JPH0832075A - Thin film transistor cmos circuit - Google Patents

Thin film transistor cmos circuit

Info

Publication number
JPH0832075A
JPH0832075A JP6166855A JP16685594A JPH0832075A JP H0832075 A JPH0832075 A JP H0832075A JP 6166855 A JP6166855 A JP 6166855A JP 16685594 A JP16685594 A JP 16685594A JP H0832075 A JPH0832075 A JP H0832075A
Authority
JP
Japan
Prior art keywords
source
channel
drain
polycrystalline silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6166855A
Other languages
Japanese (ja)
Other versions
JP2715919B2 (en
Inventor
Katsuhisa Yuda
克久 湯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6166855A priority Critical patent/JP2715919B2/en
Publication of JPH0832075A publication Critical patent/JPH0832075A/en
Application granted granted Critical
Publication of JP2715919B2 publication Critical patent/JP2715919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To suppress variation in the transistor characteristics due to the dispersion of water content in channel regions within a CMOS circuit using a top gate thin film transistors. CONSTITUTION:Phosphorus ions 5 are implanted in polycrystalline silicon film 3 for a channel part source/drain electrodes while boron ions 6 are implanted in polycrystalline film 3 for p channel source/drain electrodes. Next, source/drain region 8 for n channel and source/drain region 9 for p channel are formed by photolithgraphy so as to form a polycrystalline silicon film 12 to be an active layer is formed thereon by an excimer laser annealing method. Next, said film 12 is insularly patterned and after forming a gate insulating silicon oxide film 13 by a low pressure CVD method, a gate electrode 16, a source electrode 17 and a drain electrode 18 are formed. At this time, in relation to the overlaps of a gate electrode with the polycrystalline silicon films for source, drain, the overlap 20 of n channel transistor is made smaller than the overlap 19 of p channel transistor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CMOS駆動回路一体
型の液晶ディスプレイ,イメージセンサ等への応用を目
的とした、CMOS駆動回路用の薄膜トランジスタの構
造に関するものであり、特にゲートとソース,ドレイン
間の寄生容量による回路の駆動能力低下を最小限に抑え
つつトランジスタ高信頼化を図るようにしたものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a thin film transistor for a CMOS drive circuit for the purpose of application to a liquid crystal display integrated with a CMOS drive circuit, an image sensor, etc., and particularly to a gate, a source and a drain. It is intended to improve the reliability of the transistor while minimizing the deterioration of the driving capability of the circuit due to the parasitic capacitance between them.

【0002】[0002]

【従来の技術】エキシマレーザアニール法の開発によ
り、低価格であるが歪温度の低い硼珪酸ガラス基板上で
の多結晶シリコン薄膜トランジスタの形成技術が確立し
てきている。エキシマレーザ照射による多結晶シリコン
生成時の温度が、ガラス基板にはほとんど影響しないと
すれば、将来のプロセス最高温度は450〜500℃程
度になり、より安価なガラス基板が使用できると予想さ
れる。この安価なガラス基板上に多結晶シリコン薄膜ト
ランジスタを用いたCMOS駆動回路と液晶画素スイッ
チングトランジスタを用いた、低コスト高精細液晶ディ
スプレイの開発が期待される。
2. Description of the Related Art With the development of an excimer laser annealing method, a technique for forming a polycrystalline silicon thin film transistor on a borosilicate glass substrate which has a low cost but a low strain temperature has been established. If the temperature at the time of producing polycrystalline silicon by excimer laser irradiation has almost no effect on the glass substrate, the maximum process temperature in the future will be about 450 to 500 ° C., and it is expected that a cheaper glass substrate can be used. . Development of a low-cost high-definition liquid crystal display using a CMOS drive circuit using a polycrystalline silicon thin film transistor and a liquid crystal pixel switching transistor on this inexpensive glass substrate is expected.

【0003】図5は従来法による順スタガ構造薄膜トラ
ンジスタを用いたCMOS回路の構造断面図である。図
中、41はガラス基板、42は金属シリサイド膜、43
はソース,ドレイン多結晶シリコン膜、44は活性層多
結晶シリコン膜、45はゲート絶縁膜用酸化シリコン
膜、46は燐ドープ多結晶シリコン膜、48はゲート電
極、49はソース電極、50はドレイン電極である。
FIG. 5 is a structural sectional view of a CMOS circuit using a forward staggered thin film transistor according to a conventional method. In the figure, 41 is a glass substrate, 42 is a metal silicide film, and 43.
Is a source / drain polycrystalline silicon film, 44 is an active layer polycrystalline silicon film, 45 is a silicon oxide film for a gate insulating film, 46 is a phosphorus-doped polycrystalline silicon film, 48 is a gate electrode, 49 is a source electrode, and 50 is a drain. It is an electrode.

