JPH06258129A - Method for measuring molten metal surface level under slag - Google Patents

Method for measuring molten metal surface level under slag

Info

Publication number
JPH06258129A
JPH06258129A JP7085993A JP7085993A JPH06258129A JP H06258129 A JPH06258129 A JP H06258129A JP 7085993 A JP7085993 A JP 7085993A JP 7085993 A JP7085993 A JP 7085993A JP H06258129 A JPH06258129 A JP H06258129A
Authority
JP
Japan
Prior art keywords
molten metal
metal surface
eddy current
slag
current sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7085993A
Other languages
Japanese (ja)
Inventor
Junichi Ishimaru
淳一 石丸
Yukio Yashima
幸雄 八島
Tomiya Fukuda
富也 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP7085993A priority Critical patent/JPH06258129A/en
Publication of JPH06258129A publication Critical patent/JPH06258129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To exactly detect the molten metal surface level even through a slag layer suspended in a large quantity of conductive metal droplets by supplying alternating current to an eddy current sensor, generating eddy current m a molten metal surface and calculating it on the basis of a generated induction magnetic field. CONSTITUTION:When high frequency current is supplied to an oscillation coil 11 in the neighborhood of a molten metal surface 14, eddy current 15 is allowed to flow in the molten metal surface 14. Thereby an induction magnetic field 16 is produced and a line of magnetic force 17 is detected with receiving coils 12, 13. The strength of the detected line of the magnetic force 17 is fluctuated according to the distance between an eddy current sensor 10 and the molten metal surface 14. Therefore the position of the molten metal surface 14 can be detected from the strength of the line of the magnetic force detected with the coil 12, 13. Next, when measurement is performed as high frequency alternating current of 0.5-500kHz is supplied to the oscillation coil 11, a molten metal surface level can be highly precisely detected without any influence caused by a conductive slag layer 18. The measurement of the molten metal surface, level using alternating current of specified frequency can be performed up to 50vol.% of a dispersion quantity of metal liquid droplets of the slag layer 18 suspended in the molten metal surface 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多量の金属粒が懸濁し
ているスラグ層で覆われている金属浴の湯面を高精度に
測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for highly accurately measuring the level of a metal bath covered with a slag layer in which a large amount of metal particles are suspended.

【0002】[0002]

【従来の技術】転炉,真空脱ガス装置等でステンレス鋼
等の合金鋼を脱炭吹錬するとき、溶鋼中の炭素が吹錬酸
素と反応しCOガスとなって溶鋼から除去されると同時
に、有用成分であるCr,Fe,Mn等も一部が次の反
応に従って酸化される。 4[Cr]+3O2 →2(Cr23 ) 2[Fe]+O2 →2(FeO) 2[Mn]+O2 →2(MnO)
2. Description of the Related Art When decarburizing and blowing alloy steel such as stainless steel in a converter, a vacuum degassing device, etc., when carbon in molten steel reacts with blowing oxygen and becomes CO gas and is removed from molten steel. At the same time, some of useful components such as Cr, Fe and Mn are oxidized according to the following reaction. 4 [Cr] + 3O 2 → 2 (Cr 2 O 3 ) 2 [Fe] + O 2 → 2 (FeO) 2 [Mn] + O 2 → 2 (MnO)

【0003】酸化物となったCr,Fe,Mn等の金属
元素は、溶鋼表面に浮遊しているスラグに移行する。ス
ラグ中の金属元素は、製鋼の最終段階で酸化物から金属
状態に還元され、メタルとして溶鋼に回収される。回収
は、Cr,Fe,Mn等の金属元素がSiによって容易
に金属状態に還元されることを利用し、たとえば真空精
錬時に所定量のSiを取鍋内溶鋼に添加することにより
行われている。Siによる還元反応は、次の通りであ
る。 2(Cr23 )+3Si→4[Cr]+3(SiO
2 ) 2(FeO)+Si→2[Fe]+(SiO2 ) 2(MnO)+Si→2[Mn]+(SiO2 ) また、Siよりも酸素親和力が大きなAl,Ti等を還
元剤として使用するとき、スラグ中のSiをメタルに移
行させることもできる。
The metal elements such as Cr, Fe and Mn that have become oxides migrate to the slag floating on the surface of the molten steel. The metal element in the slag is reduced from the oxide to a metal state in the final stage of steel making, and is recovered as molten metal in the molten steel. The recovery is performed by utilizing that metal elements such as Cr, Fe and Mn are easily reduced to a metal state by Si, and for example, a predetermined amount of Si is added to the molten steel in the ladle during vacuum refining. . The reduction reaction with Si is as follows. 2 (Cr 2 O 3 ) + 3Si → 4 [Cr] +3 (SiO
2 ) 2 (FeO) + Si → 2 [Fe] + (SiO 2 ) 2 (MnO) + Si → 2 [Mn] + (SiO 2 ) Also, Al, Ti, etc., which have a greater oxygen affinity than Si, are used as reducing agents. At this time, Si in the slag can be transferred to metal.

