info

Publication number
JPH0649890B2
JPH0649890B2 JP63042979A JP4297988A JPH0649890B2 JP H0649890 B2 JPH0649890 B2 JP H0649890B2 JP 63042979 A JP63042979 A JP 63042979A JP 4297988 A JP4297988 A JP 4297988A JP H0649890 B2 JPH0649890 B2 JP H0649890B2
Authority
JP
Japan
Prior art keywords
blowing
amount
slag
end point
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63042979A
Other languages
Japanese (ja)
Other versions
JPH01219117A (en
Inventor
武志 高輪
剛 岡田
正彦 犬井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63042979A priority Critical patent/JPH0649890B2/en
Publication of JPH01219117A publication Critical patent/JPH01219117A/en
Publication of JPH0649890B2 publication Critical patent/JPH0649890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、転炉吹錬の終了時における溶鋼中のMnとPの
成分量(重量%)を即時に必要な精度で推定する方法に
関し、その時点でのわずかな分析と計算の時間でPの成
分適否(最大限が求められることが多い)、およびMnの
成分適否(最小限が決められている場合には、不足なら
ばMn合金鉄を投入する)を判断する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for immediately estimating the amount (% by weight) of Mn and P components in molten steel at the end of converter blowing with required accuracy. , P component suitability (the maximum is often sought) and Mn component suitability (if the minimum is determined, Mn alloy is insufficient if there is a slight analysis and calculation time at that point) How to judge)

(従来の技術) 従来より、溶鋼の主要な成分であるP、Mnについてはも
ちろん、その他の成分についても吹錬終了時の濃度を予
測することは困難といわれている。
(Prior Art) Conventionally, it is said that it is difficult to predict the concentrations of P and Mn, which are the main components of molten steel, as well as other components at the end of blowing.

したがって、従来の操業では、吹錬終了後P、Mnの成分
外れを防止し必要ならばMn合金鉄投入を準備するため
に、終点時の溶鋼サンプリングを行い、その分析値を確
認してから出鋼を開始していた。
Therefore, in the conventional operation, in order to prevent the P and Mn components from coming off after the completion of blowing and prepare for the introduction of Mn alloy iron if necessary, the molten steel is sampled at the end point and the analysis value is confirmed before the operation. Had started steel.

つまり、従来の操業では吹錬終了から出鋼開始までに溶
鋼のサンプリングおよびその分析値を確認するための時
間を要する。通常この時間は5〜10分程度であるがその
間高温状態での溶鋼が炉内に滞留するために熱損失と耐
火物溶損などの問題点があった。
In other words, in the conventional operation, it takes time from the end of blowing to the start of tapping to check the molten steel and confirm its analysis value. Usually, this time is about 5 to 10 minutes, but during that time, molten steel in a high temperature state stays in the furnace, which causes problems such as heat loss and melting loss of refractory.

これまでも、吹錬終了時の終点成分を推定するために、
特開昭61-12811号公報、特開昭62-56511号公報に示すご
とく酸素センサーに基づく方法などが提案されている
が、酸素濃度の計測値と終点成分との対応が十分ではな
く良好な終点成分の推定精度が期待できない。
Until now, in order to estimate the end point component at the end of blowing,
As disclosed in JP-A-61-12811 and JP-A-62-56511, methods based on an oxygen sensor and the like have been proposed, but the measured value of oxygen concentration and the end point component are not sufficiently correspondent and good. The estimation accuracy of the end point component cannot be expected.

(発明が解決しようとする課題) ここに、本発明の目的は、吹錬終了から出鋼までの迅速
化と酸素センサーを使用せずに終点成分、特にPおよび
Mn濃度を精度よく推定する方法を提供することにある。
(Problems to be Solved by the Invention) Here, an object of the present invention is to accelerate the process from the end of smelting to tapping and to use end point components, particularly P and
It is to provide a method for accurately estimating the Mn concentration.

(課題を解決するための手段) 本発明者は、上述の目的を達成すべく種々検討を重ねた
ところ、以下のような知見を得た。
(Means for Solving the Problem) The present inventor has made various studies to achieve the above-mentioned object, and has obtained the following findings.