【0004】スタガ構造の場合、フォトリソグラフィー
工程における目ずれを考慮してゲート電極48とソー
ス,ドレイン用多結晶シリコン膜43に重なりをもたせ
ている。51はpチャネルトランジスタのゲート電極4
8とソース,ドレイン用多結晶シリコン膜43の重なり
を、52はnチャネルトランジスタのゲート電極48と
ソース,ドレイン用多結晶シリコン膜43の重なりを示
している。この重なり51,52の長さは、通常nチャ
ネルトランジスタ,pチャネルトランジスタともに同じ
である。
In the case of the stagger structure, the gate electrode 48 and the source / drain polycrystalline silicon film 43 are overlapped in consideration of misalignment in the photolithography process. 51 is the gate electrode 4 of the p-channel transistor
8 and the source / drain polycrystalline silicon film 43 are overlapped, and 52 is the n-channel transistor gate electrode 48 and the source / drain polycrystalline silicon film 43 are overlapped. The lengths of the overlaps 51 and 52 are normally the same for both n-channel transistors and p-channel transistors.

【0005】図6は、従来法によるプレーナ構造薄膜ト
ランジスタを用いたCMOS回路の構造断面図である。
図中、61はガラス基板、62はpチャネル用ソース,
ドレイン領域、63はnチャネル用ソース,ドレイン領
域、64は活性層多結晶シリコン膜、65はゲート絶縁
膜用酸化シリコン膜、66は燐ドープ多結晶シリコン
膜、68はゲート電極、69はソース電極、70はドレ
イン電極である。
FIG. 6 is a structural sectional view of a CMOS circuit using a planar structure thin film transistor according to a conventional method.
In the figure, 61 is a glass substrate, 62 is a p-channel source,
Drain region, 63 is an n-channel source and drain region, 64 is an active layer polycrystalline silicon film, 65 is a gate insulating film silicon oxide film, 66 is a phosphorus-doped polycrystalline silicon film, 68 is a gate electrode, and 69 is a source electrode. , 70 are drain electrodes.

【0006】プレーナ構造の場合は、通常ソース,ドレ
イン領域形成のための不純物注入をゲート電極を用いて
自己整合的に行うため、順スタガ構造におけるようなゲ
ート電極とソース,ドレイン領域の重なりはない。
In the case of the planar structure, since the impurity implantation for forming the source and drain regions is normally performed in a self-aligned manner using the gate electrode, there is no overlap between the gate electrode and the source and drain regions as in the forward stagger structure. .

【0007】[0007]

【発明が解決しようとする課題】上記従来技術のような
プロセス低温化が進むと、ゲート絶縁膜の膜質低下など
に伴うトランジスタ特性変動の問題が生じる。ゲート絶
縁膜はその形成温度が低くなるほど化学量論的組成から
遠ざかり、膜は疎になる。また、OH基,ダングリング
ボンドなどの含有量も多くなる。膜が疎であれば大気中
から水分が侵入、拡散しやすい。侵入水と水素結合した
Si−OH、水とダングリングボンドの反応によって生
成したSi−OH、あるいは侵入水自体は電界ストレス
下で電離して電荷を生成し、トランジスタ特性を大きく
変動させる。この問題に対し、図5のスタガ構造におけ
るゲート電極とソース,ドレイン用多結晶シリコン膜の
重なりを大きくすると、水分侵入箇所であるゲート電極
エッジとチャネル領域との距離が長くなり、チャネル領
域への拡散水分量を減少させるため、特性変動が発生し
にくくなる、あるいは変動が小さくなるという効果を持
つ。
When the process temperature is lowered as in the prior art described above, there arises a problem of transistor characteristic variation due to deterioration of the film quality of the gate insulating film. The lower the formation temperature of the gate insulating film, the further away from the stoichiometric composition, and the film becomes sparse. In addition, the content of OH groups, dangling bonds, etc. also increases. If the film is sparse, water easily enters and diffuses from the atmosphere. The Si—OH hydrogen-bonded to the invading water, the Si—OH generated by the reaction of the water and the dangling bond, or the invading water itself is ionized under the electric field stress to generate an electric charge, which largely changes the transistor characteristics. To solve this problem, if the overlap between the gate electrode and the source / drain polycrystalline silicon film in the staggered structure of FIG. 5 is increased, the distance between the gate electrode edge, which is the water intrusion point, and the channel region becomes long, and the channel region Since the amount of diffused water is reduced, there is an effect that the characteristic variation is less likely to occur or the characteristic variation is reduced.

【0008】しかしながら上記のような構成において、
ゲート電極とソース,ドレイン用多結晶シリコン膜の重
なりを大きくしていくと、ゲート−ドレイン(ソース)
間容量が大きくなってしまい、駆動回路における信号遅
延を引き起こすという問題を有する。
However, in the above configuration,
When the overlap between the gate electrode and the source / drain polycrystalline silicon film is increased, the gate-drain (source)
There is a problem that the inter-capacitance becomes large and causes a signal delay in the drive circuit.