【0004】金属状態になったCr,Fe,Mn等は溶
鋼に取り込まれ、溶鋼が成分調整される。成分調整を高
精度で行うためには、最終段階でスラグから溶鋼に移行
する金属元素を定量的に把握しておく必要がある。ま
た、最近では、Si含有量に関する規格が極めて厳しい
鋼種が使用され始めている。このような高精度の成分調
整やSi含有量が厳格に管理された鋼種に対応するため
には、Siによって還元される易還元性酸化物がスラグ
中に含まれている量を正確に把握することが必要であ
る。スラグに含まれている易還元性金属元素の量は、C
23 ,FeO,MnO2 等の金属酸化物中の酸素濃
度及びスラグ量から算出される。算出された酸素量は、
還元剤として必要なSiの添加量を定めるときの基準に
なる。金属酸化物中の酸素を定量する方法として、スラ
グ試料を蛍光X線分析する方法が知られている。蛍光X
線分析においては、精錬中の転炉,真空脱ガス装置等か
ら採取した溶融スラグをガラスビード法,プレス成形法
等で分析用試料に作製している。
Cr, Fe, Mn, etc. in the metallic state are taken into the molten steel and the composition of the molten steel is adjusted. In order to adjust the composition with high accuracy, it is necessary to quantitatively grasp the metal elements that migrate from the slag to the molten steel at the final stage. Recently, steel grades with extremely strict standards for Si content have begun to be used. In order to cope with such high-accuracy component adjustment and steel grades in which the Si content is strictly controlled, the amount of the easily reducible oxide reduced by Si contained in the slag is accurately grasped. It is necessary. The amount of easily reducible metal element contained in the slag is C
It is calculated from the oxygen concentration and the amount of slag in metal oxides such as r 2 O 3 , FeO and MnO 2 . The calculated oxygen content is
It serves as a standard for determining the amount of Si required as a reducing agent. As a method of quantifying oxygen in a metal oxide, a method of performing fluorescent X-ray analysis on a slag sample is known. Fluorescent X
In the line analysis, molten slag collected from a converter during refining, a vacuum degassing device, etc. is prepared as an analysis sample by a glass bead method, a press molding method, or the like.

【0005】ガラスビード法では、たとえば図1に示す
ように、凝固したスラグを粉砕した後、秤量し、スラグ
0.2gを炭酸ナトリウム等の融剤2.0gと共に白金
ルツボに入れ、ビードサンプラーで加熱・撹拌し、均一
に溶融・冷却する。この方法によるとき、分析用試料を
得るまでに25分程度の作業が必要となる。プレス成形
法では、採取された適量のスラグをアルミニウム製キャ
ップに充填し、15〜20トンのプレスで加圧成形する
ことにより、分析用試料を作製している。プレス成形法
は、ガラスビード法に比較して分析用試料を得るまでの
時間が短いものの、粉砕した粒子のバラツキ等に起因す
る測定誤差を解消するため同一試料で2回の分析が必要
となる。そのため、結果として分析結果を得るまでに2
0分程度かかる。
In the glass bead method, as shown in FIG. 1, for example, the solidified slag is crushed and then weighed, 0.2 g of slag is put in a platinum crucible together with 2.0 g of a flux such as sodium carbonate, and a bead sampler is used. Heat and stir to melt and cool uniformly. According to this method, it takes about 25 minutes to obtain a sample for analysis. In the press molding method, an appropriate amount of the collected slag is filled in an aluminum cap and pressure-molded with a press of 15 to 20 tons to prepare a sample for analysis. The press molding method takes a shorter time to obtain a sample for analysis than the glass bead method, but requires two analyzes on the same sample in order to eliminate measurement errors due to variations in crushed particles. . Therefore, as a result, 2
It takes about 0 minutes.

【0006】本発明者等は、この分析時間の短縮を図る
ため、製鋼スラグから採取された試料と炭素源との反応
により系外に排出される酸素量に基づき、製鋼スラグに
含まれているCr,Fe,Mn等の易還元性金属酸化物
を定量する方法を開発し、平成4年11月4日に特願平
4−319364号として出願した。この方法によっ
て、10分以内の短時間でスラグ中の酸素を定量するこ
とが可能となる。他方、スラグ量を計量する方法とし
て、出鋼,排滓ごとに取鍋の重量を計量し、溶鋼及びス
ラグ量を含めた取鍋全重量から差し引く方法等が知られ
ているが、依然としてスラグ量を高精度に測定すること
が困難な現状にある。
In order to shorten the analysis time, the present inventors have included in the steelmaking slag based on the amount of oxygen discharged to the outside of the system due to the reaction between the sample collected from the steelmaking slag and the carbon source. A method for quantifying easily reducible metal oxides such as Cr, Fe and Mn was developed and filed as Japanese Patent Application No. 4-319364 on November 4, 1992. By this method, it becomes possible to quantify oxygen in the slag in a short time within 10 minutes. On the other hand, as a method of measuring the amount of slag, there is known a method of measuring the weight of the ladle for each tapped steel and slag and subtracting it from the total weight of the ladle including the amount of molten steel and slag, but it is still known. Is difficult to measure with high accuracy.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明者等
は、計量容易な全重量WT ,溶湯重量WM 及び真空脱ガ
ス容器,取鍋等の容器重量WV からスラグ重量WS を演
算する方式を開発した。この方式によると、スラグ重量
S は、WS =WT − (WM +WV)で算出される。この
方式においては、溶湯の湯面を検出し、溶湯重量WM
把握することが要求される。スラグ下にある湯面のレベ
ルを検出する方法として、スラグ及びメタルに電気抵抗
の相違があることを利用し、スラグを貫通して電極を挿
入し、電気抵抗の変化によって湯面を検出することが考
えられる。しかし、スラグの固化状態に変動があること
等によって、この方式による測定は困難である。他方、
非接触方式で湯面を測定する手段として、渦電流センサ
ーの使用が考えられる。
Therefore, the present inventors have calculated the slag weight W S from the total weight W T , the molten metal weight W M and the weight W V of the vacuum degassing vessel, ladle, etc., which can be easily weighed. Developed a method to do. According to this method, the slag weight W S is calculated as W S = W T − (W M + W V ). In this method, it is required to detect the molten metal surface and grasp the molten metal weight W M. As a method of detecting the level of the molten metal surface under the slag, the difference in electrical resistance between the slag and the metal is used, the electrode is inserted through the slag, and the molten metal surface is detected by the change in electrical resistance. Can be considered. However, it is difficult to measure by this method because the solidified state of slag varies. On the other hand,
The use of an eddy current sensor can be considered as a means for measuring the molten metal surface in a non-contact manner.