なお、以下の式中(%X)と〔Y%〕はそれぞれスラグ
中のX成分と溶鋼中のY成分の各濃度(重量%、以下同
じ)を表わす。又添字IN、S及びEはそれぞれ装入時
(Initialの略)、サンプリング時(Samplingの略)、終
点時(Endの略)におけるある物質の重量、濃度、温度
等を区別する。さらにMxは原子Xの原子量または分子X
の分子量を、Wyは物質Yの重量(原則としてkg、溶鋼の
みはt)を表わす。
In the following formulas (% X) and [Y%] represent respective concentrations (% by weight, the same applies hereinafter) of the X component in the slag and the Y component in the molten steel, respectively. The subscripts IN, S, and E distinguish the weight, concentration, temperature, etc. of a certain substance at the time of charging (abbreviation of Initial), sampling (abbreviation of Sampling), and end point (abbreviation of End). Furthermore, Mx is the atomic weight of atom X or molecule X
And Wy represents the weight of the substance Y (in principle, kg, only molten steel is t).

すなわち、まず第一に、吹錬中にサブランスによりサン
プリングしてから吹錬終点までのスラグ中のFeO重量の
増加量は、その期間中に供給されたOのうち脱炭に消
費されなかった酸素量(以下「非脱炭酸素量」という)
と相関があると考え、実操業データを集めた結果、後述
する(4)式および第1図の関係を見出した。脱炭に使用
されたOはCO2の形で空中に排出されてしまうので、
本発明で問題となる溶鋼中の〔%Mn〕、〔%P〕と直接
関係がない。(4)式または第1図により酸素センサーを
用いずに非脱炭酸素量を測定すればスラグ中のFeO重量
の変化を知ることができる。なお、酸素量はNm3/t単位
で表わされているが、これは溶鋼1t当り標準状態温
度、圧力に換算した酸素体積の意味である。
That is, first of all, the increase amount of FeO weight in the slag from sampling by the sublance during blowing to the end of blowing was not consumed for decarburization in the O 2 supplied during that period. Oxygen amount (hereinafter referred to as "non-decarboxylated amount")
As a result of collecting actual operation data, we found the relationship between equation (4) and Fig. 1 described later. O 2 used for decarburization is emitted into the air in the form of CO 2 ,
It is not directly related to [% Mn] and [% P] in molten steel, which is a problem in the present invention. If the non-decarboxylation amount is measured without using the oxygen sensor according to the equation (4) or Fig. 1, the change in the FeO weight in the slag can be known. The oxygen amount is expressed in Nm 3 / t unit, which means the oxygen volume converted to standard state temperature and pressure per 1t of molten steel.

第二に、溶鋼とスラグの2相間のMn、Pの分配法則を用
い、平衡定数K(T)をMnの場合には周知の式によって求
め、Pの場合にはHealyの平衡式が成立つものとして係
数を実験的に求める。
Secondly, the equilibrium constant K (T) is calculated by a well-known equation in the case of Mn using the distribution law of Mn and P between the two phases of molten steel and slag, and the Healy equilibrium equation is established in the case of P. The coefficient is experimentally obtained.

第三に、Mn、Pの物質バランスの式を用い、数学的に連
立方程式を立て最終的には〔%Mn〕、〔%P〕を求める
のである。
Thirdly, by using the material balance formula of Mn and P, a simultaneous equation is mathematically established and finally [% Mn] and [% P] are obtained.

かくして、本発明の要旨とするところは、転炉吹錬中に
サブランスによりサンプルを採取し、このサンプル採取
時のMnとPの分析値と、このサンプル採取時点から吹錬
終了までに供給された酸素量のうち脱炭に使用されなか
った非脱炭酸素量とからスラグ中FeO重量の変化量を求
め、次いでこの変化量と吹錬終点でのMnまたはP濃度と
の相関式により吹錬終了時の溶鋼中のMnとPの成分濃度
を推定することを特徴とする転炉吹錬における終点成分
推定方法である。
Thus, the gist of the present invention is that a sample is taken with a sublance during the blowing of a converter, and the analysis values of Mn and P at the time of taking this sample and the samples supplied from the time of this sampling to the end of blowing. The amount of change in the FeO weight in the slag is calculated from the amount of oxygen that has not been used for decarburization, and then the amount of oxygen is changed. Then, the amount of change is correlated with the Mn or P concentration at the end of blowing. It is a method for estimating end point components in converter blowing, which comprises estimating the concentration of Mn and P components in molten steel at the time.