【0009】また、図4に示すプレーナ構造ではゲート
電極とソース,ドレイン領域の重なりがほとんど存在し
ないため、上記のような拡散水分量減少効果はない。
Further, in the planar structure shown in FIG. 4, since there is almost no overlap between the gate electrode and the source / drain regions, there is no effect of reducing the amount of diffused water as described above.

【0010】本発明は、上記問題点を鑑みて考案された
ものであり、nチャネルトランジスタではソース,ドレ
インに注入されている燐に水に対するゲッタリング作用
があるため水分侵入による特性変動が起こりにくい、ま
たは特性変動が小さくなることを利用し、トップゲート
型薄膜トランジスタを用いたCMOS回路において、ゲ
ート電極エッジからチャネル領域に拡散する水分量を抑
えるために施すゲート−ソース,ドレインオーバーラッ
プ長を、pチャネルトランジスタよりもnチャネルトラ
ンジスタの方を小さくし、ゲート−ソース,ドレイン間
容量を過剰に増大させることなく、チャネル領域への水
分拡散によるトランジスタ特性の変動を抑制することを
目的とする。
The present invention has been devised in view of the above problems. In an n-channel transistor, phosphorus injected into the source and drain has a gettering action against water, so that characteristic variation due to water intrusion does not easily occur. , Or the characteristic variation is reduced, in a CMOS circuit using a top gate type thin film transistor, the gate-source and drain overlap lengths for suppressing the amount of water diffused from the edge of the gate electrode to the channel region are set to p It is an object of the present invention to make an n-channel transistor smaller than a channel transistor and to suppress fluctuations in transistor characteristics due to water diffusion into a channel region without excessively increasing gate-source / drain capacitance.

【0011】[0011]

【課題を解決するための手段】本発明は、絶縁基板上
に、ソース,ドレイン用多結晶シリコン層と、前記ソー
ス,ドレイン上に形成され活性層となる多結晶シリコン
層と、前記活性層多結晶シリコン層上に形成されゲート
絶縁膜となる絶縁膜と、前記絶縁膜上にゲート電極を有
する薄膜トランジスタを用いたCMOS回路において、
前記ソース,ドレイン用多結晶シリコン層と前記ゲート
電極の重なりが、pチャネルトランジスタよりもnチャ
ネルトランジスタの方が小さいことを特徴とする。
According to the present invention, a source / drain polycrystalline silicon layer, a polycrystalline silicon layer formed on the source / drain to serve as an active layer, and the active layer multi-layer are provided on an insulating substrate. In a CMOS circuit using an insulating film formed on a crystalline silicon layer to serve as a gate insulating film and a thin film transistor having a gate electrode on the insulating film,
The overlap between the source / drain polycrystalline silicon layer and the gate electrode is smaller in the n-channel transistor than in the p-channel transistor.

【0012】また本発明は、絶縁基板上に、活性層とな
る多結晶シリコン層と、前記多結晶シリコン層内に不純
物注入によって形成されたソース,ドレイン領域と、前
記多結晶シリコン層上に形成されゲート絶縁膜となる絶
縁膜と、前記絶縁膜上にゲート電極を有する薄膜トラン
ジスタを用いたCMOS回路において、前記ソース,ド
レイン領域と前記ゲート電極の重なりが、pチャネルト
ランジスタよりもnチャネルトランジスタの方が小さい
ことを特徴とする。
Further, according to the present invention, a polycrystalline silicon layer to be an active layer, source and drain regions formed by impurity implantation in the polycrystalline silicon layer, and an polycrystalline silicon layer formed on the polycrystalline silicon layer on an insulating substrate. In a CMOS circuit using an insulating film serving as a gate insulating film and a thin film transistor having a gate electrode on the insulating film, the overlap between the source and drain regions and the gate electrode is larger in an n-channel transistor than in a p-channel transistor. Is small.

【0013】[0013]

【作用】トップゲート型薄膜トランジスタを用いたCM
OS回路において、ゲート電極エッジからチャネル領域
に拡散する水分量を抑えるために施すゲートとドレイン
およびゲートとソースのオーバーラップ長、pチャネル
トランジスタよりもnチャネルトランジスタの方を小さ
くし、ゲート−ドレイン(ソース)間容量を過剰に増大
させることなく、チャネル領域への水分拡散によるトラ
ンジスタ特性の変動を抑制できる。
[Operation] CM using top gate type thin film transistor
In the OS circuit, the overlap length of the gate and the drain and the gate and the source for suppressing the amount of water diffused from the edge of the gate electrode to the channel region, the n-channel transistor is made smaller than the p-channel transistor, and the gate-drain ( Variation in transistor characteristics due to water diffusion into the channel region can be suppressed without excessively increasing the capacitance between the sources).