【0008】渦電流センサーは、連鋳鋳型内の湯面レベ
ルを検出することに使用されている。渦電流センサーの
高周波コイルに高周波電流を供給するとき、導電体であ
る溶湯の湯面に渦電流が発生する。発生した渦電流によ
って誘導磁界が湯面近傍に生じ、誘導磁界がコイルのイ
ンピーダンスを変化させる。コイルのインピーダンス変
化は、電圧又は周波数に変換され、湯面レベルを表す情
報として取り出される。連鋳鋳型内の湯面に浮遊してい
るスラグは、アルカリ金属,アルカリ土類金属の酸化物
等をベースにした絶縁性のフラックスに由来する。この
場合、渦電流センサーの高周波コイルに供給された高周
波電流によって生じる渦電流は、溶湯の湯面に特定さ
れ、渦電流センサーに取り込まれるスラグ起因の誤差要
因を無視することができる。
Eddy current sensors are used to detect the level of molten metal in a continuous casting mold. When a high frequency current is supplied to the high frequency coil of the eddy current sensor, an eddy current is generated on the molten metal surface which is a conductor. An induced magnetic field is generated near the molten metal surface by the generated eddy current, and the induced magnetic field changes the impedance of the coil. The change in the impedance of the coil is converted into a voltage or a frequency and taken out as information indicating the molten metal level. The slag floating on the molten metal surface in the continuous casting mold is derived from an insulating flux based on oxides of alkali metals and alkaline earth metals. In this case, the eddy current generated by the high frequency current supplied to the high frequency coil of the eddy current sensor is specified on the molten metal surface, and the error factor due to the slag taken into the eddy current sensor can be ignored.

【0009】しかし、転炉,取鍋,真空脱ガス容器等の
精錬用容器に収容されている溶湯の湯面に浮遊している
スラグには、多量の金属粒が液滴状等で懸濁している。
たとえば、転炉内のスラグ層には、0.1〜10mm程
度の金属液滴が50体積%程度懸濁している場合もあ
る。導電性物質である金属液滴が懸濁しているスラグ層
を介して渦電流センサーによる湯面検出を行うと、スラ
グ層に発生する渦電流による影響が大きくなり、測定結
果の信頼性が低下する。本発明は、このような問題を解
消すべく案出されたものであり、渦電流センサーに供給
される交流電流の周波数を特定することにより、導電性
の金属液滴が多量に懸濁しているスラグ層を介しても湯
面レベルを正確に検出することを目的とする。
However, a large amount of metal particles are suspended in a droplet form in the slag floating on the surface of the molten metal contained in a refining vessel such as a converter, a ladle, and a vacuum degassing vessel. ing.
For example, in the slag layer inside the converter, metal droplets of about 0.1 to 10 mm may be suspended by about 50% by volume. If the eddy current sensor is used to detect the molten metal surface through the slag layer in which metal droplets, which are conductive substances, are suspended, the influence of the eddy current generated in the slag layer will be large and the reliability of the measurement results will be reduced. . The present invention has been devised to solve such a problem, and by specifying the frequency of the alternating current supplied to the eddy current sensor, a large amount of conductive metal droplets are suspended. The purpose is to accurately detect the molten metal level even through the slag layer.

【0010】[0010]

【課題を解決するための手段】本発明の湯面レベル測定
方法は、その目的を達成するため、50体積%以下の金
属粒が懸濁しているスラグ層が浮遊している金属浴の湯
面を測定する際、前記金属浴の上方に渦電流センサーを
配置し、周波数0.5〜500KHzの交流電流を前記
渦電流センサーに供給し、前記交流電流によって前記金
属浴の湯面に渦電流を発生させ、該渦電流により発生す
る誘導磁界に基づき前記金属溶湯の湯面レベルを算出す
ることを特徴とする。
[Means for Solving the Problems] In order to achieve the object, the method for measuring the level of a molten metal of the present invention has a surface of a metal bath in which a slag layer in which 50% by volume or less of metal particles are suspended is suspended. At the time of measuring, the eddy current sensor is arranged above the metal bath, an alternating current having a frequency of 0.5 to 500 KHz is supplied to the eddy current sensor, and the eddy current is applied to the molten metal bath surface by the alternating current. It is characterized in that the level of the molten metal is calculated based on the induced magnetic field generated by the eddy current.

【0011】渦電流センサーによる湯面の測定を、図2
を参照しながら説明する。なお、渦電流センサー10と
して、測定精度を増すため、発振コイル11の上下に受
信コイル12,13を配置したものを使用した。溶湯の
湯面14近傍に配置した発振コイル11に高周波電流を
供給すると、湯面14に渦電流15が流れる。渦電流1
5によって誘導磁界16が生じ、磁力線17が受信コイ
ル12,13で検出される。渦電流15の強度、ひいて
は受信コイル12,13で検出される磁力線17の強度
は、渦電流センサー10と湯面14との距離に応じて変
動する。そのため、受信コイル12,13で検出された
磁力線強度から湯面14の位置を検出することができ
る。なお、受信コイル12,13は、何れか一方を省略
することも可能である。また、受信コイル12及び13
を互いに連続して設けることも可能である。
The measurement of the molten metal surface by the eddy current sensor is shown in FIG.
Will be described with reference to. As the eddy current sensor 10, the one in which the receiving coils 12 and 13 are arranged above and below the oscillation coil 11 is used in order to increase the measurement accuracy. When a high-frequency current is supplied to the oscillation coil 11 arranged near the molten metal surface 14, an eddy current 15 flows in the molten metal surface 14. Eddy current 1
5, an induction magnetic field 16 is generated, and magnetic field lines 17 are detected by the receiving coils 12 and 13. The strength of the eddy current 15 and, consequently, the strength of the magnetic field lines 17 detected by the receiving coils 12 and 13 vary depending on the distance between the eddy current sensor 10 and the molten metal surface 14. Therefore, the position of the molten metal surface 14 can be detected based on the magnetic field line strength detected by the receiving coils 12 and 13. It should be noted that either one of the receiving coils 12 and 13 can be omitted. Also, the receiving coils 12 and 13
It is also possible to provide the two in succession.