このように、本発明は、転炉吹錬中にサブランスにより
サンプルを採取してそのMnとPの分析値をもとめ、およ
び上記のサンプル採取時点から吹錬終了までの非脱炭酸
素量を用いて第1図または(4)式により同期間中のスラ
グ中FeO重量の増加分をもとめ計算により吹錬終了時のM
nとPの成分濃度(重量%)を推定する方法であり、本
発明によれば、酸素センサーによって酸素量を測定する
必要がない。
As described above, the present invention uses a sublance during the blowing of a converter to obtain an analysis value of Mn and P, and uses the amount of non-decarboxylation element from the time of sampling to the end of blowing. 1 or Eq. (4) is used to calculate the increase in the FeO weight in the slag during the same period, and M is calculated at the end of blowing by calculation.
This is a method of estimating the component concentrations (% by weight) of n and P, and according to the present invention, it is not necessary to measure the oxygen amount with an oxygen sensor.

本発明におけるサンプリング時点は特に制限なく、吹錬
期間のどの時点で行ってもよいが、余り早期に行うと誤
差の幅が多くなり、一方あまり遅く行うと終点成分予測
の意義がなくなるため、一般には吹錬終了予定の、1.5
〜2分前に行うのが好ましい。
The sampling point in the present invention is not particularly limited, and may be performed at any point in the blowing period, but if it is performed too early, the range of error increases, while if it is performed too late, the significance of the end point component prediction is generally lost. Is scheduled to end blowing, 1.5
It is preferable to carry out ~ 2 minutes before.

(作用) 本発明にかかる上記吹錬終了時のMnとPの成分濃度の推
定方法を第2図に概念的に説明するが、各操作について
具体的には以下に詳述する。
(Operation) The method of estimating the Mn and P component concentrations at the end of blowing according to the present invention will be conceptually described in FIG. 2, and each operation will be specifically described below.

まず、吹錬中のスラグ・溶鋼間のMn分配は、学振製鋼第
19委員会による「製鋼反応の推奨平衡値」(1968年、日
刊工業新聞社)のp.71によると、(1)式で表わされる。
First, the Mn distribution between slag and molten steel during blowing is determined by Gakshin Steel
According to p.71 of “Recommended Equilibrium Value for Steelmaking Reaction” by the 19th Committee (1968, Nikkan Kogyo Shimbun), it is expressed by equation (1).

ただし T :溶鋼温度(℃) K(T):平衡定数 (1)式が吹錬中サブランスによるサンプル計測時および
吹錬終点時に成り立つとすれば下記(2)、(3)式が成立
つ。
However, T: Molten steel temperature (℃) K (T): Equilibrium constant If Eq. (1) is satisfied at the time of sample measurement by the sublance during blowing and at the end of blowing, the following Eqs. (2) and (3) are established.

FeO、WMnOはぞれぞれスラグ中FeO、MnOの各重
量(kg)を表す。
W FeO and W MnO respectively represent the weight (kg) of FeO and MnO in the slag.

吹錬中サブランスによるサンプル計測時点から吹錬終点
までのスラグ中FeO重量の変化量と、非脱炭酸素量との
関係について実操業データの解析により(4)式の関係が
得られる。前述のようにこの関係は第1図に示される。
Regarding the relationship between the amount of change in the FeO weight in the slag from the time when the sample was measured by the sublance during blowing to the end of blowing and the amount of non-decarboxylated element, the relationship of equation (4) can be obtained by analyzing the actual operation data. As mentioned above, this relationship is shown in FIG.

ただし、WST :溶鋼重量(t) △ONC:非脱炭酸素量(Nm3) 一方、Mnの物質バランスより、吹錬中サブランス計測
時、吹錬終点時にそれぞれ(5)、(6)式が成り立つ。
However, W ST: molten steel weight (t) △ O NC: while the non decarboxylation elementary charge (Nm 3), respectively from the material balance of Mn, when in sub-lance measurement blowing, during blowing end point (5), (6) The formula holds.