【0014】[0014]

【実施例】本発明の実施例を、多結晶シリコン薄膜トラ
ンジスタの作製プロセスにおける素子断面図に基づいて
説明する。
EXAMPLE An example of the present invention will be described based on element cross-sectional views in the manufacturing process of a polycrystalline silicon thin film transistor.

【0015】(実施例1)図1は本発明の具体的な第一
実施例を示す素子断面図で、順スタガ型多結晶シリコン
薄膜トランジスタを用いたCMOS回路を示す。
(Embodiment 1) FIG. 1 is a sectional view of an element showing a concrete first embodiment of the present invention, showing a CMOS circuit using a forward stagger type polycrystalline silicon thin film transistor.

【0016】図中、1はガラス基板、2は金属シリサイ
ド膜、3はソース,ドレイン用多結晶シリコン膜、12
は活性層多結晶シリコン膜、13はゲート絶縁膜用酸化
シリコン膜、14は燐ドープ多結晶シリコン膜、16は
ゲート電極、17はソース電極、18はドレイン電極で
ある。
In the figure, 1 is a glass substrate, 2 is a metal silicide film, 3 is a polycrystalline silicon film for source and drain, and 12
Is an active layer polycrystalline silicon film, 13 is a silicon oxide film for a gate insulating film, 14 is a phosphorus-doped polycrystalline silicon film, 16 is a gate electrode, 17 is a source electrode, and 18 is a drain electrode.

【0017】このCMOS回路では、pチャネルトラン
ジスタのゲート電極16とソース,ドレイン用多結晶シ
リコン膜3の重なり19は、nチャネルトランジスタの
ゲート電極16とソース,ドレイン用多結晶シリコン膜
3の重なり20より大きい。
In this CMOS circuit, the gate electrode 16 of the p-channel transistor and the source / drain polycrystalline silicon film 3 overlap 19 with each other, and the n-channel transistor gate electrode 16 and the source / drain polycrystalline silicon film 3 overlap 20 with each other. Greater than

【0018】このCMOS回路の作製プロセスを、図2
に基づいて説明する。
A process for manufacturing this CMOS circuit is shown in FIG.
It will be described based on.

【0019】まず図2(a)に示すように、ガラス基板
など少なくとも表面が絶縁物質である基板1上に金属シ
リサイド膜2を堆積して、フォトリソグラフィーにより
ソース,ドレイン電極の下部を形成した後、ソース,ド
レイン電極用多結晶シリコン膜3を堆積する。
First, as shown in FIG. 2A, after depositing a metal silicide film 2 on a substrate 1 such as a glass substrate, at least the surface of which is an insulating material, and the lower portions of the source and drain electrodes are formed by photolithography. A source / drain electrode polycrystalline silicon film 3 is deposited.

【0020】次に図2(b)に示すように、イオン注入
カバー用酸化シリコン膜4を堆積し、この上にレジスト
マスク7を形成する。このレジストマスク7を用い、イ
オン注入カバー用酸化シリコン膜4を通して、nチャネ
ル部分ソース,ドレイン電極用多結晶シリコン膜3に燐
イオン5を注入する。
Next, as shown in FIG. 2B, a silicon oxide film 4 for an ion implantation cover is deposited, and a resist mask 7 is formed thereon. Using this resist mask 7, phosphorus ions 5 are implanted through the ion implantation cover silicon oxide film 4 into the n-channel partial source / drain electrode polycrystalline silicon film 3.

【0021】続いて図2(c)に示すように、pチャネ
ル部分ソース,ドレイン電極用多結晶シリコン膜3に硼
素イオン6を注入する。
Subsequently, as shown in FIG. 2C, boron ions 6 are implanted into the p-channel partial source / drain electrode polycrystalline silicon film 3.

【0022】次に図2(d)に示すように、フォトリソ
グラフィーによりnチャネル用ソース,ドレイン領域8
とpチャネル用ソース,ドレイン領域9を形成し、イオ
ン注入用酸化シリコン膜4を除去した後、非晶質シリコ
ン膜10を形成する。ここで非晶質シリコン膜10の代
わりに多結晶シリコン膜を用いてもよい。非晶質シリコ
ン膜10にXeClエキシマレーザ光11を照射し、図
2(e)に示すように溶融再結晶化により活性層となる
多結晶シリコン膜12を形成する。活性層多結晶シリコ
ン膜12は、固相成長法,CVD法によるものでもよ
い。次工程として、多結晶シリコン膜12をフォトリソ
グラフィーにより島状にパターン加工し、続いてゲート
絶縁膜用酸化シリコン膜13を形成する。
Next, as shown in FIG. 2D, the n-channel source / drain region 8 is formed by photolithography.
A p-channel source / drain region 9 is formed, the ion implantation silicon oxide film 4 is removed, and then an amorphous silicon film 10 is formed. Here, a polycrystalline silicon film may be used instead of the amorphous silicon film 10. The amorphous silicon film 10 is irradiated with XeCl excimer laser light 11 to form a polycrystalline silicon film 12 to be an active layer by melt recrystallization as shown in FIG. The active layer polycrystalline silicon film 12 may be formed by a solid phase growth method or a CVD method. In the next step, the polycrystalline silicon film 12 is patterned into an island shape by photolithography, and subsequently a silicon oxide film 13 for a gate insulating film is formed.