【0012】湯面14に浮遊しているスラグ層18に金
属液滴が懸濁していると、スラグ層18にも渦電流が発
生する。その結果、スラグ層18の渦電流に起因する誘
導磁界が生じ、誤差要因が受信コイル12,13に取り
込まれる。スラグ層18に発生する渦電流は、懸濁して
いる金属液滴の量が少ないスラグ層では無視することが
できる。しかし、転炉内スラグのように懸濁量が50体
積%程度まで達することがあるスラグ層18では、導電
性を帯びるため大きな渦電流が発生する。この渦電流に
より誘導磁界が生起され、測定値に対する誤差要因が受
信コイル12,13に取り込まれる。
When metal droplets are suspended in the slag layer 18 floating on the molten metal surface 14, an eddy current is also generated in the slag layer 18. As a result, an induced magnetic field is generated due to the eddy current of the slag layer 18, and the error factor is taken into the receiving coils 12 and 13. The eddy current generated in the slag layer 18 can be ignored in the slag layer in which the amount of suspended metal droplets is small. However, a large eddy current is generated in the slag layer 18 in which the amount of suspension may reach up to about 50% by volume like the slag in the converter because it is electrically conductive. An induced magnetic field is generated by this eddy current, and an error factor with respect to the measured value is taken into the receiving coils 12 and 13.

【0013】発振コイル11に供給される交流電流の周
波数が測定値の精度向上に与える影響は定かではない。
しかし、一般的に供給電流の周波数が小さいほど湯面に
生じる磁界の表皮厚さ(湯面の深さ方向に磁界が減少す
る距離)が厚くなるため、測定値の信頼性が低下する。
逆に、過度に大きな周波数では、センサー側に近いスラ
グ面に渦電流が生じ、センサーはスラグ面を検出してし
まうことになる。このようなことから、0.5〜500
kHzの高周波交流電流を発振コイル11に供給しなが
ら測定を行うと、導電性のスラグ層18による影響を受
けることなく、湯面レベルを高精度に検出できることを
実験的に解明した。特定された周波数の交流電流を使用
した湯面レベルの測定は、溶湯の湯面14に浮遊してい
るスラグ層18における金属液滴の分散量が50体積%
まで有効である。しかし、懸濁している金属液滴が50
体積%を超えるようなスラグ層18では、導電性の上昇
に伴ってスラグ層18に大きな渦電流が発生し、渦電流
によって生起される誘導磁界の影響が大きくなる。その
ため、測定値に対する信頼性が低下する。
The effect of the frequency of the alternating current supplied to the oscillating coil 11 on improving the accuracy of the measured value is not clear.
However, generally, the smaller the frequency of the supplied current, the thicker the skin depth of the magnetic field generated on the molten metal surface (distance in which the magnetic field decreases in the depth direction of the molten metal surface), and the reliability of the measured value decreases.
On the contrary, if the frequency is too large, eddy current is generated on the slag surface near the sensor side, and the sensor detects the slag surface. From this, 0.5-500
It was experimentally clarified that when the measurement is performed while supplying a high frequency alternating current of kHz to the oscillation coil 11, the molten metal level can be detected with high accuracy without being affected by the conductive slag layer 18. The measurement of the molten metal level using the alternating current of the specified frequency shows that the dispersion amount of the metal droplets in the slag layer 18 floating on the molten metal surface 14 is 50% by volume.
Is valid until. However, there are 50
In the slag layer 18 that exceeds the volume%, a large eddy current is generated in the slag layer 18 as the conductivity increases, and the influence of the induced magnetic field generated by the eddy current increases. Therefore, the reliability of the measured value is reduced.

【0014】溶湯の湯面14に浮遊しているスラグ層1
8は、図3に模式的に示すように金属液滴19が均一に
分散しているものではない。そのため、比較的大きな径
の金属液滴19或いは金属液滴19が密に分散している
箇所では、金属液滴19に起因する誤差要因が取り込ま
れ、渦電流センサー10で測定された距離d1 が実際の
湯面14までの距離d0 よりも短くなることがある。湯
面レベルを表す情報から距離d1 の測定結果は、渦電流
センサー10で湯面を走査することによって排除され
る。たとえば、図4に示すように、容器20の内部上方
に渦電流センサー10が位置するように、容器10の周
辺に設けた旋回軸21にアーム22を取り付け、アーム
22の先端に渦電流センサー10を設ける。そして、ス
ラグ層18の上方で渦電流センサー10を矢印方向に揺
動させる。渦電流センサー10は、揺動しながら湯面1
4のレベルを連続的に検出する。得られた検出結果から
最長の値をピックアップするとき、図3に示した金属液
滴19に起因する短い距離d1 が除かれる。
A slag layer 1 suspended on the molten metal surface 14
In No. 8, the metal droplets 19 are not uniformly dispersed as schematically shown in FIG. Therefore, at the metal droplets 19 having a relatively large diameter or at locations where the metal droplets 19 are densely dispersed, an error factor due to the metal droplets 19 is taken in and the distance d 1 measured by the eddy current sensor 10 is taken. May be shorter than the actual distance d 0 to the molten metal surface 14. The measurement result of the distance d 1 from the information indicating the molten metal level is excluded by scanning the molten metal surface with the eddy current sensor 10. For example, as shown in FIG. 4, an arm 22 is attached to a revolving shaft 21 provided around the container 10 so that the eddy current sensor 10 is located above the inside of the container 20, and the eddy current sensor 10 is attached to the tip of the arm 22. To provide. Then, the eddy current sensor 10 is swung in the arrow direction above the slag layer 18. The eddy current sensor 10 swings, and the molten metal surface 1
4 levels are detected continuously. When picking up the longest value from the obtained detection result, the short distance d 1 caused by the metal droplet 19 shown in FIG. 3 is excluded.