ただし、〔%Mn〕IN:溶鋼量に対する装入Mn 量(%) MMn :Mnの原子量 MMnO :MnOの分子量 上記(2)〜(6)式を連立させることにより、(WMnO)
S(WMnO)E、(WFeO)S、(WFeO)Eとともに、所望の終点Mn推定
値〔%Mn〕が求められる。
However, [% Mn] IN: charged Mn amount relative amount of molten steel (%) M Mn: Mn atomic weight M MnO: By simultaneous with MnO molecular weight above (2) to (6), (W MnO)
A desired end point Mn estimated value [% Mn] E is obtained together with S (W MnO ) E , (W FeO ) S , and (W FeO ) E.

次に、終点P推定値〔%P〕の求め方について述べる。Next, how to obtain the end point P estimated value [% P] will be described.

吹錬中にスラグ・溶鋼間のP分配について、Healyの平
衡式を基本にした下記(7)式があてはまると仮定する。
It is assumed that the following equation (7) based on Healy's equilibrium equation applies to P distribution between slag and molten steel during blowing.

ただし、d〜dの値は実操業データの解析により定
めた。(7)式が吹錬中サブランスによるサンプル計測時
および吹錬終点時に成り立つとすれば(8)式が成り立
つ。
However, the values of d 0 to d 3 were determined by analyzing the actual operation data. If Eq. (7) holds at the time of sample measurement by the sublance during blowing and at the end of blowing, then Eq. (8) holds.

吹錬中サブランスによるサンプル計測時のスラグ重量(W
SLAG)S〔kg〕は装入Siと相関があると考えられ、実操業
データの解析により(9)式の関係が得られる。
Slag weight (W when measuring sample with sublance during blowing
SLAG ) S [kg] is considered to be correlated with the charged Si, and the relationship of Eq. (9) can be obtained by analysis of actual operation data.

ただし、〔%Si〕IN:溶鋼量に対する装入Si量(%) また、吹錬中サブランスによるサンプル計測時点から吹
錬終点までのスラグ重量の変化量はスラグ中FeO重量の
場合と同様に、その期間の非脱炭酸素量と相関があると
考えられ、実操業データの解析により(10)式の関係が得
られる。
However, [% Si] IN : amount of charged Si relative to the amount of molten steel (%) Also, the amount of change in the slag weight from the time of sample measurement by the sublance during blowing to the end of blowing is the same as for the FeO weight in slag. It is considered that there is a correlation with the amount of non-decarboxylated oxygen during that period, and the relationship of Eq. (10) can be obtained by analyzing the actual operation data.

一方、Pの物質バランスより、吹錬中サブランス計測
時、吹錬終点時にそれぞれ(11)、(12)式が成り立つ。
On the other hand, from the substance balance of P, the equations (11) and (12) are established at the time of sublance measurement during blowing and at the end of blowing.

ただし、〔%P〕IN:溶鋼量に対する装入P量(%) 上記(8)式右辺中のスラグ成分は(13)〜(16)式によりそ
れぞれスラグ重量に置きかえることができる。
However, [% P] IN : the amount of charged P (%) relative to the amount of molten steel, the slag component in the right side of the above equation (8) can be replaced with the slag weight by equations (13) to (16).

ただし、(15)、(16)式における(WCaO)S、(WcaO)Eはそれぞ
れサブランスによるサンプル計測時、吹錬終点時までに
消費されたCaO量〔kg〕のデータを用いることとする。
However, for (W CaO ) S and (W caO ) E in Eqs . (15) and (16), use the data of the amount of CaO (kg) consumed by the sublance sample measurement and by the end of blowing, respectively. To do.

上記(8)〜(16)式を連立させることにより、(%P)S、(%
P)E、(WSLAG、(WSLAGとともに、
所望の終点P推定値〔%P〕が求められる。
By making the equations (8) to (16) simultaneous, (% P) S , (%
P) E , (W SLAG ) S , (W SLAG ) E ,
A desired end point P estimate [% P] E is determined.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

(実施例) 160t転炉の実操業において、すでに第2図に関連させ
て述べた操作手順にしたがって、本発明の方法により終
点のMnおよびPの成分濃度を推定し、同時に分析によっ
て成分濃度を実測した。なお、溶鋼サンプリングは、吹
錬終了の2分前に行った。
(Example) In the actual operation of a 160 t converter, the component concentrations of Mn and P at the end points were estimated by the method of the present invention according to the operation procedure already described with reference to FIG. Actually measured. The molten steel sampling was performed 2 minutes before the end of blowing.