【0023】最後に図2(f)に示すように、燐ドープ
多結晶シリコン膜14、およびアルミニウム膜を用いて
ゲート電極16,ソース電極17,ドレイン電極18を
作製する。この時、ゲート電極とソース,ドレイン用多
結晶シリコン膜の重なりを、pチャネルトランジスタの
重なり19よりnチャネルトランジスタの重なり20の
方を小さくするように形成する。なお、nチャネルトラ
ンジスタの重なり20は零以下であることも含む。ゲー
トとソース,ドレインの重なりで生じる寄生容量の過剰
増大抑制と水分侵入による特性変動抑制の両立を考慮す
ると、nチャネルトランジスタの重なり20は〜1μ
m、pチャネルトランジスタの重なり19は1〜2μm
が最適である。
Finally, as shown in FIG. 2F, the gate electrode 16, the source electrode 17, and the drain electrode 18 are formed by using the phosphorus-doped polycrystalline silicon film 14 and the aluminum film. At this time, the overlap between the gate electrode and the source / drain polycrystalline silicon film is formed so that the overlap 20 of the n-channel transistors is smaller than the overlap 19 of the p-channel transistors. Note that the overlap 20 of the n-channel transistors also includes zero or less. Considering both suppression of excessive increase of parasitic capacitance caused by overlapping of gate, source and drain and suppression of characteristic fluctuation due to moisture intrusion, the overlap 20 of n-channel transistors is about 1 μm.
The overlap 19 of m and p channel transistors is 1-2 μm
Is the best.

【0024】以上で順スタガ型多結晶シリコン薄膜トラ
ンジスタを用いた高信頼CMOS回路を寄生容量を過剰
に増大させることなく形成することができる。
As described above, the highly reliable CMOS circuit using the forward stagger type polycrystalline silicon thin film transistor can be formed without excessively increasing the parasitic capacitance.

【0025】(実施例2)図3は他の実施例を示す素子
断面図で、プレーナ型多結晶シリコン薄膜トランジスタ
を用いたCMOS回路を示す。
(Embodiment 2) FIG. 3 is a sectional view of an element showing another embodiment, showing a CMOS circuit using a planar type polycrystalline silicon thin film transistor.

【0026】図中、21はガラス基板、26はnチャネ
ル用ソース,ドレイン領域、28はpチャネル用ソー
ス,ドレイン領域、30は活性層多結晶シリコン膜、3
1はゲート絶縁膜用酸化シリコン膜、32は燐ドープ多
結晶シリコン膜、34はゲート電極、35はソース電
極、36はドレイン電極である。
In the figure, 21 is a glass substrate, 26 is an n-channel source / drain region, 28 is a p-channel source / drain region, 30 is an active layer polycrystalline silicon film, 3
1 is a silicon oxide film for a gate insulating film, 32 is a phosphorus-doped polycrystalline silicon film, 34 is a gate electrode, 35 is a source electrode, and 36 is a drain electrode.

【0027】このCMOS回路では、pチャネルトラン
ジスタのゲート電極34とソース,ドレイン領域28の
重なり37は、nチャネルトランジスタのゲート電極3
4とソース,ドレイン領域26の重なり38より大き
い。
In this CMOS circuit, the overlap 37 of the gate electrode 34 of the p-channel transistor and the source / drain region 28 is the gate electrode 3 of the n-channel transistor.
4 is larger than the overlap 38 of the source / drain regions 26.

【0028】このCMOS回路の作製プロセスを、図4
に基づいて説明する。
The manufacturing process of this CMOS circuit is shown in FIG.
It will be described based on.

【0029】まず図4(a)に示すように、ガラス基板
など少なくとも表面が絶縁物質である基板21上に、非
晶質シリコン膜22およびイオン注入カバー用酸化シリ
コン膜23を形成する。ここで非晶質シリコン膜22の
代わりに多結晶シリコン膜を用いてもよい。
First, as shown in FIG. 4A, an amorphous silicon film 22 and a silicon oxide film 23 for an ion implantation cover are formed on a substrate 21 such as a glass substrate, at least the surface of which is an insulating material. Here, a polycrystalline silicon film may be used instead of the amorphous silicon film 22.