【0015】[0015]

【実施例】 実施例1:(擬似スラグを使用した実験) 平均粒径1.0mmのCu粒子を20体積%の割合でス
ラグ粉末に分散させ、縦100mm,横100mm及び
高さ25mmの直方体形状に成形した。非磁性材料であ
るステンレス鋼板SUS304の上にスラグ成形体を配
置し、スラグ成形体の上方に渦電流センサーを昇降可能
に設けた。そして、渦電流センサーに50kHzの交流
電流を供給し、スラグ形成体を介してステンレス鋼板表
面から渦電流センサーまでの距離dを測定した。また、
スラグ形成体を介在させることなくステンレス鋼板の上
方に渦電流センサーを配置し、ステンレス鋼板の表面ま
での距離d2 を渦電流センサーで測定した。
Example 1 (Experiment using pseudo slag) Cu particles having an average particle size of 1.0 mm were dispersed in slag powder at a ratio of 20% by volume to form a rectangular parallelepiped shape having a length of 100 mm, a width of 100 mm and a height of 25 mm. Molded into. A slag molded body was arranged on a stainless steel plate SUS304 which was a non-magnetic material, and an eddy current sensor was provided above the slag molded body so as to be able to move up and down. Then, an alternating current of 50 kHz was supplied to the eddy current sensor, and the distance d from the surface of the stainless steel plate to the eddy current sensor was measured via the slag forming body. Also,
The eddy current sensor was arranged above the stainless steel plate without interposing the slag forming body, and the distance d 2 to the surface of the stainless steel plate was measured by the eddy current sensor.

【0016】渦電流センサーで得られた距離d及びd2
を、実際に測定したステンレス鋼板の表面から渦電流セ
ンサーまでの距離Dと比較した。その結果、スラグ成形
体の有無に拘らず、距離d及びd2 は実質的に同じ値で
あり、また誤差±1%の範囲で距離Dに一致していた。
このことから、スラグ中のCu粒子に起因する誘導磁界
の磁力線は、測定値の信頼性を低下させる誤差要因とし
て渦電流センサーに取り込まれていないことが判る。
The distances d and d 2 obtained by the eddy current sensor
Was compared with the actually measured distance D from the surface of the stainless steel plate to the eddy current sensor. As a result, the distances d and d 2 were substantially the same value regardless of the presence or absence of the slag molded body, and the distances d and d 2 matched the distance D within a range of ± 1%.
From this, it is understood that the magnetic field lines of the induced magnetic field due to the Cu particles in the slag are not taken in by the eddy current sensor as an error factor that reduces the reliability of the measured value.

【0017】実施例2:(金属粒の分散量に起因する影
響) スラグ成形体のCu粒子分散量を変え、実測値Dを60
mmの一定値に維持した他は、実施例1と同様な条件下
でステンレス鋼板表面までの距離d及びd2 を測定し
た。測定結果dを実測値Dと比較し、測定誤差δD[=
(d−d2)/D]とスラグ成形体のCu粒子分散量との
関係を調べた。調査結果を示す表1から明らかなよう
に、50体積%以下のCu粒子が分散しているスラグ成
形体を介した測定では、実施例1と同様に距離d及びd
2 は実測距離Dに精度良く一致していた。しかし、Cu
粒子の分散量が50体積%を超える場合には、距離d2
に比較して距離dが小さくなる傾向がみられた。
Example 2: (Effect caused by the amount of dispersed metal particles) The amount of Cu particles dispersed in the slag compact was changed and the measured value D was 60.
The distances d and d 2 to the surface of the stainless steel plate were measured under the same conditions as in Example 1 except that the value was maintained at a constant value of mm. The measurement result d is compared with the actual measurement value D, and the measurement error δD [=
The relationship between (d−d 2 ) / D] and the amount of Cu particles dispersed in the slag compact was investigated. As is clear from Table 1 showing the investigation results, in the measurement through the slag molded body in which Cu particles of 50% by volume or less are dispersed, the distances d and d are the same as in Example 1.
2 was in good agreement with the measured distance D. However, Cu
If the amount of dispersed particles exceeds 50% by volume, the distance d 2
The distance d tended to be smaller than that of

【表1】 [Table 1]

【0018】実施例3:(周波数による影響) ステンレス鋼板表面から渦電流センサーまでの実測距離
Dを一定値60mmに維持し、渦電流センサーに供給す
る交流電流の周波数を変えた他は、実施例1と同様な条
件下で距離d及びd2 を測定し、実測距離Dと比較し
た。比較結果を示す表2から明らかなように、周波数
0.5〜500kHzの範囲では、誤差δDが±2%の
極めて高精度で測長できたことが判る。他方、周波数
0.1kHzの交流電流を供給した測定では、距離d及
びd2 共に長くなる傾向が示された。これは、ステンレ
ス鋼板表面に発生する渦電流が弱いことに起因するもの
と推察される。他方、周波数1000kHzの交流電流
を供給した測定では、距離dが短くなる傾向が示され
た。これは、スラグ成形体に発生した渦電流による誤差
要因が受信コイルに取り込まれたことに起因するものと
推察される。
Example 3 (Influence by Frequency) Example 3 was repeated except that the measured distance D from the surface of the stainless steel plate to the eddy current sensor was maintained at a constant value of 60 mm and the frequency of the alternating current supplied to the eddy current sensor was changed. The distances d and d 2 were measured under the same conditions as in Example 1 and compared with the measured distance D. As is clear from Table 2 showing the comparison result, it is understood that the measurement can be performed with extremely high accuracy of the error δD of ± 2% in the frequency range of 0.5 to 500 kHz. On the other hand, in the measurement in which the alternating current having the frequency of 0.1 kHz was supplied, both the distances d and d 2 tended to be long. It is speculated that this is because the eddy current generated on the surface of the stainless steel plate is weak. On the other hand, in the measurement in which the alternating current having the frequency of 1000 kHz was supplied, the distance d tended to be shortened. It is presumed that this is because the error factor due to the eddy current generated in the slag molded body was taken into the receiving coil.