その結果は、それぞれ第3図〔%Mn〕および第4図〔%
P〕である。いずれも横軸に成分濃度の推定値、縦軸に
同一成分濃度の実測値をとっている。両図で原点を通る
勾配45゜の直線上に集まることが理想であるが、誤差の
許容レンジは〔%Mn〕の場合±0.03%、〔%P〕の場合
±0.003%である。これらの許容レンジに入る割合を上
記実操業で調べた結果を第1表に示す。現場作業者によ
る従来法に比べ本発明法が格段に推定成分濃度の精度が
良いことを示している。
The results are shown in Fig. 3 [% Mn] and Fig. 4 [%
P]. In each case, the horizontal axis represents the estimated value of the component concentration and the vertical axis represents the measured value of the same component concentration. In both figures, it is ideal to gather on a straight line with a gradient of 45 ° that passes through the origin, but the allowable range of error is ± 0.03% for [% Mn] and ± 0.003% for [% P]. Table 1 shows the results of examining the ratio within the allowable range in the actual operation. It is shown that the method of the present invention is much more accurate in the estimated component concentration than the conventional method by a site worker.

これからも分かるように、本発明は、従来法に比べて格
段に良い精度で吹錬終了時の成分濃度〔%Mn〕と〔%
P〕とを推定する方法を与えるものである。第1表の許
容レンジの割合は鋼材の成分合格率が、本発明方法によ
る場合、90%という意味ではない。JISまたは仕様書の
成分規格値に対して社内規格はさらに安全側に設けるの
が常識であるから、本発明方法による場合、成分合格率
(MnとPについて)はほとんど100%になる。
As can be seen from the above, the present invention has a much better accuracy than the conventional method with respect to the component concentrations [% Mn] and [%
P] is given. The ratio of the allowable range in Table 1 does not mean that the steel component acceptance rate is 90% in the case of the method of the present invention. Since it is common knowledge that the in-house standard should be set on the safe side with respect to the component standard value of JIS or specifications, in the case of the method of the present invention, the component acceptance rate (for Mn and P) is almost 100%.

(発明の効果) 以上詳述したように、本発明により吹錬終了時のMnとP
の成分濃度を十分の精度で推定でき、終点時の溶鋼サン
プルの分析結果判明まで待たずに出鋼することが可能と
なった。その結果吹錬終了から出鋼までの迅速化によっ
て熱損失と耐火物溶損を低減する効果が得られた。
(Effects of the Invention) As described in detail above, according to the present invention, Mn and P at the end of blowing are completed.
It was possible to estimate the concentration of the component with sufficient accuracy, and it was possible to tap steel without waiting for the analysis result of the molten steel sample at the end point to be known. As a result, the effect of reducing heat loss and melting loss of refractory was obtained by speeding up from the end of blowing to tapping.

【図面の簡単な説明】[Brief description of drawings]