【0030】次に図4(b)に示すように、レジストマ
スク24を用い、nチャネル部分シリコン膜に燐イオン
25を注入してnチャネル部分ソース,ドレイン領域2
6を形成する。
Next, as shown in FIG. 4B, using the resist mask 24, phosphorus ions 25 are implanted into the n-channel partial silicon film to form the n-channel partial source / drain regions 2.
6 is formed.

【0031】引き続いて図4(c)に示すように、pチ
ャネル部分シリコン膜に硼素イオン27を注入してpチ
ャネル部分ソース,ドレイン電極28を形成する。
Subsequently, as shown in FIG. 4C, boron ions 27 are implanted into the p-channel partial silicon film to form p-channel partial source / drain electrodes 28.

【0032】次に図4(d)に示すように、シリコン膜
にXeClエキシマレーザ光29を照射し、溶融再結晶
化により活性層となる多結晶シリコン膜30を形成す
る。活性層多結晶シリコン膜30は、固相成長法または
CVD法による多結晶シリコンを形成しエキシマレーザ
再結晶化を行わないものでもよい。図4(d)のエキシ
マレーザアニールの工程において、シリコンの温度は融
点の1420K以上の温度となるが、レーザのパルス幅
は数十ナノ秒と非常に短いためにソース,ドレイン領域
26,28の不純物がチャネル領域に大きく拡散するこ
とはない。また拡散距離が既知で再現性があれば、拡散
距離を考慮したパターン設計を行えばよい。
Next, as shown in FIG. 4D, the silicon film is irradiated with XeCl excimer laser light 29 to form a polycrystalline silicon film 30 serving as an active layer by melt recrystallization. The active layer polycrystalline silicon film 30 may be formed by forming polycrystalline silicon by a solid phase growth method or a CVD method without performing excimer laser recrystallization. In the step of the excimer laser annealing shown in FIG. 4D, the temperature of silicon is 1420 K or higher, which is the melting point, but the pulse width of the laser is very short, such as several tens of nanoseconds. Impurities do not diffuse significantly into the channel region. If the diffusion distance is known and reproducible, the pattern design may be performed in consideration of the diffusion distance.

【0033】次工程として、図4(e)に示すように、
多結晶シリコン膜30をフォトリソグラフィーにより島
状にパターン加工し、ゲート絶縁膜用酸化シリコン膜3
1を形成する。
As the next step, as shown in FIG.
The polycrystalline silicon film 30 is patterned into an island shape by photolithography, and the silicon oxide film 3 for a gate insulating film is formed.
1 is formed.

【0034】最後に図4(f)に示すように、燐ドープ
多結晶シリコン膜32およびアルミニウム膜を用いてゲ
ート電極34,ソース電極35,ドレイン電極36を作
製する。この時ゲート電極とソース,ドレイン領域の重
なりを、pチャネルトランジスタの重なり37よりnチ
ャネルトランジスタの重なり38の方を小さくするよう
に形成する。なお、nチャネルトランジスタの重なり3
8は零以下であることも含む。ゲートとソース,ドレイ
ン間の寄生容量の過剰増大抑制と水分侵入による特性変
動抑制の両立を考慮すると、実施例1と同様に、nチャ
ネルトランジスタの重なり38は〜1μm、pチャネル
トランジスタの重なり37は1〜2μmが最適である。
Finally, as shown in FIG. 4F, the gate electrode 34, the source electrode 35, and the drain electrode 36 are formed by using the phosphorus-doped polycrystalline silicon film 32 and the aluminum film. At this time, the overlap between the gate electrode and the source / drain regions is formed so that the overlap 38 of the n-channel transistors is smaller than the overlap 37 of the p-channel transistors. The overlap of n-channel transistors 3
It also includes that 8 is zero or less. Considering both suppression of excessive increase in parasitic capacitance between the gate, source, and drain and suppression of characteristic fluctuation due to moisture intrusion, the overlap 38 of the n-channel transistors is about 1 μm and the overlap 37 of the p-channel transistors is similar to the first embodiment. 1-2 μm is optimal.

【0035】以上でプレーナ型多結晶シリコン薄膜トラ
ンジスタを用いた高信頼CMOS回路を寄生容量を過剰
に増大させることなく形成することができる。
As described above, a highly reliable CMOS circuit using the planar type polycrystalline silicon thin film transistor can be formed without excessively increasing the parasitic capacitance.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
トップゲート型多結晶シリコン薄膜トランジスタを用い
たCMOS回路において、ゲートとソースおよびゲート
とドレインの重なりによる水分侵入起因特性変動を寄生
容量を過剰増大させることなく実現することができる。
As described above, according to the present invention,
In a CMOS circuit using a top gate type polycrystalline silicon thin film transistor, it is possible to realize a characteristic variation due to moisture intrusion due to the overlapping of the gate and the source and the gate and the drain without excessively increasing the parasitic capacitance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における薄膜トランジスタCMOS回路
の一実施例を示す模式的断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a thin film transistor CMOS circuit according to the present invention.