【表2】 [Table 2]

【0019】実施例4:(実測試験) 実施例1〜3の結果から、金属粒子分散量が50体積%
以下のスラグ層を介在させても、周波数0.5〜500
kHzの交流電流を渦電流センサーに供給しながら測長
するとき、導電体であるステンレス鋼の表面位置を極め
て高精度に測定できることが判る。この実験結果を基に
して、溶解炉を使用した試験を行った。溶解炉として、
耐火性ライニングを施した容積500kgの実験炉を使
用した。この実験炉に、SUS304系のステンレス溶
鋼500kgを装入した。湯面は、炉底から500mm
の高さに位置した。また、湯面が位置する箇所で、実験
炉の内部断面積は0.2m2 であった。この状態、すな
わちスラグが溶湯表面にない状態で、湯面の上方に配置
した渦電流センサーによって距離d2 を求めると共に、
光学系により湯面から渦電流センサーまでの距離Dを実
測した。
Example 4: (Measurement Test) From the results of Examples 1 to 3, the metal particle dispersion amount was 50% by volume.
Even if the following slag layer is interposed, the frequency is 0.5 to 500.
It is understood that the surface position of the stainless steel, which is a conductor, can be measured with extremely high accuracy when measuring the length while supplying an alternating current of kHz to the eddy current sensor. Based on this experimental result, a test using a melting furnace was performed. As a melting furnace,
A 500 kg laboratory furnace with a refractory lining was used. Into this experimental furnace, 500 kg of SUS304 molten stainless steel was charged. 500mm from the bottom of the furnace
Located at the height of. The internal cross-sectional area of the experimental furnace was 0.2 m 2 at the position where the molten metal surface was located. In this state, that is, in a state where the slag is not on the surface of the molten metal, the distance d 2 is obtained by the eddy current sensor arranged above the molten metal surface
The optical system measured the distance D from the molten metal surface to the eddy current sensor.

【0020】ステンレス溶鋼を温度1600℃に保持
し、その上にシリカ−アルミナ系スラグ50kgを装入
した。スラグとしては、SiO2 :40重量%,Al2
3 :10重量%及びCaO:40重量%を基本組成と
し、金属液滴として懸濁されるフェロクロムを種々の割
合で変更した。スラグは、装入後10分間経過した時点
で湯面全域に均等に分布するスラグ層を形成した。この
ときのスラグの計算厚みは、100mmである。
The molten stainless steel was maintained at a temperature of 1600 ° C., and 50 kg of silica-alumina slag was charged on it. As the slag, SiO 2 : 40% by weight, Al 2
The basic composition was O 3 : 10 wt% and CaO: 40 wt%, and the ferrochrome suspended as metal droplets was changed in various proportions. The slag formed a slag layer that was evenly distributed over the entire molten metal surface 10 minutes after the charging. The calculated thickness of the slag at this time is 100 mm.

【0021】湯面から実測距離Dの高さに渦電流センサ
ーを配置し、周波数50kHzの交流電流を供給し、渦
電流センサーにより距離dを求めた。測長結果とスラグ
中のフェロクロム含有量との関係を調査したところ、
(d−d2)/Dで表される測定誤差δD(%)は、図5
に示すようにフェロクロム粒懸濁量の増加に伴って大き
くなる傾向を示した。しかし、フェロクロム粒懸濁量が
50体積%以下のスラグ層を介した湯面レベルの測定で
は、湯面から渦電流センサーまでの実測距離Dの如何に
拘らず、測定誤差δd2%未満の極めて高い精度で湯面
レベルを測定することができた。この結果は、擬似スラ
グを使用した表1の測定結果に整合する。
An eddy current sensor was arranged at a height of a measured distance D from the molten metal surface, an alternating current having a frequency of 50 kHz was supplied, and the distance d was obtained by the eddy current sensor. When the relationship between the length measurement result and the ferrochrome content in the slag was investigated,
The measurement error δD (%) represented by (d−d 2 ) / D is shown in FIG.
As shown in (3), the tendency of the ferrochrome particles to increase with the increase in the suspension amount was shown. However, in the measurement of the level of the molten metal surface through the slag layer in which the suspended amount of ferrochrome particles is 50% by volume or less, the measurement error δd is less than 2%, which is extremely high, regardless of the measured distance D from the molten metal surface to the eddy current sensor. It was possible to measure the molten metal level with accuracy. This result is consistent with the measurement result of Table 1 using the pseudo slag.