第1図は、溶鋼1t当りの非脱炭酸素量とスラグ中のFe
O重量増加量の関係を示すグラフ; 第2図は、本発明にかかる終点成分(MnとP)の推定方
法の操作概念図;および 第3図および第4図は、実施例におけるそれぞれMnおよ
びPについて成分濃度の推定値と実測値の結果を示すグ
ラフである。
Fig. 1 shows the amount of non-decarboxylation element per ton of molten steel and Fe in slag.
FIG. 2 is a graph showing the relationship of the amount of increase in O weight; FIG. 2 is an operation conceptual diagram of the method for estimating the end point components (Mn and P) according to the present invention; and FIGS. 3 and 4 are Mn and 7 is a graph showing the results of estimated and actually measured component concentrations for P.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−18015(JP,A) 特開 昭62−56511(JP,A) 特開 昭59−136652(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-63-1815 (JP, A) JP-A-62-56511 (JP, A) JP-A-59-136652 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】転炉吹錬中にサブランスによりサンプルを
採取し、このサンプル採取時のMnとPの分析値と、この
サンプル採取時点から吹錬終了までに供給された酸素量
のうち脱炭に使用されなかった非脱炭酸素量とからスラ
グ中FeO重量の変化量を求め、次いでこの変化量と吹錬
終点でのMnまたはP濃度との相関式により吹錬終了時の
溶鋼中のMnとPの成分濃度を推定することを特徴とする
転炉吹錬における終点成分推定方法。
1. A sample is taken by a sublance during blowing of a converter and the decarburization of the analysis values of Mn and P at the time of taking this sample and the amount of oxygen supplied from the time of taking this sample to the end of blowing The amount of change in the FeO weight in the slag was calculated from the amount of non-decarbonated nitrogen that was not used in the slag, and the correlation between this amount of change and the Mn or P concentration at the end of blowing was used to determine the Mn in the molten steel A method for estimating end point components in converter blowing, which comprises estimating the component concentrations of P and P.
JP63042979A 1988-02-25 1988-02-25 Method for estimating end point components in converter blowing Expired - Lifetime JPH0649890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63042979A JPH0649890B2 (en) 1988-02-25 1988-02-25 Method for estimating end point components in converter blowing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63042979A JPH0649890B2 (en) 1988-02-25 1988-02-25 Method for estimating end point components in converter blowing

Publications (2)

Publication Number Publication Date
JPH01219117A JPH01219117A (en) 1989-09-01
JPH0649890B2 true JPH0649890B2 (en) 1994-06-29

Family

ID=12651157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63042979A Expired - Lifetime JPH0649890B2 (en) 1988-02-25 1988-02-25 Method for estimating end point components in converter blowing

Country Status (1)

Country Link
JP (1) JPH0649890B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136652A (en) * 1983-01-25 1984-08-06 Kawasaki Steel Corp Method for estimating molten steel constituent
JPS6256511A (en) * 1985-09-04 1987-03-12 Nippon Kokan Kk <Nkk> Method for controlling converter blowing
JPS6318015A (en) * 1986-07-09 1988-01-25 Nippon Kokan Kk <Nkk> Method for estimating concentration of manganese in converter blowing

Also Published As

Publication number Publication date
JPH01219117A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
JP5527180B2 (en) Converter blowing method and converter blowing system
CA1070598A (en) Method for analyzing the latent gas content of molten samples
JPH0649890B2 (en) Method for estimating end point components in converter blowing
JP4816513B2 (en) Molten steel component estimation method
JPS61261445A (en) Treatment of copper converter slag
JP3634046B2 (en) Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components
TW201928067A (en) Method for refining molten iron
KR20000045516A (en) Method and device for predicting concentration of carbon in molten metal in electric furnace work
JPS59136652A (en) Method for estimating molten steel constituent
JPH09316514A (en) Method for estimating carbon and chromium contents in molten steel in converter process of chromium-containing steel and device therefor and method for tapping molten steel thereof
JPH06148167A (en) Oxygen quantitative analyzing method for easily reductive metal oxide contained in steel slug
Ichise et al. Interaction parameter in liquid iron alloys
Pesonen et al. In Situ Measurement of Silicon Content in Molten Ferrochrome
JPS6112811A (en) Manufacture of steel in converter
JPH06331577A (en) Determination of oxygen in oxide to be reduced contained in slag in steelmaking
JP2004115880A (en) Method for estimating decarburized quantity during tapping from converter, and method for operating converter by using it
JP3432542B2 (en) Method for reducing and recovering valuable metals in slag with improved accuracy of molten steel components
JPS6318015A (en) Method for estimating concentration of manganese in converter blowing
JPH07252516A (en) Method for reduction-recovering valuable metal in slag by improved hitting rate of component in molten steel
JPS62165145A (en) Quick measuring method for carbon weight % concentration in molten iron
JPS6230806A (en) Method for controlling desiliconization of molten iron
JP3259224B2 (en) Method for measuring silicon and phosphorus contents in molten cast iron
JP2021110012A (en) Estimation apparatus of phosphorus concentration in molten steel, statistical model construction apparatus, estimation method of phosphorus concentration in molten steel, statistical model construction method, and program
JPS6096709A (en) Method and apparatus for producing extra low phosphor content high alloy steel
JPH0442451B2 (en)