【図2】図1の薄膜トランジスタCMOS回路の作製プ
ロセスを示す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing a manufacturing process of the thin film transistor CMOS circuit of FIG.

【図3】本発明における薄膜トランジスタCMOS回路
の他の実施例を示す模式的断面図である。
FIG. 3 is a schematic cross-sectional view showing another embodiment of the thin film transistor CMOS circuit according to the present invention.

【図4】図3の薄膜トランジスタCMOS回路の作製プ
ロセスを示す模式的断面図である。
FIG. 4 is a schematic cross-sectional view showing a manufacturing process of the thin film transistor CMOS circuit of FIG.

【図5】従来技術による、ゲートとソース,ドレインが
同等の重なりを有する順スタガ構造薄膜トランジスタの
構造断面図である。
FIG. 5 is a structural cross-sectional view of a forward staggered thin film transistor having a gate, a source, and a drain having the same overlap according to the related art.

【図6】従来技術による、ゲートとソース,ドレインが
重なりを有しないプレーナ構造薄膜トランジスタの構造
断面図である。
FIG. 6 is a structural cross-sectional view of a planar structure thin film transistor in which a gate, a source, and a drain do not have an overlap according to a conventional technique.

【符号の説明】[Explanation of symbols]

1,21,41,61 ガラス基板 2,42 金属シリサイド膜 3,43 ソース,ドレイン用多結晶シリコン膜 4,23 イオン注入カバー用酸化シリコン膜 5,25 燐イオン 6,27 Bイオン 7,24 レジスト 8,26,63 nチャネル用ソース,ドレイン領域 9,28,62 pチャネル用ソース,ドレイン領域 10,22 非晶質シリコン膜 11,29 XeClエキシマレーザ光 12,30,44,64 活性層多結晶シリコン膜 13,31,45,65 ゲート絶縁膜用酸化シリコン
膜 14,32,46,66 燐ドープ多結晶シリコン膜 16,34,48,68 ゲート電極 17,35,49,69 ソース電極 18,36,50,70 ドレイン電極 19,37,51 pチャネルトランジスタのゲートと
ソース,ドレインの重なり 20,38,52 nチャネルトランジスタのゲートと
ソース,ドレインの重なり
1, 21, 41, 61 Glass substrate 2, 42 Metal silicide film 3, 43 Polycrystalline silicon film for source and drain 4, 23 Silicon oxide film for ion implantation cover 5, 25 Phosphorus ion 6, 27 B ion 7, 24 Resist 8,26,63 n-channel source / drain region 9,28,62 p-channel source / drain region 10,22 amorphous silicon film 11,29 XeCl excimer laser light 12,30,44,64 active layer polycrystal Silicon film 13, 31, 45, 65 Silicon oxide film for gate insulating film 14, 32, 46, 66 Phosphorus-doped polycrystalline silicon film 16, 34, 48, 68 Gate electrode 17, 35, 49, 69 Source electrode 18, 36 , 50, 70 Drain electrode 19, 37, 51 Weight of gate, source and drain of p-channel transistor Ri gate and source of 20,38,52 n-channel transistor, the drain overlap