【0022】実施例5:(スラグ量の算出) 容量500kgの実験用真空脱ガス装置で、ステンレス
鋼SUS304を精錬した。精錬後、溶鋼及びスラグを
収容している容器を計量したところ、総重量WT は12
50kgであった。なお、容器自体の重量WV は、精錬
前の計量で700kgであることが分かっている。湯面
及びスラグ層が鎮静化した後、スラグ層の上方に配置し
た渦電流センサーで湯面レベルを測定したところ、湯面
は、容器の底面から500mmの高さにあった。この湯
面位置から算出される溶鋼の重量WM は、500kgで
あった。したがって、溶鋼表面に浮遊しているスラグの
重量Ws は、Ws =WT − (WM +WV)の関係から、5
0kgと算出された。
Example 5 (Calculation of Slag Amount) Stainless steel SUS304 was smelted with an experimental vacuum degassing apparatus having a capacity of 500 kg. After refining, the container containing molten steel and slag was weighed, and the total weight W T was 12
It was 50 kg. It is known that the weight W V of the container itself is 700 kg by weighing before refining. After the level of the molten metal and the slag layer had subsided, the level of the molten metal was measured with an eddy current sensor arranged above the slag layer. The level of the molten metal was found to be 500 mm above the bottom surface of the container. The weight W M of the molten steel calculated from the position of the molten metal surface was 500 kg. Therefore, the weight W s of the slag floating on the surface of the molten steel is 5 from the relationship of W s = W T − (W M + W V ).
It was calculated to be 0 kg.

【0023】次いで、容器の底壁に設けたノズルから溶
鋼を出湯した。このとき、ノズル内を通過する流体の導
電性を検出する電極を内蔵させたノズルを使用し、電極
によって導電性の低下がみられたときに直ちにノズルを
閉塞する方式を採用した。これにより、溶鋼とスラグと
を完全に分離した状態で容器から排出することができ
た。排出された溶鋼及びスラグを計量したところ、それ
ぞれ498kg及び49kgであった。これら実測値
は、それぞれの計算値WM 及びWS に極めて近似した値
であった。この実施例から、本発明に従って渦電流セン
サーを使用するとき、転炉精錬や真空脱ガス処理等が終
了した後の湯面やスラグ層に関する正確な情報が得られ
ることが判る。得られたスラグ量に関する情報は、たと
えばスラグ中に含まれているFe,Mn,Cr等の易還
元性金属をSi等で還元し溶湯に回収するときに必要な
還元材添加量を求めることに使用される。また、測定さ
れた湯面レベルから溶湯重量が算出され、出湯時間を予
測することも可能となる。
Next, molten steel was tapped from a nozzle provided on the bottom wall of the container. At this time, a nozzle having a built-in electrode for detecting the conductivity of the fluid passing through the nozzle was used, and a method was adopted in which the nozzle was immediately closed when the conductivity was decreased by the electrode. As a result, the molten steel and the slag could be discharged from the container in a completely separated state. When the discharged molten steel and slag were weighed, they were 498 kg and 49 kg, respectively. These measured values were extremely close to the calculated values W M and W S. From this example, it can be seen that when using the eddy current sensor according to the present invention, accurate information about the molten metal surface and the slag layer after the converter refining, vacuum degassing, etc. is obtained. The information on the obtained amount of slag can be obtained by, for example, determining the amount of reducing agent addition required when reducing easily reducible metals such as Fe, Mn, and Cr contained in slag with Si etc. used. Further, the molten metal weight is calculated from the measured molten metal surface level, and it becomes possible to predict the molten metal discharge time.

【0024】[0024]

【発明の効果】以上に説明したように、本発明によると
き、金属液滴が浮遊しているスラグ層を介しても湯面レ
ベルを正確に検出することができる。そのため、溶湯重
量やスラグ重量等が正確に把握され、出湯,出滓等の操
業管理を正確に行うことができる。また、検出した湯面
レベルから湯面に浮遊しているスラグ層も算出されるた
め、スラグ中に含まれているFe,Mn,Ni等の有価
金属を溶湯に回収するときに添加される還元剤の添加量
も正確に調整することが可能となる。
As described above, according to the present invention, the molten metal level can be accurately detected even through the slag layer in which the metal droplets are suspended. Therefore, the weight of the molten metal, the weight of the slag, and the like can be accurately grasped, and the operation management of the molten metal, the molten metal, and the like can be accurately performed. Further, since the slag layer floating on the molten metal surface is also calculated from the detected molten metal level, the reduction added when recovering valuable metals such as Fe, Mn and Ni contained in the slag to the molten metal. It is possible to accurately adjust the amount of the agent added.

【図面の簡単な説明】[Brief description of drawings]

【図1】 金属酸化物中の酸素を定量する方法示すフロ
FIG. 1 Flow chart showing a method for quantifying oxygen in a metal oxide

【図2】 渦電流センサーで湯面を測定する説明図FIG. 2 is an explanatory diagram for measuring the molten metal surface with an eddy current sensor.

【図3】 湯面に浮遊しているスラグ[Figure 3] Slag floating on the surface of the bath

【図4】 湯面を走査する渦電流センサー[Fig. 4] Eddy current sensor for scanning the molten metal surface

【図5】 スラグ中の金属液滴が測定誤差に与える影響FIG. 5: Effect of metal droplets in slag on measurement error

【符号の説明】[Explanation of symbols]

10:渦電流センサー 11:発振コイル 12,
13:受信コイル 14:湯面 15:渦電流
16:誘導磁界 17:磁力線 18:スラグ層
19:金属液滴 20:容器 21:旋回軸
22:アーム
10: Eddy current sensor 11: Oscillation coil 12,
13: receiving coil 14: molten metal surface 15: eddy current
16: Induction magnetic field 17: Magnetic field lines 18: Slag layer
19: Metal droplet 20: Container 21: Swivel axis
22: Arm

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 50体積%以下の金属粒が懸濁している
スラグ層が浮遊している金属浴の湯面を測定する際、前
記金属浴の上方に渦電流センサーを配置し、周波数0.
5〜500KHzの交流電流を前記渦電流センサーに供
給し、前記交流電流によって前記金属浴の湯面に渦電流
を発生させ、該渦電流により発生する誘導磁界に基づき
前記金属溶湯の湯面レベルを算出することを特徴とする
スラグ下の湯面レベル測定方法。
1. When measuring the level of a metal bath in which a slag layer in which 50% by volume or less of metal particles are suspended is placed, an eddy current sensor is arranged above the metal bath, and a frequency of 0.
An alternating current of 5 to 500 KHz is supplied to the eddy current sensor, an eddy current is generated on the molten metal surface of the metal bath by the alternating current, and the molten metal level of the molten metal is adjusted based on an induction magnetic field generated by the eddy current. A method for measuring the level of a molten metal surface under a slag, which comprises calculating.
JP7085993A 1993-03-05 1993-03-05 Method for measuring molten metal surface level under slag Pending JPH06258129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7085993A JPH06258129A (en) 1993-03-05 1993-03-05 Method for measuring molten metal surface level under slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7085993A JPH06258129A (en) 1993-03-05 1993-03-05 Method for measuring molten metal surface level under slag

Publications (1)

Publication Number Publication Date
JPH06258129A true JPH06258129A (en) 1994-09-16

Family

ID=13443714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085993A Pending JPH06258129A (en) 1993-03-05 1993-03-05 Method for measuring molten metal surface level under slag

Country Status (1)

Country Link
JP (1) JPH06258129A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010063081A (en) * 1999-12-21 2001-07-09 이구택 A method for measuring molten metal level and probe therefor
KR100793936B1 (en) * 2006-09-18 2008-01-16 주식회사 포스코 Apparatus method for measuring thickness of molten mold flux
JP2009156867A (en) * 2004-07-05 2009-07-16 Heraeus Electro-Nite Internatl Nv Method for determining vessel for molten metal, use and interface layer of vessel
CN103510128A (en) * 2012-06-19 2014-01-15 贵阳铝镁设计研究院有限公司 Method for monitoring interface of molten aluminum in aluminum electrolysis tank in real time
CN103510127A (en) * 2012-06-19 2014-01-15 贵阳铝镁设计研究院有限公司 Apparatus for monitoring interface of molten aluminum in aluminum electrolysis tank in real time
US9063110B2 (en) 2010-04-30 2015-06-23 Agellis Group Ab Measurements in metallurgical vessels
US9588210B2 (en) 2010-02-26 2017-03-07 Arkray, Inc. Analysis apparatus, analysis method and analysis system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010063081A (en) * 1999-12-21 2001-07-09 이구택 A method for measuring molten metal level and probe therefor
JP2009156867A (en) * 2004-07-05 2009-07-16 Heraeus Electro-Nite Internatl Nv Method for determining vessel for molten metal, use and interface layer of vessel
US9829385B2 (en) 2004-07-05 2017-11-28 Heraeus Electro-Nite International N.V. Container for molten metal, use of the container and method for determining an interface
KR100793936B1 (en) * 2006-09-18 2008-01-16 주식회사 포스코 Apparatus method for measuring thickness of molten mold flux
US9588210B2 (en) 2010-02-26 2017-03-07 Arkray, Inc. Analysis apparatus, analysis method and analysis system
US9063110B2 (en) 2010-04-30 2015-06-23 Agellis Group Ab Measurements in metallurgical vessels
CN103510128A (en) * 2012-06-19 2014-01-15 贵阳铝镁设计研究院有限公司 Method for monitoring interface of molten aluminum in aluminum electrolysis tank in real time
CN103510127A (en) * 2012-06-19 2014-01-15 贵阳铝镁设计研究院有限公司 Apparatus for monitoring interface of molten aluminum in aluminum electrolysis tank in real time
CN103510128B (en) * 2012-06-19 2016-07-06 贵阳铝镁设计研究院有限公司 The method at molten aluminum liquid interface in monitoring aluminium cell in real time

Similar Documents

Publication Publication Date Title
JP4814559B2 (en) Container for molten metal, use of the container and method for determining the interface layer
JPH06258129A (en) Method for measuring molten metal surface level under slag
WO1998029743A1 (en) Apparatus and method for measuring the depth of molten steel and slag
Yan et al. Interaction between steel and distinct gunning materials in the tundish
Sasai Effect of oxygen and sulfur in molten steel on the agglomeration property of alumina inclusions in molten steel
US6309442B1 (en) Refractory material sensor for determining level of molten metal and slag and method of using
US4037761A (en) Indication of levels in receptacles
JP2002356709A (en) Method for measuring slag layer thickness, and method and apparatus for measuring surface level positions of slag layer and molten metal layer surface
JP3138953B2 (en) Slag thickness measuring device
JP3553107B2 (en) Smelting reduction method with improved recovery of metal components
JP3471406B2 (en) Method for reducing and recovering valuable metals in slag with improved accuracy of molten steel components
Eric et al. Liquidus temperature and electrical conductivities of synthetic ferromanganese slags
JP3672632B2 (en) Consumable probe for simultaneous measurement of molten slag temperature and electrical conductivity, and method for simultaneous measurement of molten slag temperature and electrical conductivity
JP3432542B2 (en) Method for reducing and recovering valuable metals in slag with improved accuracy of molten steel components
JPS61261445A (en) Treatment of copper converter slag
Kundu et al. Morphology of nonmetallic inclusions using silicon, aluminum, and calcium-silicon alloy in steel melt
JP3634046B2 (en) Reduction and recovery method for valuable metals in slag with improved accuracy of molten steel components
Iwase et al. Automatic FeO activity determinator for slag control
GB1600310A (en) Indication of levels in receptacles
JPH09316514A (en) Method for estimating carbon and chromium contents in molten steel in converter process of chromium-containing steel and device therefor and method for tapping molten steel thereof
Iwase Developments in Zirconia Sensors During the 1980 s--Laboratory and In-Plant Applications in Iron- and Steelmaking
CN220507939U (en) Measuring gun
Fitterer et al. Oxygen in Steel Refining as Determined by Solid Electrolyte Techniques
McLEAN Sensor aided process control in iron and steelmaking
KR950009358B1 (en) Thickness measuring device of slag

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011120