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/08 331 E H01L 27/08 321 C Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01L 27/08 331 E H01L 27/08 321 C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に、ソース,ドレイン用多結晶
シリコン層と、前記ソース,ドレイン上に形成され活性
層となる多結晶シリコン層と、前記活性層多結晶シリコ
ン層上に形成されゲート絶縁膜となる絶縁膜と、前記絶
縁膜上にゲート電極を有する薄膜トランジスタを用いた
CMOS回路において、 前記ソース,ドレイン用多結晶シリコン層と前記ゲート
電極の重なりが、pチャネルトランジスタよりもnチャ
ネルトランジスタの方が小さいことを特徴とする薄膜ト
ランジスタCMOS回路。
1. A source / drain polycrystalline silicon layer on an insulating substrate, a polycrystalline silicon layer formed on the source / drain to serve as an active layer, and a gate formed on the active layer polycrystalline silicon layer. In a CMOS circuit using an insulating film to be an insulating film and a thin film transistor having a gate electrode on the insulating film, an overlap between the source / drain polycrystalline silicon layer and the gate electrode is an n-channel transistor rather than a p-channel transistor. Is a thin film transistor CMOS circuit.
【請求項2】前記nチャネルトランジスタの重なりは〜
1μm、前記pチャネルトランジスタの重なりは1〜2
μmであることを特徴とする請求項1記載の薄膜トラン
ジスタCMOS回路。
2. The overlap of the n-channel transistors is
1 μm, the overlap of the p-channel transistors is 1-2
The thin film transistor CMOS circuit according to claim 1, wherein the thin film transistor CMOS circuit has a thickness of μm.
【請求項3】絶縁基板上に、活性層となる多結晶シリコ
ン層と、前記多結晶シリコン層内に不純物注入によって
形成されたソース,ドレイン領域と、前記多結晶シリコ
ン層上に形成されゲート絶縁膜となる絶縁膜と、前記絶
縁膜上にゲート電極を有する薄膜トランジスタを用いた
CMOS回路において、 前記ソース,ドレイン領域と前記ゲート電極の重なり
が、pチャネルトランジスタよりもnチャネルトランジ
スタの方が小さいことを特徴とする薄膜トランジスタC
MOS回路。
3. A polycrystalline silicon layer serving as an active layer on an insulating substrate, source and drain regions formed by implanting impurities into the polycrystalline silicon layer, and a gate insulating layer formed on the polycrystalline silicon layer. In a CMOS circuit using an insulating film to be a film and a thin film transistor having a gate electrode on the insulating film, an overlap between the source / drain region and the gate electrode is smaller in an n-channel transistor than in a p-channel transistor. Thin film transistor C characterized by
MOS circuit.
【請求項4】前記nチャネルトランジスタの重なりは〜
1μm、前記pチャネルトランジスタの重なりは1〜2
μmであることを特徴とする請求項3記載の薄膜トラン
ジスタCMOS回路。
4. The overlap of the n-channel transistors is
1 μm, the overlap of the p-channel transistors is 1-2
The thin film transistor CMOS circuit according to claim 3, wherein the thickness is μm.
JP6166855A 1994-07-19 1994-07-19 Thin film transistor CMOS circuit Expired - Lifetime JP2715919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6166855A JP2715919B2 (en) 1994-07-19 1994-07-19 Thin film transistor CMOS circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6166855A JP2715919B2 (en) 1994-07-19 1994-07-19 Thin film transistor CMOS circuit

Publications (2)

Publication Number Publication Date
JPH0832075A true JPH0832075A (en) 1996-02-02
JP2715919B2 JP2715919B2 (en) 1998-02-18

Family

ID=15838902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6166855A Expired - Lifetime JP2715919B2 (en) 1994-07-19 1994-07-19 Thin film transistor CMOS circuit

Country Status (1)

Country Link
JP (1) JP2715919B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755700B2 (en) 2005-08-30 2010-07-13 Kabushiki Kaisha Toshiba Motion-adaptive non-interlace conversion apparatus and conversion method
CN109830428A (en) * 2019-01-21 2019-05-31 武汉华星光电半导体显示技术有限公司 A kind of preparation method of semiconductor devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301056A (en) * 1993-04-15 1994-10-28 Seiko Epson Corp Production of thin-film semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06301056A (en) * 1993-04-15 1994-10-28 Seiko Epson Corp Production of thin-film semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755700B2 (en) 2005-08-30 2010-07-13 Kabushiki Kaisha Toshiba Motion-adaptive non-interlace conversion apparatus and conversion method
CN109830428A (en) * 2019-01-21 2019-05-31 武汉华星光电半导体显示技术有限公司 A kind of preparation method of semiconductor devices
US11087982B2 (en) 2019-01-21 2021-08-10 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method and system for fabricating a semiconductor device

Also Published As

Publication number Publication date
JP2715919B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JP4372993B2 (en) Manufacturing method of active matrix liquid crystal display device
US7968886B2 (en) Semiconductor integrated circuit and method of fabricating same
JPH10223904A (en) Thin film transistor and its manufacture
JPH11111994A (en) Thin-film transistor and method for manufacturing the thin-film transistor
JPH10256554A (en) Thin film transistor and manufacture thereof
US6991974B2 (en) Method for fabricating a low temperature polysilicon thin film transistor
JP2776820B2 (en) Method for manufacturing semiconductor device
TW461101B (en) Source-drain-gate coplanar polysilicon thin film transistor and the manufacturing method thereof
JP2715919B2 (en) Thin film transistor CMOS circuit
JP3347340B2 (en) Method for manufacturing thin film transistor
JP2000068515A (en) Manufacture of thin-film semiconductor device
JPH08316487A (en) Manufacture of thin-film semiconductor device
JP3466165B2 (en) Method of manufacturing thin film transistor having LDD
JPH09172186A (en) Manufacture of thin film transistor
JP3028552B2 (en) Thin film transistor and method of manufacturing the same
JP3180499B2 (en) Method for manufacturing semiconductor device
KR100191786B1 (en) Fabrication method of thin film transistor
JP3467571B2 (en) Method for manufacturing thin film transistor
JP3430743B2 (en) Method for manufacturing thin film transistor
JPH09213962A (en) Thin film transistor and its manufacture
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPH11111987A (en) Manufacture of thin-film transistor
JPH0352265A (en) Thin film transistor
JPH07142739A (en) Manufacture of polycrystal line silicon thin-film transistor
JP3197669B2 (en) Thin film transistor and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 16

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term